电解质溶液中带电磷脂的多层管状囊泡的形成及动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
带电磷脂是生物细胞膜的重要组成成份。细胞膜的结构性质及许多重要的生物功能,都与膜中带电磷脂的种类、含量直接相关。由于细胞膜所处的环境是电解质溶液,所以普遍存在的膜与膜之间或膜与各种分子之间的静电相互作用对生物膜的结构和性能起了关键作用。因此在电解质溶液中研究带电磷脂膜的形态和生长动力学有助于深入理解这类相互作用。关于带电双分子层膜的静电性质以及电解质对其影响,理论学家们已建立了各种理论模型,实验上较多关注的是电解质对含带电磷脂多组分膜的分相、形变的影响,以及带电磷脂膜与某些生物大分子的作用。而对电解质溶液中带电磷脂的多层管状囊泡的形成及动力学的研究却非常少。因此,我们主要围绕着这个问题展开研究,主要内容及结果如下:
     1)研究了电解质种类、价态、浓度对带电磷脂聚集形态的影响。结果表明,阳离子的价态、浓度对心磷脂的聚集形态有很大影响,而离子半径和同一价态下不同离子种类的影响较小;阴离子种类、价态对带电磷脂聚集形态的影响很小。在一定的一价阳离子电解质溶液中,心磷脂的主要组装形态是同中心多层管状囊泡(myelin结构)。系统考察了其它实验条件对myelin形成及结构的影响。结果表明,在固定电解质浓度下,中性pH值较酸性的容易形成myelin。Myelin的最小直径基本不受干膜的厚度和电解质浓度的影响,而最大直径随干膜厚度的增加而增大,随电解质浓度的减小而减小。
     2)为了解释为什么带电磷脂在电解质溶液中能形成myelin结构,我们将Witten关于非带电膜myelin的形成理论推广到带电膜体系,即膜间相互作用除了范德瓦尔斯力、疏水排斥力外,还增加了静电排斥力。计算了与实验相对应的各个参数刘myelin形成的影响,结果表明,当多层膜间的压力超过临界值(或膜间距小于临界值时),myelin结构的能量低,体系主要以myelin形式存在。增加膜间排斥力或减小膜间吸引力,如减小范德瓦尔斯力,增加疏水排斥力、静电排斥力等均有助于myelin的形成,反之,不利于myelin的形成;增加myelin的曲率能不利于myelin的形成。随着电解质浓度的减小,膜与膜之间的排斥力越来越大,越有利于myelin的形成。当myelin的中心水腔(R(?))很小时,层数N对myelin的形成有很大的影响,层数越多越有利于myelin的形成;而当中心水腔(R(?))比较大时,N对myelin形成的影响很小。这些计算结果与实验现象基本相符。
     3)研究了电解质溶液中带电磷脂的myelin的生长动力学,以及电解质种类、浓度对其影响。结果表明,对于大多数myelin,其生长初期基本符合L∝t,但持续时间较短(一·般为2~8秒),而生长后期符合L∝t1/2(持续十几至几十秒);部分(?)nyelin除了以上这两个阶段外,还有第三阶段,在第三阶段中,L∝tp且p<1/2;极少数myelin在生长的整个过程符合一个标度关系,即L∝tp(p≈1)。这种标度关系基本上不受电解质的种类和浓度影响,但随着电解质浓度的增加,myelin的生长速率常数增大。
     4)考察电解质种类、浓度对螺旋结构myelin形成的影响。结果表明,螺旋结构的形成基本不受电解质种类的影响,但受电解质的浓度影响比较大,只有在一定的电解质浓度范围内,才能形成螺旋结构。螺旋结构有规则的和不规则的,包括单螺旋、双螺旋和超螺旋结构。螺旋结构的形成主要有两种方式,其一是伴随着myelin的生长,即一边生长,一边盘绕,对于从一开始就以麻花状结构生长的双螺旋,其长度与时间的标度关系与非螺旋结构的myelin的相似;其二是先形成myelin后再盘绕,这种方式形成螺旋结构的速率很快,一般在几秒甚至更短时间内完成。对于单根myelin形成的双螺旋,麻花状的双螺旋结构比一段是直的、另一段盘绕在上面的双螺旋结构稳定。
Charged lipids constitute a substantial fraction of bio-membranes. The structure and function of the bio-membranes greatly depend on the type and content of the charged lipids. Due to the ubiquitous nature of electrolytes in cells, the electrostatic interaction between bio-membranes and other molecules is important for behaviors of bio-membranes. Therefore, the study of charged lipid systems can advance the understanding of such interactions. So far, several theoretical models have been set up for studying electrostatics of bio-membranes and a lot of experiments have been done to investigate the phase separation, and deformation of charged bio-membranes as well as interactions between charged bio-membranes and other molecules. However, only few studies involve in myelin formation of charged lipids in electrolyte solutions. In this thesis, we investigate the myelin formation of charged lipids with emphasis on morphology evolution and stability. The thesis is organized as follows
     1) In Chapter 2, we study the effect of electrolytes on the assembling structures of cardiolipin. It is shown that the assembling structures critically depend on the concentration and valency of cations, rather than their types or ionic radii. Anions have negligible effects on the assembling structures. Myelin figures are observed in certain concentration range of univalent cations and in neutral or alkalic medium. The minimum diameter of the myelin structures does not depend on the thickness of the dried lipid membranes and the concentration of electrolytes, and the maximum diameter increases with increasing the thickness of the dried membranes and decreases with increasing the concentration of the electrolytes.
