多糖基分子印迹功能材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子印迹材料(MIMs)在分离、传感、药物传输、酶模拟等领域有重要应用。近年来,以天然多糖为基本原料制备多糖基MIMs的研究工作,成为研究的热点。多糖基MIMs具原料来源广泛、生物相容性和生物降解性好等优点。本论文不仅合成了可用于酪氨酸、蛋白质分离的多糖基MIMs,还制备了具有电化学传感、荧光检测、药物缓释功能及酯酶活性的多糖基MIMs。采用红外光谱(FTIR)、扫描电镜(SEM)、热重分析仪(TG/DTG)等研究了所得多糖基MIMs的结构和性能,并利用静态吸附法、电化学法、荧光检测法分别研究了其识别、缓释及催化性能。
     本工作的主要创新点如下:(1)采用酶促凝胶化法快速制得可用于蛋白质分离的淀粉基分子印迹凝胶,解决了蛋白质印迹过程中易变性失活问题;(2)通过分散聚合法制备了集磁性和温度响应于一体的淀粉基分子印迹微凝胶;(3)以壳聚糖、β-环糊精-异氰酸丙基三乙氧基硅烷偶联物为基本原料,通过溶胶-凝胶法制得具电化学传感功能的分子印迹杂化膜;(4)合成了集识别和荧光响应功能于一体的淀粉基分子印迹凝胶;(5)通过反相乳液法制得具有药物缓释功能和酯酶活性的多糖基分子印迹微凝胶。
     本论文工作包括如下六个方面:
     (1)用于蛋白质分离的淀粉基分子印迹凝胶
     以羧甲基淀粉-氨基苯酚偶联物(CMS-AP)为功能单体,通过酶促凝胶化法制得牛血清蛋白(BSA)分子印迹凝胶(MIHs)。圆二色谱测试表明,BSA与CMS-AP作用后构象未发生改变。用FTIR确定了MIHs中与模板分子相互作用的识别单元。通过流变仪研究了聚合物浓度、CMS-AP上氨基苯酚基团含量等因素对MIHs性能的影响。吸附实验表明,MIHs对BSA的吸附量明显高于non-MIHs的;其对BSA的吸附行为符合Langmuir方程;介质pH为5.0时平衡吸附量最高。选择性吸附实验表明,MIHs的选择性受模板分子用量和CMS-AP上氨基苯酚基团含量影响。
     (2)用于酪氨酸分离的淀粉基磁性分子印迹温敏微凝胶
     以羧甲基淀粉-氨基吡啶偶联物(CMS-AP)为功能单体,采用分散聚合法制得磁性分子印迹温敏微凝胶(MMIGs)。用TG/DTG测定了磁性微凝胶的组成;X-衍射(XRD)测试表明,聚合物包覆不会改变Fe3O4的晶相;SEM分析表明,MMIGs粒径为100-500 nm;FTIR分析表明,分子印迹过程中在MMIGs中形成了与模板分子相互作用的识别单元;磁性能测试表明,MMIGs具有超顺磁性。吸附实验表明,MMIGs对酪氨酸的吸附行为可用Langmuir方程进行描述;温度和吸附介质pH对MMIGs吸附酪氨酸有很大影响,在30~40 oC区间发生突变,pH为6.0时平衡吸附量最高。以苯丙氨酸为竞争分子进行的选择性吸附实验显示,MMIGs的分离因子随模板分子和交联剂用量的增加而增大。
     (3)具电化学传感功能的壳聚糖基分子印迹杂化膜
     以壳聚糖和β-环糊精-异氰酸丙基三乙氧基硅烷偶联物(CD-IPTS)为基本原料,通过溶胶-凝胶技术制得酪氨酸分子印迹杂化膜(MIMs)。1H NMR测试表明, CD-IPTS与模板分子间能形成稳定的包合物。用FTIR确定了MIMs中与模板分子相互作用的识别单元。吸附实验表明,MIMs对酪氨酸的吸附行为可借助Langmuir方程描述,选择性受交联剂和模板分子用量影响。电化学性能测试表明,电解液pH为7.4、交联剂用量为20 wt%、模板分子用量为3 wt%时,MIMs修饰电极的响应电流最高;10-80μg/mL浓度范围内,MIMs修饰电极的响应电流与浓度呈现出良好的线性关系,线性相关系数达0.998。
     (4)具荧光检测功能的淀粉基分子印迹凝胶
     以马来酸酐酯化淀粉-氨基喹啉偶联物(St-MA-AQ)为功能大单体,制得具荧光检测功能的分子印迹凝胶(MIGs)。用SEM和激光粒度分析仪表征了MIGs的形貌、尺寸。吸附实验表明,MIGs对茶碱的吸附过程可用Lagergren一级动力学方程进行描述。以咖啡因药物为对照的选择性吸附实验表明,选择性受模板分子和交联剂用量影响。MIGs对茶碱和咖啡因的等温吸附行为可借助Scatchard方程进行描述,其与茶碱间的亲和力更高。荧光测试表明,MIGs吸附茶碱后发生明显的荧光淬灭现象,且淬灭强度受茶碱的浓度影响;不含底物时MIGs的荧光强度与加入底物后的荧光强度的比值(Io/I)可达1.25;在0-200 ug/mL浓度范围内,(Io/I)值与底物浓度的线性相关系数为0.993。
     (5)具药物缓释功能的壳聚糖基分子印迹磁性微凝胶
     以羧甲基壳聚糖(CMC)为基本原料,采用反相乳液法制得对咖啡因具有缓释功能的分子印迹磁性微凝胶(MMIGs)。用TG/DTG确定了磁性微凝胶的组成;XRD测试表明,分子印迹过程不会改变Fe3O4的晶相;SEM分析表明,磁性微凝胶粒径为1-5 um;用FTIR和荧光光谱结果显示,MMIGs中形成了与咖啡因相互作用的识别单元;磁性能测试表明,MMIGs具有超顺磁性。释放实验表明,模板分子用量为4 wt%、交联剂用量为45 wt%时,所得MMIGs对咖啡因释放速率最低,且释放速率随负载量增加而升高;其对咖啡因对释放行为可用Peppas方程进行描述;外加磁场作用可明显降低咖啡因的释放速率并改变药物释放机理;MMIGs对咖啡因的释放速率明显低于其对茶碱的。
     (6)具酯酶活性的葡聚糖基分子印迹温敏微凝胶
     以双醛葡聚糖-组氨酸偶联物(PAD-His)为功能大单体,利用反相乳液法制得具有酯酶活性的分子印迹温敏微凝胶(MIGs)。采用紫外光谱研究了模板分子与功能单体间的相互作用。SEM分析表明,MIGs粒径为200-500 nm。催化水解实验表明,当模板分子p-硝基苯磷酸酯(NPP)与咪唑基团摩尔比1:3、交联剂用量为20 wt%时,制得的MIGs催化p-硝基乙酸苯酯(NPA)水解的活性最高,且催化活性受反应介质pH影响;当温度由25 oC升高至38 oC时,催化活性急剧下降;MIGs催化NPA水解反应行为可用Michaelis-Menten方程进行描述,最大催化水解反应速率和Michaelis-Menten常数分别为2.04×10-8 mol/h和2.20×10-5 mol/L,且具有较好的催化选择性。
Molecularly imprinted materials (MIMs) have found wide applications in the fields of separation, biosensing, drug delivery and enzyme mimics. In recent years, MIMs based on polysaccharides have attracted great attention due to their abundant raw materials, good biodegradability and biocompatibility. In this work, we have synthesized the polysaccharide-based MIMs for separation, electerochemical sensing, fluorescent detection, drug delivery and catalyzing. The resultant MIMs were characterized by Fourier transform infrared spectroscope (FTIR), scanning electron micrographs (SEM) and thermogravimetric analyzer (TG/DTG), and their properties were also explored.
     The innovative points in this work are as follows. (1) Molecularly imprinted starch-based hydrogels for protein separation were prepared by enzymatic cross-linking technique. (2) Novel molecularly imprinted starch-based microgels with superparamagnetism and thermosensitivity were prepared for tyrosine separation. (3) Molecularly imprinted hybrid membranes as electerochemical sensors were prepared by a sol-gel process, using chitosan andβ-cyclodextrin-isocyanatopropyltriethoxysilane conjugate as main materials. (4) Molecularly imprinted hydrogels used as both the recognition and measuring elements for fluorescent assay were prepared. (5) Molecularly imprinted microgels with drug delivery effect and esterase activity were synthesized by a reverse emulsion method.
     The following results were obtained from this work.
    
     (1) Molecularly imprinted starch-based hydrogels for protein separation
     Molecularly imprinted hydrogels (MIHs) for bovine serum albumin (BSA) separation were prepared by an enzymatic cross-linking technique, using carboxymethylstarch-aminophenol conjugate (CMS-AP) as the functional macromonomer. Circular dichroism analysis showed that the conformation of BSA could be maintained after interacting with CMS-AP. The hydrogels were characterized by FTIR and SEM. Rheological analysis showed that the storage modulus of MIHs was dependent on the concentration and content of aminophenol group on CMS-AP. Adsorption experiments revealed that the adsorption capacity of MIHs was much higher than that of non-MIHs. Adsorption isotherm of MIHs followed Langmuir equation. The maximum BSA adsorption for both non-MIHs and MIHs was observed at pH 5.0. The selectivity of MIHs was greatly influenced by the template amount and the content of aminophenol group on CMS-AP.
     (2) Molecularly imprinted starch-based microgels with superparamagnetism and thermosensitivity for tyrosine separation
     Molecularly imprinted microgels with superparamagnetism and thermosensitivity (MMIGs) for tyrosine separation were prepared by a dispersion polymerization using carboxymethyl starch-aminopyridine conjugate as the functional macromonomer. The composition of the microgels was determined by TG/DTG analysis. X-ray diffraction (XRD) analysis revealed that imprinting process did not lead to the phase change of Fe3O4. SEM analysis showed that the particle size distribution of MMIGs was from 100 to 500 nm. The recognition sites in MMIGs were confirmed by FTIR. Magnetic measurement revealed that the MMIGs were superparamagnetic. Adsorption behavior of MMIGs could be described by the Langmuir equation. Temperature and medium pH were found to have great influence on the adsorption of MMIGs for tyrosine. Selectivity of MMIGs increased with the increase of the template or cross-linker amount.
     (3) Molecularly imprinted hybrid membranes based on chitoasn as electerochemical sensors
     Molecularly imprinted hybrid membranes (MIMs) as electerochemical sensors were prepared by a sol-gel process, using chitosan andβ-cyclodextrin- isocyanatopropyltriethoxysilane conjugate (CD-IPTS) as the main materials. 1H NMR analysis revealed that inclusion complexes between CD-IPTS and tyrosine were formed. The recognition sites were confirmed by FTIR. Adsorption behavior of MIMs could be described by the Langmuir equation. The amounts ofγ-glycidoxypropyltrimethoxysilane (GPTMS) and template were found to have a great influence on the selectivity of MIMs. Electrochemical measurements showed that the response current of electrode modified by MIMs was obviously higher than that of the electrode modified by non-MIMs. The response current was influenced by medium pH, and the amounts of GPTMS and template. A highly linear response with a linear correlation coefficient of 0.998 to tyrosine was observed in the concentration range of 10-80μg/mL.
     (4) Molecularly imprinted starch-based hydrogels for fluorescent assay
     Fluorescent molecularly imprinted hydrogels (MIGs) used as both the recognition and measuring elements for fluorescent assay were prepared by using maleic anhydride esterified starch-aminoquinoline conjugate as the functional macromonomer. The morphology and size of gels were characterized by SEM and Malvern particle size anylyzer. The adsorption process of theophylline to MIGs could be described by Lagergren first-order equation. The amounts of template and cross-linker were found to have a great influence on the selectivity of MIGs. Scatchard analysis indicated that the MIGs exhibited high affinity and good selective binding of theophylline relative to its analog caffeine. Dramatic quenching of fluorescence was observed when MIGs was re-exposed to theophylline. The ratio (Io/I) of fluorescence intensities in the absence of theophylline to fluorescence intensities in the presence of theophylline could reach 1.25. A highly linear response with a linear correlation coefficient of 0.993 to theophylline was observed in the concentration range of 0-200μg/mL.