     2) In Chapter 3, in order to explain the experimental findings of the added salt effect on myelin formation in charged lipid systems, we extend the argument for the neutral lipid systems proposed by Huang-Zou-Witten to the charged lipid systems with added salts by taking into account the electrostatic interaction. The calculations indicate that when the water layer thickness is less than the threshold (or the pressure between the membrane is larger than its threshold), myelin structures can form. Increasing repulsion or decreasing attraction between the membranes, say increasing electrolyte repulsion, hydration repulsion, and decreasing Van der Waals attraction, will induce myelin formation. As the Debye-Huckel screening length increases (corresponding to decreasing the concentration of the electrolyte), myelin will be easier to form due to the increased repulsion between the membranes. When the radius of the water core (R(?)) is small, myelin structures are hard to form as the bilayer number N is small and become easier to form with increasing bilayer number, but when R(?) is large, the bilayer number has little effect. Our calculations agree with most of experimental observations.
     3) In Chapter 4, we study the growth dynamics of the myelin structures formed from charged lipids. The results indicate that for most myelin structures, the scaling relationship between the myelin length L and its growing time t follows L∝t at the initial stage of the growth, and L∝t1/2 at the following stage; but some myelin structures exhibit a third stage with scaling relationship L∝tp(p<1/2); Besides, there is a small amount of myelin structures only showing one scaling relationship L∝tp(p≈1) through the whole growing process. The type and concentration of the electrolytes do not influence the scaling relationship between the myelin length L and its growing time t. But the growth rate increases with increasing concentration of the electrolytes.
     4) In Chapter 5, we study the coil instability of myelin figures. During myelin formation, besides straight myelin structures, lots of coiling structures form due to instability. The coiling instability of myelin structures greatly depends on the concentration of the electrolytes, and only happens in certain concentration of the electrolytes. The types of the electrolytes have little effect on such coiling instability. The coiling myelin structures include single, double, and super helical structures. The coiling instability happen ether during the myelin growth or after the myelin stops growing. The scaling relationship between the length of coiling structure L and its growing time t is similar to the myelin growth without coiling.
引文
[1]杨福愉.生物膜[M].北京:科学出版社,2005.
    [2]隋森芳.膜分子生物学[M].北京:高等教育出版社,2003.
    [3]Li, L.; Liang, X. Y.; Lin, M. Y.; Qiu, F.; Yang, Y. L. Budding dynamics of multicomponent tubular vesicles[J]. Journal Of The American Chemical Society.2005, 127(51):17996-17997.
    [4]Feigenson, G. W.; Buboltz, J. T. Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol:Nanoscopic domain formation driven by cholesterol[J]. Biophysical Journal.2001,80(6):2775-2788.
    [5]Veatch, S. L.; Keller, S. L. Organization in Lipid Membranes Containing Cholesterol [J]. Physical Review Letters.2002,89(26):268101.
    [6]Tocanne, J. F.; Cezanne, L.; Lopez, A.; Piknova, B.; Schram, V.; Tournier, J. F.; Welby, M. Lipid domains and lipid/protein interactions in biological membranes[J]. Chemistry and physics of lipids.1994,73:139-158.
    [7]Tanaka, T.; Tamba, Y.; Masum, S. M.; Yamashita, Y; Yamazaki, M. La3+a nd Gd3+ induce shape change of giant unilamellar vesicles of phosphatidylcholine[J]. Biochimica Et Biophysica Acta-Biomembranes.2002,1564(1):173-182.
    [8]Tsafrir, I.; Caspi, Y.; Guedeau-Boudeville, M. A.; Arzi, T.; Stavans, J. Budding and tubulation in highly oblate vesicles by anchored amphiphilic molecules[J]. Physical Review Letters.2003,91(13).
    [9]Zhou, Y. F.; Yan, D. Y. Real-time membrane fission of giant polymer vesicles[J]. Angewandte Chemie-International Edition.2005,44(21):3223-3226.
    [10]Laradji, M.; Kumar, P. B. S. Dynamics of domain growth in multi-component self-assembled fluid vesicles in explict solvent[J]. Biophysical Journal.2005,88(1): 239A-239A.
    [11]Laradji, M.; Sunil Kumar, P. B. Dynamics of domain growth in self-assembled fluid vesicles[J]. Physical Review Letters.2004,93(19).
    [12]Menger, F. M.; Seredyuk, V. A.; Kitaeva, M. V.; Yaroslavov, A. A.; Melik-Nubarov, N. S. Migration of poly-L-lysine through a lipid bilayer[J]. Journal Of The American Chemical Society.2003,125(10):2846-2847.
    [13]Menger, F. M.; Seredyuk, V. A.; Yaroslavov, A. A. Adhesive and anti-adhesive agents in giant vesicles[J]. Angewandte Chemie-International Edition.2002,41(8):1350-1352.
    [14]Raudino, A.; Castelli, F.; Gurrieri, S. Polymer-Induced Lateral Phase-Separation In Mixed Lipid-Membranes-A Theoretical-Model And Calorimetric Investigation[J]. Journal Of Physical Chemistry.1990,94(4):1526-1535.
    [15]刘文龙;张志鸿.生物膜与脂质全技术[M].长沙:湖南科学技术出版社,1989:1-14.
    [16]yang, L.; Glaser, M. Membrane domains containing phosphatidylseringe and substrate can be important for the activation of protein kinase C[J]. Biochemistry.1995,34: 1500-1506.
    [17]谢毓章;刘寄星;欧阳钟灿.生物膜泡曲面弹性理论[M].上海:上海科学技术出版社,2003.
    [18]孙明珠.多嵌段共聚物的相分离和囊泡形状的自洽场理论研究[D].上海:复旦大学,2006.
    [19]郭坤琨.生物膜形状的理论研究[D].上海:复旦大学,2005.
    [20]Sun, M. Z.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Shape of fluid vesicles anchored by rigid rod[J]. Journal Of Physical Chemistry B.2006,110(19):9698-9707.
    [21]Guo, K. K.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Rigid rod anchored to infinite membrane[J]. Journal Of Chemical Physics.2005,123(7).
    [22]Wang, J. F.; Guo, K. K.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Predicting shapes of polymer-chain-anchored fluid vesicles[J]. Physical Review E.2005,71 (4).
    [23]Monette, M.; Lafleur, M. Modulation of meltittin-induced lysis by surface charge density of membranes[J]. Biophysical Journal.1995,68:187-195.
    [24]Kinnunen, P. K. J.; Kovi, A.; Lehtonen, J. Y. A.; Rytomaa, M.; Mustonen, P. Lipid dynamics and peripheral interactions of proteins with membrane surface[J]. Chemistry and physics of lipids.1994,73:181-207.
    [25]Langner, M.; Kubica, K. The electrostatics of lipid surfaces[J]. Chemistry And Physics Of Lipids.1999,101(1):3-35.
    [26]曹同庚;管汀鹭.生物膜结构与功能[M].北京:科学出版社,1981:55-80.
    [27]张洪渊.生物化学[M].成都:四川大学出版社,2002:45-49.
    [28]张曼夫.生物化学[M].北京:中国农业大学出版社,2002:112-113.
    [29]张志鸿;刘文龙.膜生物物理学[M].上海:高等教育出版社,1987:3-14.
    [30]钱凯先;邵健忠;李亚南.细胞生物化学原理[M].浙江:浙江大学出版社,1999.
    [31]沈同;王镜岩;赵邦悌;李建武.生物化学[M].北京:高等教育出版社,1990.
    [32]Schlame, M.; Rua, D.; Greenberg, M. L. The biosynthesis and functional role of cardiolipin[J]. Progress In Lipid Research.2000,39(3):257-288.