     (5) Molecularly imprinted magenetic microgels based on chitosan for controlled release of drug
     Molecularly imprinted microgels (MMIGs) with superparamagnetism for controlled release of drug have been prepared by a reverse emulsion method, using carboxymethyl chitoan as the functional macromonomer. The contents of modified Fe3O4 in microgels were determined by TG/DGT. FTIR and photoluminescence spectra of microgels confirmed the presence of the recognition sites. XRD analysis revealed that coating process did not lead to the phase change of Fe3O4. SEM analysis showed that the particle diameters of MMIGs were about 1-5 um. Magnetic measurement revealed that the resultant MMIGs were superparamagnetic. Release rate of caffeine from MMIGs was much slower than that of caffeine from non-MMIGs. The release rate was influenced by the amounts of template, cross-linker and loading. Release behavior of caffeine from MMIGs could be described by Peppas equation. The release mechanism changed from a Case II transport to non-Fickian diffusion due to the effect of magnetic field. The release test of theophylline from MMIGs exhibited an inherent selectivity to caffeine.
     (6) Molecularly imprinted dextran-based microgels with thermosensitivity and esterase activity
     Temperature-sensitive molecularly imprinted microgels (MIGs) exhibiting esterase activity were prepared by a reverse emulsion method using dialdehyde dextran-histidine conjugate as the functional macromonomer. The interaction between functional group and the template was studied by UV spectrophotometer. SEM analysis revealed that well-shaped microgels with the diameter ranging from 200 to 500 nm were obtained. The obtained MIGs showed high catalytic activity to the hydrolysis of p-nitrophenyl acetate (NPA), which was influenced by medium pH value and temperature. The hydrolysis kinetics of NPA in the presence of MIGs could be described by the Michaelis-Menten equation. The Michaelis-Menten constant and maximium velocity were found to be 2.2×10-5 mol/L and 2.04×10-8 mol/h, respectively. In addition, the MIGs were found to have a high catalytic selectivity to NPA.
引文
[1] Tominaga Y, Kubo T, Kaya K, Hosoya K. Effective recognition on the surface of a polymer prepared by molecular imprinting using ionic complex. Macromolecules, 2009, 42: 2911-2915.
    [2] Jafari M T, Rezaei B, Zaker B. Ion mobility spectrometry as a detector for molecular imprinted polymer separation and metronidazole determination in pharmaceutical and human serum samples. Analytical Chemistry, 2009, 81: 3585-3591.
    [3] Anna M, Vitali S, Jekaterina R, Andres O, Viola H, Gyurcsanyi R E. Electrosynthesized surface- imprinted conducting polymer microrods for selective protein recognition. Advanced Materials, 2009, 21: 2271-2275.
    [4] Chen L G, Liu J, Zeng Q L, Wang H, Yu A M, Zhang H Q, Ding L. Preparation of magnetic molecularly imprinted polymer for the separation of tetracycline antibiotics from egg and tissue samples. Journal of Chromatography A, 2009, 1216: 3710–3719.
    [5] Lakshmi D, Bossi A, Whitcombe M J, Chianella I, Fowler S A, Subrahmanyam S, Piletska E V, Piletsky S A.. Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element. Analytical Chemistry, 2009, 81: 3576-3584.
    [6] Liu J Q, Wulff G. Functional mimicry of carboxypeptidase A by a combination of transition state stabilization and a defined orientation of catalytic moieties in molecularly imprinted polymers. Journalof the American Chemical Society, 2008, 130: 8044–8054.
    [7] Suedee R, Bodhibukkana C, Tangthong N, Amnuaikit C, Kaewnopparat S, Srichana T. Development of a reservoir-type transdermal enantioselective-controlled delivery system for racemic propranolol using a molecularly imprinted polymer composite membrane. Journal of Controlled Release, 2008, 129: 170-178.
    [8] Urraca J L, Maria C M, Guillermo O, Bolrje S, Andrew J. H. Molecularly imprinted polymers as antibody mimics in automated on-line fluorescent competitive assays. Analytical Chemistry, 2007, 79: 4915-4923.
    [9] Pauling L. A theory of the structure and process of formation of antibodies. Journal of the American Chemical Society, 1940, 62: 2643-2657.
    [10] Dickey F H. The preparation of specific adsorbents. Proceedings of the National Academy of Sciences, 1949, 35: 227-229.
    [11] Wulff G, Sarhan A, Zabrocki K. Enzyme-analog built polymers and their use for the resolution of racemates. Tetrahedron Letters, 1973, 44: 4329-4332.
    [12] Vlatakis G, Andersson L I., Mueller R, Mosbach K. Drug assay using antibody mimics made by molecular imprinting. Nature, 1993, 361: 645-647.
    [13]张立永.水性体系中分子印迹聚合物微球的制备及其特性.天津大学材料科学与工程学院博士学位论文, 2003, 1-3.
    [14]姜忠义,吴洪.分子印迹技术.北京:化学工业出版社, 2003, 1-6.
    [15] Ouyang R, Lei J P, Ju H X, Xue Y D. A Molecularly imprinted copolymer designed for enantioselective recognition of glutamic acid. Advanced Functional Materials, 2007, 17: 3223-3230.
    [16] Jorge A, Sylvie L B. Selective adsorption of dibenzothiophene sulfone by an imprinted and stimuli-responsive chitosan hydrogel. Macromolecules, 2004, 37: 2938-2943.
    [17]雷建都,谭天伟.壳聚糖血红蛋白分子印迹介质的制备及优化.化学通报, 2002, 4: 265-268.
    [18]吴浩,李海涛,徐满才.分子印迹球状β-环糊精聚合物的合成及性能研究.离子交换与吸附, 2006, 22: 356-362.
    [19] Mohammad A E, Razieh Y. Molecularly imprinted polyβ-cyclodextrin polymer: application in protein refolding. Biochimica et Biophysica Acta, 2007, 1770: 943-950.
    [20] Asanuma H, Kakazu M, Shibata M, Hishiya T, Komiyama M. Molecularly imprinted polymer ofβ-cyclodextrin for the efficient recognition of cholesterol. Chemical Communications, 1997, 20: 1971-1972.
    [21] Asanuma H, Kajiya K, Hishiya T, Komiyama M. Molecular imprinting of cyclodextrin in water for the recognition of peptides. Chemistry Letters, 1999, 7: 665-666.
    [22] Liu H M, Liu C H, Yang X J, Zeng S J, Xiong Y Q, Xu W J. Uniformly sizedβ-cyclodextrin molecularly imprinted microspheres prepared by a novel surface imprinting technique for ursolic acid. Analytica Chimica Acta, 2008, 628: 87-94.
    [23] Song S H, Shirasaka K, Katayama M, Nagaoka S, Yoshihara S, Osawa T, Sumaoka J, Asanuma H,Komiyama M. Recognition of solution structures of peptides by molecularly imprinted cyclodextrin polymers. Macromolecules, 2007, 40: 3530-3532.
    [24] Sing M N, Narayanaswamy R. Molecularly imprintedβ-cyclodextrin polymer as potential optical receptor for the detection of organic compound. Sensors and Actuators B, 2009, 139: 156-165.
    [25] Zhong N, Byun H S, Bittman R. Hydrophilic cholesterol-binding molecular imprinted polymers. Tetrahedron Letters, 2001, 42: 1839–1841.
    [26] Asanuma H, Akiyama T, Kajiya K, Hishiya T, Takayuki H, Makoto K. Molecular imprinting of cyclodextrin in water for the recognition of nanometer-scaled guests. Analytica Chimica Acta, 2001, 435: 25-33.
    [27] Xia Y Q, Guo T Y, Song M D, Zhang B H, Zhang B L. Hemoglobin recognition by imprinting in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan. Biomacromolecules, 2005, 6: 2601-2606.
    [28] Jiang Z Y, Yu Y X, Wu H. Preparation of CS/GPTMS hybrid molecularly imprinted membrane for efficient chiral resolution of phenylalanine isomers. Journal of Membrane Science, 2006, 280: 876–882.
    [29] Huang W Q, Han L J, Li C X, He B L. Adsorption selectivity for Cu2+, Ni2+, Co2+ ions using crosslinking chitosan resins imprinted by metal ions. Chinese Journal of Reactive Polymers, 1999, 8: 6-11.
    [30]张春静,钟世安.醋酸纤维-奎宁分子印迹复合膜的制备及分离性能研究.膜科学与技术, 2008, 28: 59-62.
    [31] Rajinder S G, Manuel M, Gustavo L. Molecular imprinting of a cellulose/silica composite with caffeine and its characterization. Microporous and Mesoporous Materials, 2005, 85: 129-135.
    [32] Chatchada B, Teerapol S, Sanae K K, Naruedom T, Pisit Bouking, Gary P M, Roongnapa S. Composite memberane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol. Journal of Controlled Release, 2006, 113: 43-56.
    [33]李婧娴,董声雄,苗晶.活性艳蓝KN-R分子印迹CA/PVDF共混膜的制备及性能表征.膜科学与技术, 2009, 29: 8-12.
    [34]张茂升,黄佳蓉,唐丽萍.蛋白质分子印迹膜的制备和渗透性研究.化学学报, 2009, 67: 2840-2844.
    [35] Wu H, Zhao Y Y, Nie M C, Jiang Z Y. Molecularly imprinted organic–inorganic hybrid membranes for selective separation of phenylalanine isomers and its analogue. Separation and Purification Technology, 2009, 68: 97–104.
    [36] Zhao K Y, Cheng G X, Huang J J, Ying X G. Rebinding and recognition properties of protein-macromolecularly imprinted calcium phosphate/alginate hybrid polymer microspheres. Reactive & Functional Polymers, 2008, 68: 732-741.
    [37] Lin Y, Tang S Q, Mao X, Bao L. Protein recognition via molecularly imprinted agarose gelmembrane. Journal of Biomedical Materials Research, Part A, 2008, 85A: 573-581.
    [38] Dario K, Klaus M. Competitive amperometric morphine sensor based on an agarose immobilised molecularly imprinted polymer. Analytica Chimica Acta, 1995, 300: 71-75.
    [39] Silvestri D, Barbani N. Cristallini C, Giusti P, Ciardelli G. Molecularly imprinted membranes for an improved recognition of biomolecules in aqueous medium. Journal of Membrane Science, 2006, 282: 284-295.
    [40] Hwang C, Lee W. Chromatographic characteristics of cholesterol-imprinted polymers prepared by covalent and non-covalent imprinting methods. Journal of Chromatography A, 2002, 962, 69-78.
    [41] ] Linden D B, James N C, Peter K. Molecularly imprinted polymers for tobacco mosaic virus recognition. Biomaterials, 2006, 27: 4165-4168.
    [42] Hawkins D M, Trache A, Ellis E A, Stevenson D, Holzenburg A, Meininger G A, Reddy Subrayal M. Quantification and confocal imaging of protein specific molecularly imprinted polymers. Biomacromolecules, 2006, 7: 2560-2564.
    [43] Francesco P, Francesca I, Nevio P. Stimuli-responsive molecularly imprinted polymers for drug delivery: A Review. Current Drug Delivery, 2008, 5: 85-96.
    [44]朱晓兰.久效磷分子印迹聚合物的研究与应用.中国科学技术大学分析化学专业博士学位论文, 2006, 3.
    [45] Wulff G, Sarhan A. The use of polymers with enzyme analogous structures for the resolution of racemates. Angewandte Chemie International Edition in English, 1972, 11: 341.
    [46] Kugimiya A, Matsui J, Takeuchi T, Yano K, Muguruma H, Elgersma A V, Karube I. Recognition of sialic-acid using molecularly imprinted polymer. Analytical Letters, 1995, 28: 2317-2323.
    [47] Kugimiya A, Matsui J, Abe H, Aburatani M, Takeuchi T. Synthesis of castasterone selective polymers prepared by molecular imprinting, Analytica Chimica Acta, 1998, 365: 75-79.
    [48] Wulff G, Vietmeier J. Enzyme-analogue built polymers: 26. Enantioselective synthesis of amino-acids using polymers possessing chiral cavities obtained by an imprinting procedure with template molecules. Makromolekulare Chemie, 1989, 190: 1727-1735.
    [49] Sallacan N, Zayats M, Bourenko T, Kharitonov AB, Willner I. Imprinting of nucleotide and monosaccharide recognition sites in acrylamide phenylboronic acid-acrylamide copolymer membranes associated with electronic transducers. Analytical Chemistry, 2002, 74: 702-712.
    [50] Wulff G, Vesper R, Grobe-Einsler R, Sarhan A. Enzymeanalogue built polymers: 4. On the synthesis of polymers containing chiral cavities and their use for the resolution of racemates. Makromolekulare Chemie, 1977, 178: 2799-2816.
    [51] Mayes A G, Whitcombe M J. Synthetic strategies for the generation of molecularly imprinted organic polymers. Advanced Drug Delivery Reviews, 2005, 57: 1742-1778.
    [52] Shea K J, Sasaki D Y. On the control of microenvironment shape of functionalized network polymers prepared by template polymerization. Journal of the American Chemical Society, 1989, 111: 3442–3444.
    [53] Arshady R, Mosbach K. Synthesis of substrate-selective polymers by host–guest polymerization. Makromolekulare Chemie, 1981, 182: 687-692.
    [54] Andersson H S, Karlsson J G, Piletsky S A, Koch-Schmidt A C, Mosbach K, Nicholls I A. Study of the nature of recognition in molecularly imprinted polymers II: Influence of monomer–template ratio and sample load on retention and selectivity. Journal of Chromatography A, 1999, 848: 39-49.
    [55] Akimitsu K, Takasi M, Toshifumi T. Synthesis of 5-fluorouracil-imprinted polymers with multiple hydrogen bonding interactions. Analyst, 2001, 126: 772-774.
    [56] Whitcombe M J, Rodriguez M E, Villar P, Vulfson E N. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting-synthesis and characterization of polymeric receptors for cholesterol. Journal of the American Chemical Society, 1995, 117: 7105-7111.
    [57] Andersson H S, Nicholls I A. Spectroscopic evaluation of molecular imprinting polymerization systems. Bioorganic Chemistry, 1997, 25: 203-211.
    [58] Ogawa T, Hoshina K, Haginaka J, Honda C, Tanimoto T, Uchida T. Screening of bitterness-suppressing agents for quinin: the use of molecularly imprinted polymers. Analyst, 2005, 94: 353-362.
    [59] Svenson J, Andersson H S, Piletsky S A, Nicholls I A. Spectroscopic studies of the molecular imprinting self assembly process. Journal of Molecular Recognition, 1998, 11: 83-86.
    [60] Guo H S, He X W, Liang H. Study of the binding characteristics and transportation properties of a 4-aminopyridine imprinted polymer membrane. Fresenius' Journal of Analytical Chemistry, 2000, 368: 763-767.
    [61] Zhang D N, Li S J, Li W K, Chen Y F. Biomimic recognition and catalysis by an imprinted catalysts: a rational design of molecular self-assembly toward predetermined high specificity. Catalysis Letters, 2007, 115, 169-175.
    [62]淮路枫,杨明,刘骏,胡娟.毒死蜱分子印迹聚合物微球的制备及其结合特性.应用化学, 2009, 26: 1144-1148.
    [63] Striegler S, Tewes E. Investigation of sugar-binding sites in ternary ligand–copper(II)–carbohydrate complexes. European Journal of Inorganic Chemistry, 2002, 487-495.
    [64]吴世康,汪鹏飞译.分子印迹学——从基础到应用.北京:科学出版社, 2006, 36-37.
    [65] Sellergren B, Lepisto M, Mosbach K. Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions. NMR and chromatographic studies on the nature of recognition. Journal of the American Chemical Society, 1988, 110: 5853-5860.
    [66] Whitcombe M J, Martin L, Vulfson E N. Predicting the selectivity of imprinted polymers. Chromatographia, 1998, 47: 457-464.
    [67] Asanuma H, Kakazu M, Shibata M, Hishiya T, Komiyama M. Synthesis of molecularly imprinted polymer ofβ-cyclodextrin for the efficient recognition of cholesterol. Supramolecular Science, 1998, 5: 417-421.
    [68] Svenson J, Karlsson J G, Nicholls I A. 1H nuclear magnetic resonance study of the molecular imprinting of (-)-nicotine: template self-association, a molecular basis for cooperative ligand binding. Journal of Chromatography A, 2004, 1024: 39-44.
    [69] Karim K, Breton F, Rouillon R, Piletska E V, Guerreiro A, Chianella I, Piletsky S A.. How to find effective functional monomers for effective molecularly imprinted polymers. Advanced Drug Delivery Reviews, 2005, 57: 1795-1808.
    [70] Tanabe K, Takeuchi T, Matsui J, Ikebukuro K, Yano K, Karube I. Recognition of barbiturates in molecularly imprinted copolymers using multiple hydrogen bonding. Journal of the Chemical Society, Chemical Communications, 1995, 22: 2303-2304.
    [71] Brune B J, Koehler J A, Smith P J, Payne G F. Correlation between adsorption and small molecule hydrogen bonding. Langmuir, 1999, 15: 3987-3992.
    [72]凌霞,李红萍,郭娟,汤又文,赖家平.左旋甲基多巴分子印迹微球给药系统的合成、表征及药物缓释研究.化学学报, 2010, 68: 95-101.
    [73] Chianella I, Lotierzo M, Piletsky S A, Tothill I E, Chen B N, Karim K, Anthony P F. Rational design of a polymer specific for microcystin-LR using a computational approach. Analytical Chemistry, 2002, 74: 1288-1293.
    [74]武利庆,王晶.分子印迹聚合物预组装体系计算机模拟.计算机与应用化学, 2007, 24: 1009-1013.
    [75] David B H, Nicholas A P. Molecular simulations of recognitive behavior of molecularly imprinted intelligent polymeric networks. Industrial & Engineering Chemistry Research, 2007, 46: 6084-6091.
    [76] Xie J C, Zhu L L, Xu X J. Affinitive separation and on-line identification of antitumor components from peganum nigellastrum by coupling a chromatographic column of target analogue imprinted polymer with mass spectrometry. Analytical Chemistry, 2002, 74: 2352-2360.
    [77] Takuya K, Makoto N, Koji N, Tomoharu S, Ken H, Nobuo T, Kunimitsu K. Chromatographic separation for domoic acid using a fragment imprinted polymer. Analytica Chimica Acta, 2006, 577: 1-7.
    [78] Qin L, He X W, Zhang W, Li W Y, Zhang Y K. Surface-modified polystyrene beads as photografting imprinted polymer matrix for chromatographic separation of proteins. Journal of Chromatography A, 2009, 1216: 807-814.
    [79] Zhou Y X, Yu B, Shiu E, Levon K. Potentiometric sensing of chemicalwarfare agents: Surface imprinted polymer integrated with an indium tin oxide electrode. Analytical Chemistry, 2004, 76: 2689-2693.
    [80] Alberto G C, Ana U, Alicia S O, Nora U, Goicolea M A, Ramon J B. Molecularly imprinted poly[tetra(o-aminophenyl)porphyrin] as a stable and selective coating for the development of voltammetric sensors. Journal of Electroanalytical Chemistry, 2010, 638: 246-253.
    [81] Suedee R, Srichana T, Martin G P. Evaluation of matrices containing molecularly imprinted polymers in the enantioselective-controlled delivery ofβ-blockers. Journal of Controlled Release,2000, 66: 135-147.
    [82] Davide C, Kevin Fl, Ania S, Veronique G, Marina R. The first example of molecularly imprinted nanogels with aldolase type I activity. Chemistry--A European Journal, 2008, 14: 7059-7065.
    [83] Cheng Z Y, Zhang L W, Li Y Z. Synthesis of an enzyme-like imprinted polymer with the substrate as the template, and its catalytic properties under aqueous conditions. Chemistry--A European Journal, 2004, 10: 3555-3561.
    [84] Bibiana M E, Waldo M A, Javier H, Leticia F V, Niuris A, Francisco M G. Molecularly imprinted chitosan-genipin hydrogels with recognition capacity toward o-xylene. Biomacromolecules, 2007, 8: 3355-3364.
    [85] Kobayashi T, Fukaya T, Abe M, Fujii N. Phase inversion molecular imprinting by using template copolymers for high substrate recognition. Langmuir, 2002, 18: 2866-2872.
    [86] Jiang M, Zhang J H, Mei S R, Shi Y, Zou L J, Zhu Y X, Dai K, Lu B. Direct enrichment and high performance liquid chromatography analysis of ultra-trace bisphenol A in water samples with narrowly dispersible bisphenol A imprinted polymeric microspheres column. Journal of Chromatography A, 2006, 1110: 27-34.
    [87] Kaori H, Shizuyo H, Hisami M, Jun H. Molecularly imprinted polymers for simultaneous determination of antiepileptics in river water samples by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2009, 1216: 4957-4962.
    [88] Baggiani C, Giraudi G, Giovannoli C, Trottab F, Vanni A. Chromatographic characterization of molecularly imprinted polymers binding the herbicide 2,4,5-trichlorophenoxyacetic acid. Journal of Chromatography A, 2000, 883: 119-126.
    [89] Spivak D, Gilmore M A, Shea K J. Evaluation of binding and origin of specificity of 9-ethyladenine imprinted polymers. Journal of the American Chemical Society, 1997, 119: 4388-4393.
    [90] Patrick T V, Vincent T R. Highly selective separations by capillary electrochromatography: molecular imprint polymer sorbents. Journal of Chromatography A, 2000, 887: 125-135.
    [91] Liu Z S, Xu Y L, Yan C, Gao R Y. Mechanism of molecular recognition on molecular imprinted monolith by capillary electrochromatography. Journal of Chromatography A, 2005, 1087: 20-28.
    [92] Chau J T, Shalom W, Renbi B, Yen W T. Defining the interactions between proteins and surfactants for nanoparticle surface imprinting through miniemulsion polymerization. Chemical Materials, 2008, 20: 118-127
    [93] Rebecca J, Margaret T, Yididya B, Colin R, David E M. Synthesis, characterization, and ab initio theoretical study of a molecularly imprinted polymer selective for biosensor materials. Journal Physical Chemistry A, 2008, 112: 322-331.
    [94] Xia Y Q, Guo Ti Y, Song M D, Zhang B H, Zhang B L. Adsorption dynamics and thermodynamics of Hb on the Hb-imprinted polymer beads. Reactive and Functional Polymers, 2008, 68: 63-69.
    [95] Hua Z D, Chen Z Y, Li Y Z, Zhao M P. Thermosensitive and salt-sensitive molecularly imprintedhydrogel for bovine serum albumin. Langmuir, 2008, 24: 5773-5780.
    [96]吴洪,赵艳艳,喻应霞,姜忠义.分子印迹壳聚糖膜分离手性苯丙氨酸.功能高分子学报, 2007, 19-20: 262-266.
    [97]农兰平,黄敏,庄玉萍. L-色氨酸分子印迹壳聚糖膜的制备及透过选择性.化学研究, 2009, 20: 15-18.
    [98]黄丽梅,马秀玲.分子印迹壳聚糖膜和柚皮苷模板分子间相互作用的研究.广州化学, 2009, 34: 27-31.
    [99] Takayuki H, Hiroyuki A, Makoto K. Spectroscopic anatomy of molecular-imprinting of cyclodextrin: evidence for preferential formation of ordered cyclodextrin assemblies. Journal of the American Chemical Society, 2002, 124: 570-575.
    [100] Tsai H A, Syu M J. Synthesis of creatinine-imprinted poly(β-cyclodextrin) for the specific bindingof creatinine. Biomaterials, 2005, 26: 2759-2766.
    [101] Hiroyuki A, Takayuki H, Makoto K. Tailor-made receptors by molecular imprinting. Advanced Materials, 2000, 12: 1019-1030.
    [102]孙向英,周政,刘斌.二丁基锡分子印迹聚合物的合成与性能研究.高等学校化学学报, 2006, 27: 1443-1447.
    [103]付志高,苏海佳,谭天伟.菌丝体表面分子印迹壳聚糖树脂的制备及其吸附性能.化工学报, 2004, 55: 958-962.