    [33]Kates, M.; Syz, J. Y.; Gosser, D.; Haines, T. H. Ph-Dissociation Characteristics Of Cardiolipin And Its 2'-Deoxy Analog[J]. Lipids.1993,28(10):877-882.
    [34]赵南明;周海梦.生物物理学[M].北京:高等教育出版社,2000:170-174.
    [35]Cevc, G. Membrane electrostatics[J]. Biochimica et Biophysica Acta.1990,1031(3): 311-382.
    [36]Antonenko, Y. N.; Denisov, G. A.; Pohl, P. Weak Acid Transport Across Bilayer-Lipid Membrane In The Presence Of Buffers-Theoretical And Experimental Ph Profiles In The Unstirred Layers[J]. Biophysical Journal.1993,64(6):1701-1710.
    [37]Antonenko, Y. N.; Pohl, P.; Rosenfeld, E. Visualization of the reaction layer in the immediate membrane vicinity[J]. Archives Of Biochemistry And Biophysics.1996,333(1): 225-232.
    [38]De Vrije, T.; De Swart, R. L.; Dowhan, W.; Tommassen, J.; De Kruijff, B. Phosphatidylglycerol is involved in protein translocation across E. coli inner membrane.[J]. Nature.1988,334:173-175.
    [39]Cevc, G. Electrostatic Characterization Of Liposomes[J]. Chemistry And Physics Of Lipids.1993,64(1-3):163-186.
    [40]Andelman, D. Electrostatic Properties of Membranes:The Poisson-Boltzmann Theory[J]. Handbook of Biological Physics.1995,1:603-641.
    [41]Andelman, D. Introduction to electrostatics in soft and biological matter, School of Physics & Astronomy:Israel,2004; pp 1-25.
    [42]Verwey, E. J. W.; Overbeek, J. T. G. Theory of the stability of lyophobic colloids[M]. New York:Elsevier,1948.
    [43]Israelachvili, J. N. Intermolecular and surface forces[M]. London:Academic Press, 1990.
    [44]Winterhalter, M.; Helfrich, W. Effect of surface charged on the curvature elasticity of membrane[J]. journal of physical chemistry.1988,92:6865-6867.
    [45]Winterhalter, M.; Helfrich, W. Bending Elasticity Of Electrically Charged Bilayers-Coupled Monolayers, Neutral Surfaces, And Balancing Stresses[J]. Journal Of Physical Chemistry.1992,96(1):327-330.
    [46]Nguyen, T. T.; Rouzina,I.; Shklovskii, B.I. Negative electrostatic contribution to the bending rigidity of charged membranes and polyelectrolytes screened by multivalent counterions[J]. Physical Review E.1999,60(6):7032-7039.
    [47]May, S. Curvature elasticity and thermodynamic stability of electrically charged membranes[J]. Journal Of Chemical Physics.1996,105(18):8314-8323.
    [48]Higgs, P. G.; Joanny, J. F. Enhanced membrane rigidity in charged lamellar phases[J]. Journal de Physique.1990,51(20):2307-2320.
    [49]Harden, J. L.; Marques, C.; Joanny, J. F.; Andelman, D. Membrane Curvature Elasticity In Weakly Charged Lamellar Phases[J]. Langmuir.1992,8(4):1170-1175.
    [50]Ennis, J. Spontaneous Curvature Of Surfactant Films[J]. Journal Of Chemical Physics. 1992,97(1):663-678.
    [51]Szleifer, I.; Kramer, D.; Ben-Shaul, A.; Gelbart, W. M.; Safran, S. A. Molecular theory of curvature elasticity in surfactant films[J]. The Journal of Chemical Physics.1990,92(11): 6800.
    [52]Kiometzis, M.; Kleinert, H. Electrostatic stiffness properties of charged bilayers[J]. Physica A.1989,140:520.
    [53]Fogden, A.; Daicic, J.; Mitchell, D. J.; Ninham, B. W. Electrostatic rigidity of charged membranes in systems without added salt[J]. Physica A.1996,234(1-2):167-188.
    [54]Buchanan, M.; Arrault, J.; Cates, M. E. Swelling and dissolution of lamellar phases: Role of bilayer organization[J]. Langmuir.1998,14(26):7371-7377.
    [55]Buchanan, M.; Egelhaaf, S. U.; Cates, M. E. Dynamics of interface instabilities in nonionic lamellar phases[J]. Langmuir.2000,16(8):3718-3726.
    [56]Goldstein, R. E.; Leibler, S. Structural Phase-Transitions Of Interacting Membranes[J]. Abstracts Of Papers Of The American Chemical Society.1989,198:134-COLL.
    [57]Pincus, P.; Joanny, J. F.; Andelman, D. Electrostatic Interactions, Curvature Elasticity, And Steric Repulsion In Multimembrane Systems[J]. Europhysics Letters.1990,11(8): 763-768.
    [58]Mitchell, D. J.; Ninham, B. W. Curvature Elasticity of Charged Membranes[J]. Langmuir.1989,5(4):1121-1123.
    [59]Contribution of the electric double-layer to the curvature elasticity of charged amphiphilic monolayers[J]. Physica A.1989,159:319.
    [60]Song, J.; Waugh, R. E. Bilayer-Membrane Bending Stiffness By Tether Formation From Mixed Pc-Ps Lipid Vesicles[J]. Journal Of Biomechanical Engineering-Transactions Of The Asme.1990,112(3):235-240.
    [61]Amato, I. Catching The Rhythm Of The Bacterial Twist[J]. Science.1992,255(5040): 32-33.
    [62]Potera, C. Microbiology-Physics, biology meet in self-assembling bacterial fibers[J]. Science.1997,276(5318):1499-1500.
    [63]Mendelson, N. H. Helical growth of bacillus subtilis:a new model of cell growth[J]. Proceedings of the National Academy of Sciences of the United States of America.1976, 73(5):1740-1744.
    [64]Mishima, K.; Fukuda, K.; Suzuki, K. Double helix formation of phosphatidylcholine myelin figures[J]. Biochimica et Biophysica Acta.1992,1108(1):115-118.
    [65]Sakurai,I.; Suzuki, T.; Sakurai, S. Cross-sectional view of myelin figures·SHORT COMMUNICATION[J]. Biochimica et Biophysica Acta.1989,985(1):101-105.
    [66]Dave, H.; Surve, M.; Manohar, C.; Bellare, J. Myelin growth and initial dynamics[J]. Journal Of Colloid And Interface Science.2003,264(1):76-81.
    [67]Haran, M.; Chowdhury, A.; Manohar, C.; Bellare, J. Myelin growth and coiling[J]. Colloids And Surfaces A-Physicochemical And Engineering Aspects.2002,205(1-2):21-30.
    [68]Tsafrir, I.; Guedeau-Boudeville, M. A.; Kandel, D.; Stavans, J. Coiling instability of multilamellar membrane tubes with anchored polymers[J]. Physical Review E.2001, 6303(3).
    [69]Zou, L. N.; Nagel, S. R. Stability and growth of single myelin figures[J]. Physical Review Letters.2006,96(13):138301.
    [70]Huang, J. R.; Zou, L. N.; Witten, T. A. Confined multilamellae prefer cylindrical morphology[J]. European Physical Journal E.2005,18(3):279-285.
    [71]Taribagil, R.; Arunagirinathan, M. A.; Manohar, C.; Bellare, J. R. Extended time range modeling of myelin growth[J]. Journal Of Colloid And Interface Science.2005,289(1): 242-248.
    [72]Mishima, K. Y., K. Growth rate of myelin figures of egg-yolk phosphatidylcholine[J]. Biochimica et Biophysica Acta.1987,904:149.
    [73]Warren, P. B.; Buchanan, M. Kinetics of surfactant dissolution[J]. Current Opinion In Colloid & Interface Science.2001,6(3):287-293.
    [74]Arunagirinathan, M. A.; Manohar, C.; Bellare, J. R. Eroded myelin figures[J]. Langmuir.2004,20(11):4318-4321.
    [75]Sakurai, I.; Kawamura, Y. Growth mechanism of myelin figures of phosphatidylcholine [J]. Biochimica et Biophysica Acta.1984,777(2):347-351.
    [76]Kennedy, A. P.; Sutcliffe, J.; Cheng, J. X. Molecular composition and orientation in myelin figures characterized by coherent anti-stokes Raman scattering microscopy[J]. Langmuir.2005,21(14):6478-6486.
    [77]Arunagirinathan, M. A.; Roy, M.; Dua, A. K.; Manohar, C.; Bellare, J. R. Micro-Raman investigations of myelins in aerosol-OT/water system[J]. Langmuir.2004,20(12): 4816-4822.