    [104] Guo T Y, Xia Y Q, Hao G J, Song M D. Adsorptive separation of hemoglobin by molecularly imprinted chitosan beads. Biomaterials, 2004, 25: 5905-5912.
    [105] Guo T Y, Xia Y Q, Wang J, Song M D, Zhang B H. Chitosan beads as molecularly imprinted polymer matrix for selective separation of proteins. Biomaterials 2005, 26: 5737-5745.
    [106] Okutucu B, Zihnioglu F, Telefoncu A. Shell-core imprinted polyacrylamide crosslinked chitosan for albumin removal from plasma. Journal of Biomedical Materials Research, Part A, 2008, 84: 842-845.
    [107] Xu Z F, Kuang D Z, Liu L, Deng Q Y. Selective adsorption of norfloxacin in aqueous media by an imprinted polymer based on hydrophobic and electrostatic interactions. Journal of Pharmaceutical and Biomedical Analysis, 2007, 45: 54-61.
    [108] Guo T Y, Xia Y Q, Hao G J, Zhang B H, Fu G Q, Yuan Z, He B L, Kennedy J F. Chemically modified chitosan beads as matrices for adsorptive separation of proteins by molecularly imprinted polymer. Carbohydrate Polymers, 2005, 62: 214-221.
    [109] Koji H, Michihito H, Chiaki I, Yasuo Y, Fukashi K, Kiyotaka Sakai, Sergey A P. Gate effect of theophylline-imprinted polymers grafted to the cellulose by living radical polymerization. Journal of Membrane Science, 2004, 233: 169-173.
    [110] Matsuishi T, Shimada T, Morihara K. Definitive evidence for enantioselective catalysis over molecular footprint catalytic cavities chirally imprinted on a silica(alumina) gel surface. Chemistry Letters, 1992, (10): 1921-1924.
    [111] Chau J T, Hong G C, Kwee H K, Yen W T. Preparation of Bovine Serum albumin surface-imprinted submicrometer particles with magnetic susceptibility through core-shell miniemulsion polymerization. Analytical Chemistry, 2008, 80: 683-692.
    [112] Qin L, He X W, Li W Y, Zhang Y K. Molecularly imprinted polymer prepared with bondedβ-cyclodextrin and acrylamide on functionalized silica gel for selective recognition of tryptophan in aqueous media. Journal of Chromatography A, 2008, 1187: 94-102.
    [113]田晓琴,冯芳,狄斌,苏梦翔.水相中制备硅胶表面分子印迹聚合物及色谱性能研究.中国药科大学学报, 2009, 40: 435-439.
    [114] Li F, Jiang H Q, Zhang S S. An ion-imprinted silica-supported organic–inorganic hybrid sorbent prepared by a surface imprinting technique combined with a polysaccharide incorporated sol–gel process for selective separation of cadmium(II) from aqueous solution. Talanta, 2007, 71: 1487-1493.
    [115] Ebru B, Arzu E, Adil D, Ridvan S. Preconcentration of copper using double-imprinted polymer via solid phase extraction. Analytica Chimica Acta, 2006, 565: 145-151.
    [116] Ren Y M, Zhang L M, Zhao D. Synthesis and properties of magnetic Cu(II) ion imprinted composite adsorbent for selective removal of copper. Desalination, 2008, 228: 135-149.
    [117] Li Q, Su H J, Li J, Tan T W. An ion-imprinted polymer supported by attapulgite with a chitosan incorporated sol–gel process for selective separation of Ce(III). Chinese Chemical Letters, 2009, 20: 985-989.
    [118] Li Q, Su H J, Li J, Tan T W. Studies of adsorption for heavy metal ions and degradation of methyl orange based on the surface of ion-imprinted adsorbent. Process Biochemistry, 2007, 42: 379-383.
    [119] Hosam A. S. Synthesis of ion-imprinting chitosan/PVA crosslinked membrane for selective removal of Ag(I). Journal of Applied Polymer Science, 2009, 114: 2608-2615.
    [120] Su H J, Li J, Tan T W. Adsorption mechanism for imprinted ion (Ni2+) of the surface molecular imprinting adsorbent (SMIA). Biochemical Engineering Journal, 2008, 39: 503-509.
    [121]阳奇,邓新华,郑娜,苏海佳,谭天伟.菌丝体表面分子印迹壳聚糖吸附剂对Cr3+的吸附性能研究.环境污染与防治, 2006, 28: 14-16.
    [122]魏俊,孙向英,刘斌.手性拆分L-脯氨酸分子印迹聚合物的制备及其性能.应用化学, 2006, 23: 1336-1341.
    [123] Nicole M B, Nicholas A P. Molecularly imprinted polymers with specific recognition for macromolecules and proteins. Progress in Polymer Science, 2008, 33: 271-288.
    [124]马豫峰,蔡继业.壳聚糖与牛血清白蛋白分子印迹聚合物的制备与表征.高分子材料科学与工程, 2007, 23: 235-237.
    [125] Fu G Q, Yu H, Zhu J. Imprinting effect of protein-imprinted polymers composed of chitosan and polyacrylamide: a re-examination. Biomaterials, 2008, 29: 2138-2142.
    [126] Hiroyuki A, Masaya K, Masahlko S, Takayuki H, Makoto K. Synthesis of molecularly imprinted polymer ofβ-cyclodextrin for the efficient recognition of cholesterol. Supramolecular Science, 1998, 5:417-421.
    [127] Egawa Y, Shimura Y, Nowatari Y, Aiba D, Juni K. Preparation of molecularly imprinted cyclodextrin microspheres. International Journal of Pharmaceutics, 2005, 293: 165-170.
    [128]张春静,钟世安.乙酸纤维-EGCG分子印迹复合膜分离纯化茶多酚中的EGCG.膜科学与技术, 2008, 28: 100-102.
    [129] Hillberg A L, Brain K R, Allender C J. Molecular imprinted polymer sensors: Implications for therapeutics. Advanced Drug Delivery Reviews, 2005, 57: 1875-1889.
    [130] Philip J R, Sing M N, Ramaier N, Nicholas G, Ken M P. Multiple surface plasmon resonance quantification of dextromethorphan using a molecularly imprintedβ-cyclodextrin polymer: A potential probe for drug–drug interactions. Sensors and Actuators B, 2009, 139: 22-29.
    [131] Hsieh R Y, Tsai H A, Syu M J. Designing a molecularly imprinted polymer as an artificial receptor for the specific recognition of creatinine in serums. Biomaterials, 2006, 27: 2083–2089.
    [132]潘勇,伍智仲,曹丙庆,黄启斌.声表面波β-环糊精琉基衍生物分子印迹技术的研究.现代科学仪器, 2008, (1):64-67.
    [133]张挪威,丁明星,刘国艳,宋巍巍,柴春彦.琥珀酸氯霉素分子印迹聚合膜的制备及其吸附特性研究.化学学报, 2008, 66: 1961-1966.
    [134] Roongnapa S, Teerapol S, Gary P M. Evaluation of matrices containing molecularly imprinted polymers in the enantioselective-controlled delivery ofβ-blockers. Journal of Controlled Release, 2006, 6: 135-147.
    [135] David C, Andrew K, Cameron A. Molecularly imprinted drug delivery systems. Advanced Drug Delivery Reviews, 2005, 57: 1836-1853.
    [136]王学军,许振,杨座国,邴乃.水相识别分子印迹技术.化学进展, 2007, 19: 805-812.
    [137] Yang Y, Long Y Y, Cao Q, Li K, Liu F. Molecularly imprinted polymer usingβ-cyclodextrin as functional monomer for the efficient recognition of bilirubin. Analytica Chimica Acta, 2008, 606: 92-97.
    [138]刘晓阳,黄星,闫明,刘铮.基于超滤膜电渗流动建立尿素梯度及其应用于蛋白质复性.过程工程学报, 2004, 4: 114-120.
    [139] Haruki M, Konnai Y, Shimada A, Takeuchi H. Molecularly imprinted polymer-assisted refolding of lysozyme. Biotechnology Progress, 2007, 23: 1254-1257.
    [1] Melissa D Z, John T H, Halyna E N, Emily R, Matthew R F, Robert L D, Denis M B. Separation byhydrophobic interaction chromatography and structural determination by mass sepectrometry of mannosylated glycoforms of a recombinant transferring-exendin-4 fusion protein from yeast. Journal of Chromatography A, 2010, 1217: 225-234.
    [2] Sun X L, Liu R, He X W, Chen L X, Zhang Y K. Preparation of phenylboronic acid functionalized cation-exchage monolithic columns for protein separation and refolding. Talanta, 2010, 81: 856-864.
    [3] Yang Y Z, Boysen R I, Hearn M T. Hydrophilic interaction chromatography coupled to electrospray mass spectrometry for the separation of peptides and protein digests. Journal of Chromatography A, 2009, 1216: 5518-5524.
    [4] Nicole M. Bergmann, Nicholas A. Peppas. Molecularly imprinted polymers with specific recognition for macromolecules and proteins. Progress in Polymer Science, 2008, 33: 271-288.
    [5] Turner N W, Liu X, Piletsky S A, Hlady V, Britt D W. Recognition of conformational changes inβ-lactoglobulin by molecularly imprinted thin films. Biomacromolecules, 2007, 8: 2781-2787.
    [6] Ioannis S C, Biljana M, Audrey F, Lei Y. Generation of molecular recognition sites in electrospun polymer nanofibers via molecular imprinting. Macromolecules, 2006, 39: 357-361.
    [7] Turiel E, Tadeo J L, Martin-Esteban A. Molecularly imprinted polymeric fibers for solid-phase microextraction. Analytical Chemistry, 2007, 79: 3099-3104.
    [8] Xia Y Q, Guo T Y, Song M D, Zhang B H, Zhang B L. Hemoglobin recognition by imprinting in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan. Biomacromolecules, 2005, 6, 2601-2606.
    [9] Chau J T, Hong G C, Kwee H K, Yen W T. Preparation of bovine serum albumin surface-imprinted submicrometer particles with magnetic susceptibility through core-shell miniemulsion polymerization. Analytical Chemistry, 2008, 80: 683-692
    [10] Ohad K, Havazelet B P. Study of the interactions between protein-imprinted hydrogels and their templates. Langmuir, 2007, 23: 6329-6335.
    [11] Chau J T, Yen W T. The effect of protein structural conformation on nanoparticle molecular imprinting of ribonuclease A using miniemulsion polymerization. Langmuir, 2007, 23: 2722-2730.
    [12] Carmen C, Eric N, Jerome M, John M F, Mircea-Alexandru M. Carboxymethyl high amylose starch for F4 fimbriae gastro-resistant oral formulation. International Journal of Pharmaceutics, 2007, 343: 18–25.
    [13] Chen Y X, Liu S Y, Wang G Y. Kinetics and adsorption behavior of carboxymethyl starch onα-alumina in aqueous medium. Journal of Colloid and Interface Science, 2006, 303: 380-387.
    [14] Kurisawa M, Chung J E, Yang Y Y, Gao S J, Uyama H. Injectable biodegradable hydrogels composed of hyaluronic acid - tyramine conjugates for drug delivery and tissue engineering. Chemical Communications, 2005, 34: 4312-4314.
    [15] Kobayashi S, Uyama H, Kimura S. Enzymatic polymerization. Chemical Reviews, 2001, 101: 3793-3818.
    [16] Jin R, Hiemstra C, Zhong Z Y, Jan F. Enzyme-mediated fast in situ formation of hydrogels from dextran–tyramine conjugates. Biomaterials, 2007, 28: 2791-2800.
    [17] Fukuoka T, Uyama H, Kobayashi S. Polymerization of polyfunctional macromolecules: synthesis of a new class of high molecular weight polyamino acids by oxidative coupling of phenol-containing precursor polymers. Biomacromolecules, 2004, 5: 977-983.
    [18] Gao B J, Wang J, An F Q, Liu Q. Molecular imprinted material prepared by novel surface imprinting technique for selective adsorption of pirimicarb. Polymer, 2008, 49: 1230-1238.
    [19] Odaba?i M, Say R, Denizli A. Molecular imprinted particles for lysozyme purification. Materials Science and Engineering C, 2007, 27: 90-99.