    [78]Virchow, R.; Arch, V. s.1854,6(562).
    [79]Sakurai, I. Concentration gradient along the long axis of myelin figures of phosphatidylcholine [J]. Biochimica et Biophysica Acta.1985,815(1):149-152.
    [80]Frette, V.; Tsafrir, I.; Guedeau-Boudeville, M. A.; Jullien, L.; Kandel, D.; Stavans, J. Coiling of cylindrical membrane stacks with anchored polymers[J]. Physical Review Letters. 1999,83(12):2465-2468.
    [81]Stavans, J. Instabilities of membranes with anchored polymers[J]. Physica A-Statistical Mechanics And Its Applications.2002,306(1-4):368-375.
    [82]Lin, K. C.; Weis, R. M.; McConnell, H. M. Induction of helical liposomes by Ca2+-mediated intermembrane binding[J]. Nature.1982,296:164-165.
    [83]李莉.多组分脂质囊泡的侧向相分离与出芽[D].上海:复旦大学,2005.
    [84]Santangelo, C. D.; Pincus, P. Coiling instabilities of multilamellar tubes[J]. Physical Review E.2002,66(6).
    [1]De Vrije, T.; De Swart, R. L.; Dowhan, W.; Tommassen, J.; De Kruijff, B. Phosphatidylglycerol is involved in protein translocation across E. coli inner membrane.[J]. Nature.1988,334:173-175.
    [2]Andelman, D. Electrostatic Properties of Membranes:The Poisson-Boltzmann Theory[J]. Handbook of Biological Physics.1995,1:603-641.
    [3]Langner, M.; Kubica, K. The electrostatics of lipid surfaces[J]. Chemistry And Physics OfLipids.1999,101(1):3-35.
    [4]Cevc, G. Membrane electrostatics[J]. Biochimica et Biophysica Acta.1990,1031(3): 311-382.
    [5]Rand, R. P. Sturctural studies by X-ray diffraction of model lipid-protein membranes of serum albumin-lecithin-cardiolipin[J]. Biochimica et Biophysica Acta.1971,241:823-834.
    [6]Rand, R. P.; Sengupta, S. Cardiolipin forms hexagonal structures with divalent cations[J]. Biochimica et Biophysica Acta.1972,255(2):484-492.
    [7]Papahadjopoulos, D.; Miller, N. Phospholipid model membranes. I. Structural characteristics of hydrated liquid crystals [J]. Biochimica et Biophysica Acta.1967,135(4): 624-638.
    [8]Telkes, M.; D., F. Myelin structures in lipoids and their relation to electric charges[J]. The Ohio Jouranl Of Science.1933, ⅩⅩⅩⅢ(2):85-100.
    [9]Powell, G. L.; Marsh, D. Polymorphic phase behavior of cardiolipin derivatives studied by 31P NMR and X-ray diffraction[J]. Biochemistry.1985,24:2902-2908.
    [10]Allen, C. M.; Muth, J. D. Lipid activation of undercaprenyl pyrophosphate synthetase from lactobacillus plantarum[J]. Biochemistry.1977,16(13):2908-2915.
    [11]Schlame, M.; Rua, D.; Greenberg, M. L. The biosynthesis and functional role of cardiolipin[J]. Progress In Lipid Research.2000,39(3):257-288.
    [12]Nichols-Smith, S.; Kuhl, T. Electrostatic interactions between model mitochondrial membranes[J]. Colloids And Surfaces B-Biointerfaces.2005,41(2-3):121-127.
    [I3]Hagen, T. M.; Russell, T. I.; Wehr, C. M.; Lykkesfeldt, J.; Vinarsky, V. Acetyl-L-Carnitine fed to old rats partially restores mitochondrial function and ambulatory activity[J]. Proceedings of the National Academy of Sciences of the United States of America.1998,95(16):9562-9566.
    [14]Bennouna, M.; Ferreira-Marques, J.; Banerjee, S.; Caspers, J.; Ruysschaert, J. M. Interaction of chlorpromazine with phospholipid membrnaes:a monolayer and a microelectrophoresis approach[J]. Langmuir.13,13:6533-6539.
    [15]Kates, M.; Syz, J. Y.; Gosser, D.; Haines, T. H. Ph-Dissociation Characteristics Of Cardiolipin And Its 2'-Deoxy Analog[J]. Lipids.1993,28(10):877-882.