    [20] Chau J T, Shalom W, Renbi B, Yen W T. Defining the interactions between proteins and surfactants for nanoparticle surface imprinting through miniemulsion polymerization. Chemistry of Materials, 2008, 20: 118-127.
    [21] Bibiana M E, Waldo M A, Javier H,Leticia F V, Niuris A, Francisco M G. Molecularly imprinted chitosan-genipin hydrogels with recognition capacity toward o-xylene. Biomacromolecules, 2007, 8: 3355-3364.
    [22] Brandon L S, Alyssa P. Viscoelastic behavior of environmentally sensitive biomimetic polymer matrices. Macromolecules, 2006, 39: 2268-2274.
    [23] Asem A A, Ahmed M D, Ahmed M Y. Removal of some hazardous heavy metals from aqueous solution using magnetic chelating resin with iminodiacetate functionality. Separation and Purification Technology, 2008, 61: 348-357.
    [24] Gokhan D, Gokcen O, Eylem T, Tuncer C. pH/temperature-sensitive imprinted ionic poly(N-tert-butylacrylamide-co-acrylamide/maleic acid) hydrogels for bovine serum albumin. Macromolecular Bioscience, 2005, 5: 1032-1037.
    [25] Rebecca J, Margaret T, Yididya B, Colin R, David E M. Synthesis, characterization, and ab initio theoretical study of a molecularly imprinted polymer selective for biosensor materials. Journal Physical Chemistry A, 2008, 112: 322-331.
    [26] Zumriye A. Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 2005, 40: 997-1026.
    [27] Liu Y, Liu Y J. Biosorption isotherms, kinetics and thermodynamics. Separation and Purification Technology, 2008, 61: 229-242.
    [28] Zhang LY, Cheng G X, Fu C, Liu X H, Pang X S. Adsorption and regeneration properties of tyrosine-imprinted polymeric beads. Adsorption Science & Technology 2003, 21: 775-785.
    [29] Jorge A, Sylvie L B. Selective adsorption of dibenzothiophene sulfone by an imprinted and stimuli-responsive chitosan hydrogel. Macromolecules, 2004, 37: 2938-2943.
    [30] Vinod K G, Arshi R. Biosorption of lead (II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—A comparative study. Colloids and Surfaces B: Biointerfaces, 2008, 64: 170-178.
    [31] Carmen A L, Angel C. Molecularly imprinted polymers for drug delivery. Journal of Chromatography B, 2004, 804: 231-245.
    [32] Tohei M, Carmen A L. Conformational imprinting effect on stimuli-sensitive gels made with an“imprinter”monomer. Macromolecules, 2001, 34: 7796-7803.
    [1] Liang H J, Ling T R, Rick J F, Chou T C. Molecularly imprinted electrochemical sensor able to enantroselectivly recognize D and L-tyrosine. Analytica Chimica Acta, 2005, 542: 83-89.
    [2] Venton B J, Wightman R M. Psychoanalytical electrochemistry: dopamine and behavior. Analytical Chemistry, 2003, 75: 414-421.
    [3]孔泳,黄刚堂,陈智栋,王文昌.识别酪氨酸对映体的分子印迹电化学传感器.理化检验-化学分册, 2007, 43: 997-1003.
    [4]雷孝,王锦,董新荣,何文礼,王超丽. L-酪氨酸印迹分子的制备及性能研究.化学研究与应用, 2007, 19: 633-636.
    [5] Zhang L Y, Cheng G X, Fu C. Synthesis and characteristics of tyrosine imprinted beads via suspension polymerization. Reactive & Functional Polymers, 2003, 56: 167-173.
    [6] Liang H J, Ling T R, Rick J F, Chou T C. Molecularly imprinted electrochemical sensor able to enantroselectivly recognize D and L-tyrosine. Analytica Chimica Acta, 2005, 542: 83-89.
    [7] Suedee R, Seechamnanturakit V, Canyuk B, Ovatlarnporn C, Martin G P. Temperature sensitive dopamine-imprinted (N,N-methylene-bis-acrylamide cross-linked) polymer and its potential application to the selective extraction of adrenergic drugs from urine. Journal of Chromatography A, 2006, 1114: 239-249.
    [8] Hua Z D, Chen Z Y, Li Y Z, Zhao M P. Thermosensitive and salt-sensitive molecularly imprinted hydrogel for bovine serum albumin. Langmuir, 2008, 24: 5773-5780.
    [9] Antonio L M, Gunter M, Jorge F F, Antonio S C, Ingo K, Alberto F G. Novel strategy to design magnetic, molecular imprinted polymers with well-controlled structure for the application in optical sensors. Macromolecules, 2010, 43: 55-61.
    [10] Zhang Y, Liu R J, Hu Y L, Li G K. Microwave heating in preparation of manetic molecularly imprinted polymer beads for trace triazine analysis in complicated samples. Analytical Chemistry, 2009, 81: 967-976.
    [11] Liu X Y, Ding X B, Guan Y, Peng Y X, Long X P, Wang X C, Chang K, Zhang Y. Fabrication of temperature-sensitive imprinted polymer hydrogel. Macromolecular Bioscience, 2004, 4: 412-415.
    [12] Chau J T, Hong G C, Kwee H K, Yen W T. Preparation of bovine serum albumin surface-imprinted submicrometer particles with magnetic susceptibility through core-shell miniemulsion polymerization. Analytical Chemistry, 2008, 80: 683-692.
    [13] Rao T S, Nampalli S, Sekher P, Kumar S. TFA-NHS as bifunctional protecting agent: simultaneous protection and activation of amino carboxylic acids. Tetrahedron Letters, 2002, 43: 7793-7795.
    [14]任力,王迎军,陈晓峰,赵营刚.壳聚糖-明胶/APTES改性生物活性玻璃复合支架的制备工艺.复合材料学报, 2009, 26: 47-52.
    [15] Kin M H, Pei L. Design and synthesis of novel magnetic core-shell polymeric particles. Langmuir, 2008, 24: 1801-1807.
    [16] Liu G J, Yang H S, Zhou J Y. Preparation of magnetic microspheres from water-in-oil emulsion stabilized by block copolymer dispersant. Biomacromolecules, 2005, 6: 1280-1288.
    [17] Banerjee S S, Chen D H. Magnetic nanoparticles grafted with cyclodextrin for hydrophobic drug delivery. Chemistry of Materials, 2007, 19: 6345-6349.
    [18] Bokias G, Mylonas Y, Staikos G. Synthesis and aqueous solution properties of novel thermoresponsive graft copolymers based on a carboxymethylcellulose backbone. Macromolecules, 2001, 34, 4958-4964.
    [19] Chang Y C, Chen D H. Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. Journal of Interface Science, 2005, 283: 446-451.
    [20] Liang Y Y, Zhang L M. Bioconjugation of papain on superparamagnetic nanoparticles decorated with carboxymethylated chitosan. Biomacromolecules, 2007, 8: 1480-1486.
    [21] Li G Y, Huang K L, Jiang Y R, Ding P, Yang D L. Preparation and characterization of carboxyl functionalization of chitosan derivative magnetic nanoparticles. Biochemical Engineering Journal, 2008, 40: 408-414.
    [22] Zhao L, Ding J F, Michael D, Ye T. Molecularly imprinted polymeric nanospheres by diblock copolymer self-assembly. Macromolecules, 2006, 39: 2629-2636.
    [23] Wandelt B, Mielniczak A, Cywinski P. Monitoring of cAMP-imprinted polymer by fluorescence spectroscopy. Biosensors and Bioelectronics, 2004, 20: 1031-1039.
    [24]赵强. PHB/PEG多嵌段共聚物的制备、结构、特性及其作为印迹材料的研究.天津大学材料科学与工程学院博士学位论文, 2006, 96.
    [25] Gupta V K, Rastogi A. Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—A comparative study. Colloids and Surfaces B: Biointerfaces, 2008, 64: 170-178.
    [26] Ohad K, Havazelet B P. Study of the interactions between protein-imprinted hydrogels and their templates. Langmuir, 2007, 23: 6329-6335.
    [27] Atia A A, Donia A M, Yousif A M. Removal of some hazardous heavy metals from aqueous solution using magnetic chelating resin with iminodiacetate functionality. Separation and Purification Technology, 2008, 61: 348-357.
    [28] Rebecca J, Margaret T, Yididya B, Colin R, David E M. Synthesis, characterization, and ab initiotheoretical study of a molecularly imprinted polymer selective for biosensor materials. Journal Physical Chemistry A, 2008, 112: 322-331.
    [29] Zumriye A. Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 2005, 40: 997-1026.
    [30] Liu Y, Liu Y J. Biosorption isotherms, kinetics and thermodynamics. Separation and Purification Technology, 2008, 61: 229-242.
    [31] Bibiana M E, Waldo M A, Javier H, Leticia F V, Niuris A, Francisco M G. Molecularly imprinted chitosan-genipin hydrogels with recognition capacity toward o-xylene. Biomacromolecules, 2007, 8: 3355-3364.
    [32] Gokhan D, Gokcen O, Eylem T, Tuncer C. pH/temperature-sensitive imprinted ionic poly(N-tert-butylacrylamide-co-acrylamide/maleic acid) hydrogels for bovine serum albumin. Macromolecular Bioscience, 2005, 5: 1032-1037.
    [33] Zhang LY, Cheng G X, Fu C, Liu X H, Pang X S. Adsorption and regeneration properties of tyrosine-imprinted polymeric beads. Adsorption Science & Technology 2003, 21: 775-785.
    [34] Shechter I, Ramon O, Portnaya I, Paz Y, Livney Y D. Microcalorimetric study of the effects of a chaotropic salt, KSCN, on the lower critical solution temperature (LCST) of aqueous poly(N-isopropylacrylamide) (PNIPA) Solutions. Macromolecules, 2009, 43: 480-487.
    [35] Nicole M B, Nicholas A P. Molecularly imprinted polymers with specific recognition for macromolecules and proteins. Progress in Polymer Science, 2008, 33: 271-288.
    [1] Alizadeh T, Zare M, Ganjali M R, Norouzi P, Tavana B. A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2, 4, 6-trinitrotoluene (TNT) in natural waters and soil samples. Biosensors and Bioelectronics, 2010, 25: 1166-1172.
    [2] Patel A K, Sharma P S, Prasad B B. Development of a creatinine sensor based on a molecularly imprinted polymer-modified sol-gel film on graphite electrode. Electroanalysis, 2008, 20: 2102-2112.
    [3] Liu Y, Gaskell K J, Cheng Z H, Yu L, Payne G F. Chitosan-coated electrodes for bimodal sensing: selective post-electrode film reaction for spectroelectrochemical analysis. Langmuir, 2008, 24: 7223-7231.
    [4] Jeykumari D S, Narayanan S S. A novel nanobiocomposite based glucose biosensor using neutral red functionalized carbon nanotubes. Biosensors and Bioelectronics, 2008, 23: 1404-1411.
    [5] Antonio L M, Gunter M, Jorge F F, Antonio S C, Ingo K, Alberto F G.. Novel strategy to design magnetic, molecular imprinted polymers with well-controlled structure for the application in optical sensors. Macromolecules, 2010, 43: 55-61.
    [6] Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors. Chemical Review, 2000, 100: 2495-2504.
    [7] Rachkova A, McNiven S, Elskaya A, Yano K, Karube I. Fluorescence detection ofβ-estradiol 83using a molecularly imprinted polymer. Analytica Chimica Acta, 2000, 405: 23-29.
    [8] Vandevelde F, Leichle T, Ayela C, Bergaud C, Nicu L, Haupt K. Direct patterning of molecularly imprinted microdot arrays for sensors and biochips. Langmuir, 2007, 23: 6490-6493.
    [9] Javanbakht M, Fard S E, Abdouss M, Mohammadi A, Ganjali M R, Norouzi P, Safaraliee L. A biomimetic potentiometric sensor using molecularly imprinted polymer for the cetirizine assay in tablets and biological fluids. Electroanalysis, 2008, 20: 2023-2030.
    [10] Tan J, Wang H F, Yan X P. A fluorescent sensor array based on ion imprinted mesoporous silica. Biosensors and Bioelectronics, 2009, 24: 3316-3321.
    [11] Matsui J, Akamatsu K, Hara N, Miyoshi D, Nawafune H, Tamaki K, Sugimoto N. SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles. Analytical Chemistry, 2005, 77: 4282-4285.
    [12] Ouyang R, Lei J P, Ju H X, Xue Y D. A molecularly imprinted copolymer designed for enantioselective recognition of glutamic acid. Advanced Functional Materials, 2007, 17: 3223-3230.
    [13] Tatiana L. P, Vladimir M. M, Sergey A. P, Otto S. W. Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical sensors. Analytical Chemistry, 1999, 71: 4609-4613.
    [14] Nguyen T H, Ansell R J. Fluorescent imprinted polymer sensors for chiral amines. Organic and Biomolecular Chemistry, 2009, 7: 1211-1220.
    [15] Percival C J, Stanley S, Galle M, Braithwaite A, Newton M I, McHale G, Hayes W. Molecular-imprinted, polymer-coated quartz crystal microbalances for the detection of terpenes. Analytical Chemistry, 2001, 73: 4225-4228.
    [16] Liang R N, Zhang R M, Qin W. Potentiometric sensor based on molecularly imprinted polymer for determination of melamine in milk. Sensors and Actuators B, 2009, 141: 544-550.
    [17] Agostino G D, Alberti G, Biesuz R, Pesavento M. Potentiometric sensor for atrazine based on a molecular imprinted membrane. Biosensors and Bioelectronics, 2006, 22: 145-152.
    [18] Beppu M M, Vieira R S, Aimoli C G., Santana C C. Crosslinking of chitosan membranes using glutaraldehyde: effect on ion permeability and water absorption. Journal of Membrane Science, 2007, 301: 126-130.
    [19] Jiang Z Y, Yu Y X, Wu H. Preparation of CS/GPTMS hybrid molecularly imprinted membrane for efficient chiral resolution of phenylalanine isomers. Journal of Membrane Science, 280: 876-882.
    [20] Chang Y S, Ko T H, Hsu T J, Syu M J. Synthesis of an imprinted hybrid organic-inorganic polymeric sol-gel matrix toward the specific binding and isotherm kinetics investigation of creatinine. Analytical Chemistry, 2009, 81: 2098-2105.
    [21] Tanabe T, Touma K, Hamasaki K, Ueno A. Immobilized fluorescent cyclodextrin on a cellulose membrane as a chemosensor for molecule detection. Analytical Chemistry, 2001, 73: 3126-3130.
    [22] Tsai H A, Syu M J. Synthesis of creatinine-imprinted poly(β-cyclodextrin) for the specific binding of creatinine. Biomaterials, 2005, 26: 2759-2766.
    [23] Fujimura K, Suzuki S, Hayashi K, Masuda S. Retention behavior and chiral recognition mechanism of several cyclodextrin-bonded stationary phases for dansyl amino acids. Analytical Chemistry, 1990, 62: 2198-2205.
    [24] Zha F, Li S G, Chang Y, Yan J. Preparation and adsorption kinetics of porousγ-glycidoxypropyltrimethoxysilane crosslinked chitosan-β-cyclodextrin membranes. Journal of Membrane Science, 2008, 321: 316-323.
    [25] Liu Y L, Su Y H, Lai J Y. In situ crosslinking of chitosan and formation of chitosan–silica hybrid membranes with usingγ-glycidoxypropyltrimethoxysilane as a crosslinking agent. Polymer, 45: 6831-6837.
    [26] Shanmugam M, Ramesh D, Nagalakshmi V, Kavitha R, Rajamohan R, Stalin T. Host-guest interaction of L-tyrosine withβ–cyclodextrin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2008, 71: 125-132.
    [27] Vazquez, Roman B, Peniche J S, Cohen. Polymeric hydrophilic hydrogels with flexible hydrophobic chains. Macromolecules, 1997, 30: 8440-8446.
    [28] Chau J T, Hong G C, Kwee H K, Yen W T. Preparation of bovine serum albumin surface-imprinted submicrometer particles with magnetic susceptibility through core-shell miniemulsion polymerization. Analytical Chemistry, 2008, 80: 683-692.
    [29] Gao B J, Wang J, An F Q, Liu Q. Molecular imprinted material prepared by novel surface imprinting technique for selective adsorption of pirimicarb. Polymer, 2008, 49: 1230-1238.
    [30] Mehmet O, Ridvan S, Adil D. Molecular imprinted particles for lysozyme purification. Materials Science and Engineering C, 2007, 27: 90-99.
    [31] Chau J T, Shalom W, Renbi B, Yen W T. Defining the interactions between proteins and surfactants for nanoparticle surface imprinting through miniemulsion polymerization. Chemistry of Materials, 2008, 20: 118-127.
    [32] Asanuma H, Kakazu M, Shibata M, Hishiya T, Komiyama M. Synthesis of molecularly imprinted polymer ofβ-cyclodextrin for the efficient recognition of cholesterol. Supramolecular Science, 1998, 5: 417-421.
    [33] Bibiana M E, Waldo M A, Javier H, Leticia F V, Niuris A, Francisco M G. Molecularly imprinted chitosan-genipin hydrogels with recognition capacity toward o-xylene. Biomacromolecules, 2007, 8: 3355-3364.
    [34] Ohad K, Havazelet B P. Study of the interactions between protein-imprinted hydrogels and their templates. Langmuir, 2007, 23: 6329-6335.
    [35] Turiel E, Tadeo J L, Esteban A M. Molecularly imprinted polymeric fibers for solid-phase microextraction. Analytical Chemistry, 2007, 79: 3099-3104.
    [36] Rebecca J, Margaret T, Yididya B, Colin R, David E M. Synthesis, characterization, and ab initio theoretical study of a molecularly imprinted polymer selective for biosensor materials. Journal Physical Chemistry A, 2008, 112: 322-331.
    [37] Liu Y, Liu Y J. Biosorption isotherms, kinetics and thermodynamics. Separation and Purification Technology, 2008, 61: 229-242.
    [38] Gokhan D, Gokcen O, Eylem T, Tuncer C. pH/temperature–sensitive imprinted ionic poly(N-tert-butylacrylamide-co-acrylamide/maleic acid) hydrogels for bovine serum albumin. Macromolecular Bioscience, 2005, 5: 1032-1037.
    [39] Zhang LY, Cheng G X, Fu C, Liu X H, Pang X S. Adsorption and regeneration properties of tyrosine-imprinted polymeric beads. Adsorption Science & Technology, 2003, 21: 775-785.
    [40] Xia Y Q, Guo Ti Y, Song M D, Zhang B H, Zhang B L. Adsorption dynamics and thermodynamics of Hb on the Hb-imprinted polymer beads. Reactive and Functional Polymers, 2008, 68: 63-69.
    [41] Wu H, Zhao Y Y, Nie M C, Jiang Z Y. Molecularly imprinted organic–inorganic hybrid membranes for selective separation of phenylalanine isomers and its analogue. Separation and Purification Technology, 2009, 68: 97-104.
    [42] Nicole M B, Nicholas A P. Molecularly imprinted polymers with specific recognition for macromolecules and proteins. Progress in Polymer Science, 2008, 33: 271-288.
    [43] Carmen A L, Angel C. Molecularly imprinted polymers for drug delivery. Journal of Chromatography B, 2004, 804: 231-245.
    [44]王桂林,王荣,吴霞琴,章宗穰.过氧化聚吡咯分子印迹膜修饰电极对3, 4-二羟基苯甲酸的测定.化学传感器, 2007, 27: 31-36.
    [45]孔泳,黄刚堂,陈智栋,王文昌.识别酪氨酸对映体的分子印迹电化学传感器.理化检验-化学分册, 2007, 43: 997-999.
    [46] Chen J H, Liu Q L, Zhang X H, Zhang Q G. Pervaporation and characterization of chitosan membranes cross-linked by 3-aminopropyltriethoxysilane. Journal of Membrane Science, 2007, 292: 125-132.
    [47] Blanco-Lopez M C, Lobo-Castanon M J, Miranda-Ordieres A J, Tunon-Blanco P. Voltammetric sensor for vanillylmandelic acid based on molecularly imprinted polymer-modified electrodes. Biosensors and Bioelectronics, 2003, 18: 353-362.
    [48] Dhana L, Alessandra B, Michael J W, Iva C, Steven A F, Sreenath S, Elena V P, Sergey A P. Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element. Analytical Chemistry, 2009, 81: 3576-3584.
    [49] Taher A, Mohamad R G, Mashaalah Z, Parviz N. Development of a voltammetric sensor based on a molecularly imprinted polymer (MIP) for caffeine measurement. Electrochimica Acta, 2009 55: 1568-1574.
    [1] Turkewitsch P, Wandelt B, Darling G D, Powell W S. Fluorescent functional recognition sites through molecular imprinting: a polymer-based fluorescent chemosensor for aqueous cAMP. Analytical Chemistry, 1998, 70: 2025-2030.
    [2] Nguyen T H, Ansell R J. Fluorescent imprinted polymer sensors for chiral amines. Organic and Biomolecular Chemistry, 2009, 7: 1211-1220.
    [3] Chen Y C, Brazier J J, Yan M D, Bargo P R, Prahl S A. Fluorescence-based optical sensor design for molecularly imprinted polymers. Sensors and Actuators B, 2004, 102: 107-116.
    [4] Amanda L J, Ray Y, Janet L J. Molecularly imprinted polymer sensors for pesticide and insecticide detection in water. Analyst, 2001, 126: 798-802.
    [5] Hillberg A L, Brain K R, Allender C J. Molecular imprinted polymer sensors: Implications for therapeutics. Advanced Drug Delivery Reviews, 2005, 57: 1875-1889.
    [6] Patel A K, Sharma P S, Prasad B B. Development of a creatinine sensor based on a molecularly imprinted polymer-modified sol-gel film on graphite electrode. Electroanalysis, 2008, 20: 2102-2112.
    [7] Liu Y, Gaskell K J, Cheng Z H, Yu L, Payne G F. Chitosan-coated electrodes for bimodal sensing: selective post-electrode film reaction for spectroelectrochemical analysis. Langmuir, 2008, 24: 7223-7231.
    [8] Jeykumari D S, Narayanan S S. A novel nanobiocomposite based glucose biosensor using neutral red functionalized carbon nanotubes. Biosensors and Bioelectronics, 2008, 23: 1404-1411.
    [9] Javanbakht M, Fard S E, Abdouss M, Mohammadi A, Ganjali M R, Norouzi P, Safaraliee L. A biomimetic potentiometric sensor using molecularly imprinted polymer for the cetirizine assay in tablets and biological fluids. Electroanalysis, 2008, 20: 2023-2030.
    [10] Tan J, Wang H F, Yan X P. A fluorescent sensor array based on ion imprinted mesoporous silica. Biosensors and Bioelectronics, 2009, 24: 3316-3321.
    [11] Karsten H, Klaus M. Molecularly imprinted polymers and their use in biomimetic sensors. Chemical Review, 2000, 100: 2495-2504.
    [12] Alexandre R, Scott M, Anna E, Kazuyoshi Y, Isao K. Fluorescence detection ofβ-estradiol using a molecularly imprinted polymer. Analytica Chimica Acta, 2000, 405: 23-29.
    [13]雷建都,马光辉,苏志国.一种基于分子印迹整体柱的L-苯丙氨酸的分析检测方法.中国发明专利, CN 101487822, 2009.
    [14]程建功,贺庆国,封松林,曹慧敏.分子印迹和荧光共轭聚合物构建的复合材料、制备及应用.中国发明专利, CN 101381438, 2007.
    [15] Elena B P, Maria C M, Santiago A, Guillermo O, Josefine C, Maria K. Molecular engineering of fluorescent penicillins for molecularly imprinted polymer assays. Analytical Chemistry, 2006, 78: 2019-2027.
    [16] Barbara W, Alina M, Piotr C. Monitoring of cAMP-imprinted polymer by fluorescence spectroscopy. Biosensors and Bioelectronics, 2004, 20: 1031-1039.
    [17] Biswas A, Shogren R L, Kim S, Willett J L. Rapid preparation of starch maleate half-esters. Carbohydrate Polymers, 2006, 64: 484-487.