    [16]Komura, S.; Shirotori, H.; Kato, T. Phase behavior of charged lipid bilayer membranes with added electrolyte[J]. Journal Of Chemical Physics.2003,119(2):1157-1164.
    [17]Podgornik, R.; Rau, D. C.; Parsegian, V. A. The action of interhelical forces on the organization of DNA double helixes:fluctuation-enhanced decay of electrostatic double-layer and hydration forces [J]. Macromlecules.1989,22:1780-1786.
    [18]Sakurai, I.; Suzuki, T.; Sakurai, S. Cross-sectional view of myelin figures·SHORT COM MUNI CATION[J]. Biochimica et Biophysica Acta.1989,985(1):101-105.
    [19]Tsafrir, I.; Guedeau-Boudeville, M. A.; Kandel, D.; Stavans, J. Coiling instability of multilamellar membrane tubes with anchored polymers[J]. Physical Review E.2001, 6303(3).
    [20]Huang, J. R.; Zou, L. N.; Witten, T. A. Confined multilamellae prefer cylindrical morphology[J]. European Physical Journal E.2005,18(3):279-285.
    [21]Lasic, D. D. Liposomes:From physics to applications[M]. Amsterdam:Elsevier,1993.
    [22]Sakurai, I.; Kawamura, Y. Growth mechanism of myelin figures of phosphatidylcholine [J]. Biochimica et Biophysica Acta.1984,777(2):347-351.
    [23]Sakurai, I. Concentration gradient along the long axis of myelin figures of phosphatidylcholine [J]. Biochimica et Biophysica Acta.1985,815(1):149-152.
    [24]Haran, M.; Chowdhury, A.; Manohar, C.; Bellare, J. Myelin growth and coiling[J]. Colloids And Surfaces A-Physicochemical And Engineering Aspects.2002,205(1-2):21-30.
    [1]Buchanan, M.; Egelhaaf, S. U.; Cates, M. E. Dynamics of interface instabilities in nonionic lamellar phases[J]. Langmuir.2000,16(8):3718-3726.
    [2]Buchanan, M.; Arrault, J.; Cates, M. E. Swelling and dissolution of lamellar phases: Role of bilayer organization[J]. Langmuir.1998,14(26):7371-7377.
    [3]Huang, J. R.; Zou, L. N.; Witten, T. A. Confined multilamellae prefer cylindrical morphology[J]. European Physical Journal E.2005,18(3):279-285.
    [4]Zou, L. N.; Nagel, S. R. Stability and growth of single myelin figures[J]. Physical Review Letters.2006,96(13):138301.
    [5]Evans, E. A.; Parsegian, V. A. Thermal-mechanical fluctuations enhance repulsion between bimolecular layers[J]. Proceedings of the National Academy of Sciences of the United States of America.1986,83:7132-7136.
    [6]Andelman, D. Electrostatic Properties of Membranes:The Poisson-Boltzmann Theory [J]. Handbook of Biological Physics.1995,1:603-641.
    [7]Komura, S.; Shirotori, H.; Kato, T. Phase behavior of charged lipid bilayer membranes with added electrolyte[J]. Journal Of Chemical Physics.2003,119(2):1157-1164.
    [8]Loosley-Millman, M. E.; Rand, R. P.; Parsegian, V. A. Effects of monovalent ion binding and screening on measure electrostatic forces between charged phospholipid bilayers[J]. Biophysical Jounal.1982,40:221-232.
    [9]Podgornik, R.; Rau, D. C.; Parsegian, V. A. The action of interhelical forces on the organization of DNA double helixes:fluctuation-enhanced decay of electrostatic double-layer and hydration forces [J]. Macromlecules.1989,22:1780-1786.
    [10]Lis, L. J.; Mcalister, M. M.; Fuller, N.; Pand, R. P. Interactions between neutral phospholipid bilayer membranes[J]. Biophysical Jounal.1982,37:657-666.
    [11]Sakurai, I.; Suzuki, T.; Sakurai, S. Cross-sectional view of myelin figures·SHORT COMMUNICATION[J]. Biochimica et Biophysica Acta.1989,985(1):101-105.
    [12]Harden, J. L.; Marques, C.; Joanny, J. F.; Andelman, D. Membrane Curvature Elasticity In Weakly Charged Lamellar Phases[J]. Langmuir.1992,8(4):1170-1175.