    [18] Santayanon R, Wootthikanokkhan J. Modification of cassava starch by using propionic anhydride and properties of the starch-blended polyester polyurethane. Carbohydrate Polymers, 2003, 51: 17-24.
    [19] Gao B J, Wang J, An F Q, Liu Q. Molecular imprinted material prepared by novel surface imprinting technique for selective adsorption of pirimicarb. Polymer, 2008, 49: 1230-1238.
    [20] Odaba?i M, Say R, Denizli A. Molecular imprinted particles for lysozyme purification. Materials Science and Engineering C, 2007, 27: 90-99.
    [21] Chau J T, Shalom W, Renbi B, Yen W T. Defining the interactions between proteins and surfactants for nanoparticle surface imprinting through miniemulsion polymerization. Chemistry of Materials, 2008, 20: 118-127.
    [22] Nilay B, Muge A, Gozde B, Ridvan S, Igor Y G, Adil D. Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels. Journal of Chromatography A, 2008, 1190: 18-26.
    [23] Ohad K, Havazelet B P. Study of the interactions between protein-imprinted hydrogels and their templates. Langmuir, 2007, 23: 6329-6335.
    [24]赵强. PHB/PEG多嵌段共聚物的制备、结构、特性及其作为印迹材料的研究.天津大学材料科学与工程学院博士学位论文, 2006, 96.
    [25] Gupta V K, Rastogi A. Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—A comparative study. Colloids and Surfaces B: Biointerfaces, 2008, 64: 170-178.
    [26] Bibiana M E, Waldo M A, Javier H, Leticia F V, Niuris A, Francisco M G. Molecularly imprinted chitosan-genipin hydrogels with recognition capacity toward o-xylene. Biomacromolecules, 2007, 8: 3355-3364.
    [27] Fu G Q, Zhao J C, Yu H, Liu L, He B L. Bovine serum albumin-imprinted polymer gels prepared by graft copolymerization of acrylamide on chitosan. Reactive & Functional Polymers, 2007, 67: 442-450.
    [28] Chau J T, Hong G C, Kwee H K, Yen W T. Preparation of bovine serum albumin surface-imprinted submicrometer particles with magnetic susceptibility through core-shell miniemulsion polymerization. Analytical Chemistry, 2008, 80: 683-692.
    [29] Rebecca J, Margaret T, Yididya B, Colin R, David E M. Synthesis, characterization, and ab initio theoretical study of a molecularly imprinted polymer selective for biosensor materials. JournalPhysical Chemistry A, 2008, 112: 322-331.
    [30] Buhani, Narsito, Nuryono, Kunarti E S. Production of metal ion imprinted polymer from mercapto–silica through sol–gel process as selective adsorbent of cadmium. Desalination, 2010, 251: 83-89.
    [31] Li Y, Li X, Dong C K, LI Y Q, Jin P F, QI J Y. Selective recognition and removal of chlorophenols from aqueous solution using molecularly imprinted polymer prepared by reversible addition-fragmentation chain transfer polymerization. Biosensors and Bioelectronics, 2009, 25: 306-312.
    [32] Atia A A, Donia A M, Yousif A M.. Removal of some hazardous heavy metals from aqueous solution using magnetic chelating resin with iminodiacetate functionality. Separation and Purification Technology, 2008, 61: 348-357.
    [33] Carmen A L, Angel C. Molecularly imprinted polymers for drug delivery. Journal of Chromatography B, 2004, 804: 231-245.
    [34] Nicole M B, Nicholas A P. Molecularly imprinted polymers with specific recognition for macromolecules and proteins. Progress in Polymer Science, 2008, 33: 271-288.
    [35] Tohei M, Carmen A L. Conformational imprinting effect on stimuli-sensitive gels made with an“imprinter”monomer. Macromolecules, 2001, 34: 7796-7803.
    [36] Turiel E, Tadeo J L, Martin-Esteban A. Molecularly imprinted polymeric fibers for solid-phase microextraction. Analytical Chemistry, 2007, 79: 3099-3104.
    [37] Hua Z D, Chen Z Y, Li Y Z, Zhao M P. Thermosensitive and salt-sensitive molecularly imprinted hydrogel for bovine serum albumin. Langmuir, 2008, 24: 5773-5780.
    [38] Cosimino M, Ilario L, Pier G Z. Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors. Analytical Chemistry, 1999, 71: 1366-1370.
    [39] Ayca A O, Ridvan S, Adil D, Arzu E. L-Histidine imprinted synthetic receptor for biochromatography applications. Analytical Chemistry, 2006, 78: 7253-7258.
    [40] Tominaga Y, Kubo T, Kaya K, Hosoya K. Effective recognition on the surface of a polymer prepared by molecular imprinting using ionic complex. Macromolecules, 2009, 42: 2911-2915.
    [41] Clifton J S, Ken D S. Colorimetric and fluorometric molecularly imprinted polymer sensors and binding assays. Polymer International, 2007, 56: 482-488.
    [42] Zheng Y J, Gattas-Asfura K M, Li C Q, Andreopoulos F M, Pham S M, Leblanc R M. Design of a membrane fluorescent sensor based on photo-cross-linked PEG hydrogel. Journal of Physical Chemistry B, 2003, 107: 483-488.
    [43] Hiroyuki K, Hiroyuki N, Toshifumi T. Multiple hydrogen bonding-based fluorescent imprinted polymers for cyclobarbital prepared with 2,6-bis(acrylamido)pyridine. Chemical Communication, 2003, 22: 2792-2793.
    [44] Hiroyuki K, Nobuyuki Y, Toshifumi T. Fluorescent imprinted polymers prepared with 2-acrylamidoquinoline as a signaling monomer. Organic Letters, 2005, 7: 359-362.
    [1] Antonio L M, Gunter M, Jorge F F, Antonio S C, Ingo K, Alberto F G. Novel strategy to design magnetic, molecular imprinted polymers with well-controlled structure for the application in optical sensors. Macromolecules, 2010, 43: 55-61.
    [2] Yoshimatsu K, Jeune J L, Spivakb D A, Ye L. Peptide-imprinted polymer microspheres prepared by precipitation polymerization using a single bi-functional monomer. Analyst, 2009, 134: 719-724.
    [3] Tai D F, Jhang M H, Chen G Y, Wang S C, Lu K H, Lee Y D, Liu H T. Epitope-cavities generated by molecularly imprinted films measure the coincident response to anthrax protective antigen and its segments. Analytical Chemistry, 2010, 82: 2290-2293.
    [4] Cutivet A, Schembri C, Kovensky J, Haupt K. Molecularly imprinted microgels as enzyme inhibitors. Journal of the American Chemical Society, 2009, 131: 14699-14702.
    [5] Hiratani H, Alvares-Lorenzo C. Timolol uptake and release by imprinted soft contact lenses made of N, N-diethylacrylamide and methacrylic acid. Journal of Controlled Release, 2002, 83: 223-230.
    [6] Piletska E V, Turner N W, Turner A P, Piletsky S A. Controlled release of the herbicide simazine from computationally designed molecularly imprinted polymers. Journal of Controlled Release, 2005, 108: 132-139. 118
    [7] Duarte A C, Casimiro T, Aguiar-Ricardo A, Simplicio A L, Duarte M C. Supercritical fluid polymerisation and impregnation of molecularly imprinted polymers for drug delivery. Journal of Supercritical Fluids, 2006, 39: 102-106.
    [8] Hiratani H, Fujiwara A, Tamiya Y, Mizutani Y, Alvarez-Lorenzo C. Ocular release timolol from molecularly imprinted soft contact lenses. Biomaterials, 2005, 26: 1293-1298.
    [9] Sellergren B, Allender C J. Molecularly imprinted polymers: A bridge to advanced drug delivery. Advanced Drug Delivery Reviews, 2005, 57: 1733-1741.
    [10] Cunliffe D, Kirby A, Alexander C. Molecularly imprinted drug delivery systems. Advanced Drug Delivery Reviews, 2005, 57: 1836-1853.
    [11] Norell M C, Andersson H S, Nicholls I A. Theophylline molecularly imprinted polymer dissociation kinetics: a novel sustained release drug dosage mechanism. Journal of Molecular Recognition, 1998, 11: 98-102.
    [12] Suedeea R, Srichanaa T, Martinb G. P. Evaluation of matrices containing molecularly imprinted polymers in the enantioselective-controlled delivery ofβ-blockers. Journal of Controlled Release, 2000, 66: 135-147.
    [13] Bodhibukkana C, Srichana T, Kaewnopparat S, Tangthong N, Bouking P, Martin G. P, Suedee R. Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol. Journal of Controlled Release, 2006, 113: 43-56.
    [14] Suedee R, Bodhibukkana C, Tangthong N, Amnuaikit C, Kaewnopparat S, Srichana T. Development of a reservoir-type transdermal enantioselective-controlled delivery system for racemic propranolol using a molecularly imprinted polymer composite membrane. Journal of Controlled Release, 2008, 129: 170-178.
    [15] Ali M, Horikawa S, Venkatesh S, Saha J, Hong J W, Byrne M E. Zero-order therapeutic from imprinted hydrogel contact lenses within in vitro physiological ocular tear flow. Journal of Controlled Release, 2007, 124: 154-162.
    [16] Bibiana M E, Waldo M A, Javier H, Leticia F V, Niuris A, Francisco M G. Molecularly imprinted chitosan-genipin hydrogels with recognition capacity toward o-xylene. Biomacromolecules, 2007, 8: 3355-3364.
    [17] Hilta J Z, Byrne M E. Configurational biomimesis in drug delivery: molecular imprinting of biologically significant molecules. Advanced Drug Delivery Reviews, 2004, 56: 1599-1620.
    [18] Yuan Y, Chesnutt B M, Utturkar G, Haggard W O, Yang Y, Ong J L, Bumgardner J D. The effect of cross-linking of chitosan microspheres with genipin on protein release. Carbohydrate Polymers, 2007, 68: 561-567.
    [19] Chena S C, Wua Y C, Mib F L, Lina Y H, Yua L C, Sung H W. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. Journal of Controlled Release, 2004, 96: 285-300.
    [20] Chen Y S, Chang J Y, Cheng C Y, Tsai F J, Yao C H, Liu B S. An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials, 2005, 26: 3911-3918.
    [21] Nickerson M T, Farnworth R, Wagar E, Hodge S M, Rousseau D, Paulson A T. Some physical and microstructural properties of genipin-crosslinked gelatin–maltodextrin hydrogels. International Journal of Biological Macromolecules, 2006, 38: 40-44.
    [22] Tan C J, Chua H G, Ker K H, Tong Y W. Preparation of bovine serum albumin surface-imprinted submicrometer particles with magnetic susceptibility through core-shell miniemulsion polymerization. Analytical Chemistry, 2008, 80: 683-692.
    [23] Wang X, Wang L Y, He X W, Zhang Y K, Chen L X. A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition. Talanta, 2009, 78: 327-332.
    [24] Lu C H, Wang Y, Li Y, Yang H H, Chen X, Wang X R. Bifunctional superparamagnetic surface molecularly imprinted polymer core-shell nanoparticles. Journal of Materials Chemistry, 2009, 19: 1077-1079.
    [25] Laura P, Miriam C, Diego M, Sergio M, Enrico C, Davide P. Resolving the structure of ligands bound to the surface of superparamagnetic iron oxide nanoparticles by high-resolution magic-angle spinning NMR spectroscopy. Journal of the American Chemical Society, 2008, 130: 12712-12724.
    [26] Kin M H, Pei L. Design and synthesis of novel magnetic core-shell polymeric particles. Langmuir, 2008, 24: 1801-1807.
    [27] Veronica S M, Miguel A C, Marina S, Luis M L, Michael F. Composite silica spheres with magnetic and luminescent functionalities. Advanced Functional Materials, 2006, 16: 509-514.
    [28] Liu K H, Chen S Y, Liu D M, Liu T Y. Self-assembled hollow nanocapsule from amphiphatic carboxymethyl-hexanoyl chitosan as drug carrier. Macromolecules, 2008, 41: 6511-6516.
    [29] Li L L, Chen D, Zhang Y Q, Deng Z T, Ren X L, Meng X W, Tang F Q, Ren J, Zhang L. Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system. Nanotechnology, 2007, 18: 1-6.
    [30] Brunel F, Veron L, David L, Domard A, Delair T. A novel synthesis of chitosan nanoparticles in reverse emulsion. Langmuir, 2008, 24: 11370-11377.
    [31] Mi F L, Shyu S S, Peng C K. Characterization of ring-opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin. Journal of Polymer Science: Part A, Polymer Chemistry, 2205, 43: 1985-2000.
    [32] Butler M F, Ng Y F, Pudney P D. Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. Journal of Polymer Science: Part A, Polymer Chemistry, 2003, 41: 3941-3953.
    [33] Ma L W, Liu M Z, Liu H L, Chen J, Cui D P. In vitro cytotoxicity and drug release properties of pH- and temperature-sensitive core–shell hydrogel microspheres. International Journal of Pharmaceutics, 2010, 385: 86-91.
    [34] Chang Y C, Chen D H. Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. Journal of Interface Science, 2005, 283: 446-451.
    [35] Liang Y Y, Zhang L M. Bioconjugation of papain on superparamagnetic nanoparticles decorated with carboxymethylated chitosan. Biomacromolecules, 2007, 8: 1480-1486.
    [36] Li G Y, Huang K L, Jiang Y R, Ding P, Yang D L. Preparation and characterization of carboxyl functionalization of chitosan derivative magnetic nanoparticles. Biochemical Engineering Journal, 2008, 40: 408-414.
    [37] Kubo H, Nariaia H, Takeuchi T. Multiple hydrogen bonding-based fluorescent imprinted polymers for cyclobarbital prepared with 2,6-bis(acrylamido)pyridine. Chemical Communication, 2003, 22: 2792-2793.
    [38] Nguyen T H, Ansell R J. Fluorescent imprinted polymer sensors for chiral amines. Organic and Biomolecular Chemistry, 2009, 7: 1211-1220.
    [39] Nicole M B, Nicholas A P. Molecularly imprinted polymers with specific recognition for macromolecules and proteins. Progress in Polymer Science, 2008, 33: 271–288
    [40] Carmen A L, Angel C. Molecularly imprinted polymers for drug delivery. Journal of Chromatography B, 2004, 804: 231-245.
    [41] Tohei M, Carmen A L. Conformational imprinting effect on stimuli-sensitive gels made with an“imprinter”monomer. Macromolecules, 2001, 34: 7796-7803.
    [42] Andersson H S, Koch-Schmidt A C, Ohlson S, Mosbach K. Study of the nature of recognition in molecularly imprinted polymers. Journal of Molecular Recognition, 1996, 9: 675-682.
    [43] Liu T Y, Hu S H, Liu T Y, Liu D M, Chen S Y. Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Lanmuir, 2006, 22: 5974-5978.
    [44] Huang L Y, Yang M C. Behaviors of controlled drug release of magnetic-gelatin hydrogel coated stainless steel for drug-eluting-stents application. Journal of Magnetism and Magnetic Materials, 2007, 310: 2874-2876.
    [45] Huang W C, Hu S H, Liu K H, Chen S Y , Liu D M. A flexible drug delivery chip for the magnetically-controlled release of anti-epileptic drugs. Journal of Controlled Release, 2009, 139: 221-228.
    [46] Nikola M, Melina K K, Zorica K J, Jovanka F. Hydrogels of N-isopropylacrylamide copolymers with controlled release of a model protein. International Journal of Pharmaceutics, 2010, 383: 53-61.
    [47] Ritger P L, Peppas N. A simple equation for description of solute release.Ⅱ. Fickian and anomalous release from swellable devices. Journal of Controlled Release, 1987, 5: 37-42.
    [48] Brinker C J. Hydrolysis and condensation of silicates: Effects on structure. Journal of Non-Crystal Solids, 1998, 100: 31-50.
    [1] Jennifer J B, Michel R G. Exploiting the synergy between coordination chemistry and molecular imprinting in the quest for new catalysts. Accounts of Chemical Research, 2004, 37: 798-804.
    [2] Davide C, Kevin F, Ania S, Veronique G, Marina R. The first example of molecularly imprinted nanogels with aldolase type I activity. Chemistry-A European Journal, 2008, 14: 7059-7065.
    [3] Wulff G. Enzyme-like catalysis by molecularly imprinted polymers. Chemical Reviews, 2002, 102: 1-27.
    [4] Visnjevski A, Schomacker R, Yilmaz E, Bruggemann O. Catalysis of a Diels-Alder cycloaddition with differently fabricated molecularly imprinted polymers. Catalysis Communications, 2005, 6: 601-606.
    [5] Lettau K, Warsinke A, Laschewsky A, Mosbach K, Yilmaz E, Schelle F W. An esterolytic imprinted polymer prepared via a silica-supported transition state analogue. Chemistry of Materials, 2004, 16: 2745-2749.
    [6] Sellergren B, Karmalkar R N, Shea K J. Enantioselective ester hydrolysis catalyzed by imprinted polymers. Journal of Organic Chemistry, 2000, 65: 4009-4027.
    [7] Cheng Z Y, Zhang L W, Li Y Z. Synthesis of an enzyme-like imprinted polymer with the substrate as the template, and its catalytic properties under aqueous conditions. Chemistry-A European Journal, 2004, 10: 3555-3561.
    [8] Liu J Q, Wulff G. Functional mimicry of carboxypeptidase A by a combination of transition state stabilization and a defined orientation of catalytic moieties in molecularly imprinted polymers. Journal of the American Chemical Society, 2008, 130: 8044–8054.
    [9] Puoci F, Iemma F, Picci N. Stimuli-responsive molecularly imprinted polymers for drug delivery: a review. Current Drug Delivery, 2008, 5: 85-96.
    [10] Shechter I, Ramon O, Portnaya I, Paz Y, Livney Y D. Microcalorimetric study of the effects of a chaotropic salt, KSCN, on the lower critical solution temperature (LCST) of aqueous poly(N-isopropylacrylamide) (PNIPA) solutions. Macromolecules, 2009, 43: 480-487.
    [11] Park T G. Stabilization of enzyme immobilized in temperature-sensitive hydrogels, Biotechnology Letters, 1993, 15: 57—60
    [12] Strikovsky A G, Kasper D, Grun M, Green B S, Hradil J, Wulff G. Catalytic molecularly imprinted polymers using conventional bulk polymerization or suspension polymerization: selective hydrolysis of diphenyl carbonate and diphenyl carbamate. Journal of the American Chemical Society, 2000, 122: 6295-6296.
    [13] Kim J M, Ahn K D, Wulff G. Cholesterol esterase activity of a molecularly imprinted polymer. Macromolecular Chemistry and Physics, 2001, 202: 1105-1108.
    [14] Wulff G, Gross T, Schonfeld R. Enzyme models based on molecularly imprinted polymers with strong esterase activity. Angewandte Chemie, International Edition in English, 1997, 36:162-164.
    [15] Yasuhiro K, Toshiaki Y, Akira N, Kazuyo F, Kanemitsu U, Hiroshi Y, Kenji M. Imprinted polymer catalysts for the hydrolysis of p-nitrophenyl acetate. Journal of Molecular Catalysis A: Chemical, 1999, 145: 107–110.
    [16] Zhang D N, Li S J, Li W K, Chen Y F. Biomimic recognition and catalysis by an imprinted catalysts: a rational design of molecular self-assembly toward predetermined high specificity. Catalysis Letters, 2007, 115: 169-175.
    [17] Cameron A, Louise D, Wayne H. Imprinted polymers: artificial molecular recognition materials with applications in synthesis and catalysis. Tetrahedron, 2003, 59: 2025-2057.
    [18] Stewart J D, Liotta L J, Benkovic S J. Reaction mechanisms displayed by catalytic antibodies. Accounts of Chemical Research, 1993, 26: 396—404
    [19] Tong K J, Xiao S, Li S J, Wang J. Molecular recognition and catalysis by molecularly imprinted polymer catalysts: thermodynamic and kinetic surveys on the specific behaviors. Journal of Inorganic and Organometallic Polymers and Materials, 2008, 18: 426-433.
    [20] Liu J Q, Wulff G. Functional mimicry of the active site of carboxypeptidase A by a molecular imprinting strategy: cooperativity of an amidinium and a copper ion in a transition-state imprinted cavity giving rise to high catalytic activity. Journal of the American Chemical Society, 2004, 126: 7452-7453.
    [21] Liu J Q, Wulff G. Molecularly imprinted polymers with strong carboxypeptidase A-like activity: combination of an amidinium function with a Zinc-ion binding site in transition-state imprinted cavities. Angewandte Chemie, International Edition in English, 2004, 43: 1287–1287.
    [22] Abhinav A, Umesh G, Abhay A, Narendra K J. Dextran conjugated dendritic nanoconstructs as potential vectors for anti-cancer agent. Biomaterials, 2009, 30: 3588-3596.
    [23] Bruneel D, Schacht E. Chemical modification of pullulan: 1. Periodate oxidation. Polymer, 1993, 34: 2628-2632.
    [24] Cheunga R Y, Ying Y M, Rauth A M, Marcon N, Wu X Y. Biodegradable dextran-based microspheres for delivery of anticancer drug mitomycin C. Biomaterials, 2005, 26: 5375-5385.
    [25] Fabrice B, Laurent V, Laurent D, Alain D, Thierry D. A novel synthesis of chitosan nanoparticles in reverse emulsion. Langmuir, 2008, 24: 11370-11377.
    [26] Yuki K, Tatsuya O, Yoshinari B. Synthesis of highly porous chitosan microspheres anchored with 1,2-ethylenedisulfide moiety for the recovery of precious metal ions. Industrial & Engineering Chemistry Research, 2008, 47: 3114-3120.
    [27] Vazquez, Roman B, Peniche J S, Cohen. Polymeric hydrophilic hydrogels with flexible hydrophobic chains. Macromolecules, 1997, 30: 8440-8446.
    [28] Rong J, Christine H, Zhong Z Y, Jan F J. Enzyme-mediated fast in situ formation of hydrogels from dextran–tyramine conjugates. Biomaterials, 2007, 28: 2791–2800.
    [29] Maddock S C, Pasetto P, Resmini M. Novel imprinted soluble microgels with hydrolytic catalytic activity. Chemical Communications, 2004, 5: 536-537.
    [30] Wulff G, Chong B O, Kolb U. Soluble single-molecule nanogels of controlled structure as a matrix for efficient artificial enzymes. Angewandte Chemie, International Edition, 2006, 45: 2955-2958.
    [31] Nicole M. Bergmann, Nicholas A. Peppas. Molecularly imprinted polymers with specific recognition for macromolecules and proteins. Progress in Polymer Science, 2008, 33: 271-288.
    [32] Li S J, Liao C, Li W K, Chen Y F, Hao X. Rationally designing molecularly imprinted polymer towards predetermined high selectivity by using metal as assembled pivot. Macromolecular Bioscience, 2007, 7: 1112-1120.
    [33]刘维俊,范娉萍,周丽绘,黄永民,彭昌军,刘洪来.浊度法表征温敏性微凝胶体积的相转变行为.功能高分子学报, 2007, 19-20 (4): 352-357.
    [34] Li S J, Pilla S, Gong S Q. Modulated molecular recognition by a temperature-sensitive molecularly-imprinted polymer. Journal of Polymer Science: Part A, 2009, 47: 2352-2360.
    [35] Emgenbroich M, Wulff G. A new enzyme model for enantioselective esterases based on molecularly imprinted polymers. Chemistry-A European Journal, 2003, 9: 4106-4117.
    [36] Ridvan S, Murat E, Arzu E, Hayrettin T, Adil D. Biomimetic catalysis of an organophosphate by molecularly surface imprinted polymers. Applied Catalysis A: General, 2005, 286: 221-225.
    [37] Pauling L. Molecular architecture and biological reactions. Chemical & Engineering News. 1946, 24: 1375-1377.
    [38] Lerner R A, Benkovic S J, Schultz P G. At the crossroads of chemistry and immunology: catalytic antibodies. Science, 1991, 252: 659-667.
    [39] Schultz P G. Antibodies as catalysts. Angewandte Chemie, 1989, 101: 1336-1348.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700