    [13]Higgs, P. G.; Joanny, J. F. Enhanced membrane rigidity in charged lamellar phases[J]. Journal de Physique.1990,51 (20):2307-2320.
    [14]May, S. Curvature elasticity and thermodynamic stability of electrically charged membranes[J]. Journal Of Chemical Physics.1996,105(18):8314-8323.
    [15]Fogden, A.; Daicic, J.; Mitchell, D. J.; Ninham, B. W. Electrostatic rigidity of charged membranes in systems without added salt[J]. Physica A.1996,234(1-2):167-188.
    [16]Winterhalter, M.; Helfrich, W. Bending Elasticity Of Electrically Charged Bilayers-Coupled Monolayers, Neutral Surfaces, And Balancing Stresses[J]. Journal Of Physical Chemistry.1992,96(1):327-330.
    [17]Song, J.; Waugh, R. E. Bilayer-Membrane Bending Stiffness By Tether Formation From Mixed Pc-Ps Lipid Vesicles[J]. Journal Of Biomechanical Engineering-Transactions Of The Asme.1990,112(3):235-240.
    [18]LeNeveu, D. M.; Rand, R. P.; Parsegian, V. A. Measurement of forces between lecithin bilayers[J]. Nature.1976,259:601-603.
    [19]Cowley, A. C.; Fuller, N. L.; Rand, R. P.; Parsegian, V. A. Measurement of Repulsive Forces between Charged Phospholipid Bilayers[J]. Biochemistry.1978,17(15):3163-3168.
    [1]Sakurai, I.; Kawamura, Y. Growth mechanism of myelin figures of phosphatidylcholine [J]. Biochimica et Biophysica Acta.1984,777(2):347-351.
    [2]Sakurai, I. Concentration gradient along the long axis of myelin figures of phosphatidylcholine [J]. Biochimica et Biophysica Acta.1985,815(1):149-152.
    [3]Warren, P. B.; Buchanan, M. Kinetics of surfactant dissolution[J]. Current Opinion In Colloid & Interface Science.2001,6(3):287-293.
    [4]Buchanan, M.; Egelhaaf, S. U.; Cates, M. E. Dynamics of interface instabilities in nonionic lamellar phases[J]. Langmuir.2000,16(8):3718-3726.
    [5]Haran, M.; Chowdhury, A.; Manohar, C.; Bellare, J. Myelin growth and coiling[J]. Colloids And Surfaces A-Physicochemical And Engineering Aspects.2002,205(1-2):21-30.
    [6]Dave, H.; Surve, M.; Manohar, C.; Bellare, J. Myelin growth and initial dynamics[J]. Journal Of Colloid And Interface Science.2003,264(1):76-81.
    [7]Mishima, K. Y., K. Growth rate of myelin figures of egg-yolk phosphatidylcholine[J]. Biochimica et Biophysica Acta.1987,904:149.
    [8]Taribagil, R.; Arunagirinathan, M. A.; Manohar, C.; Bellare, J. R. Extended time range modeling of myelin growth[J]. Journal Of Colloid And Interface Science.2005,289(1): 242-248.
    [9]Zou, L. N.; Nagel, S. R. Stability and growth of single myelin figures[J]. Physical Review Letters.2006,96(13):138301.
    [10]Cowley, A. C.; Fuller, N. L.; Rand, R. P.; Parsegian, V. A. Measurement of Repulsive Forces between Charged Phospholipid Bilayers[J]. Biochemistry.1978,17(15):3163-3168.
    [1]Mishima, K.; Fukuda, K.; Suzuki, K. Double helix formation of phosphatidylcholine myelin figures[J]. Biochimica et Biophysica Acta.1992,1108(1):115-118.
    [2]Lin, K. C.; Weis, R. M.; McConnell, H. M. Induction of helical liposomes by Ca2+-mediated intermembrane binding[J]. Nature.1982,296:164-165.
    [3]Tsafrir, I.; Guedeau-Boudeville, M. A.; Kandel, D.; Stavans, J. Coiling instability of multilamellar membrane tubes with anchored polymers[J]. Physical Review E.2001, 6303(3).
    [4]Santangelo, C. D.; Pincus, P. Coiling instabilities of multilamellar tubes[J]. Physical Review E.2002,66(6).
    [5]Buchanan, M.; Egelhaaf, S. U.; Cates, M. E. Dynamics of interface instabilities in nonionic lamellar phases[J]. Langmuir.2000,16(8):3718-3726.
    [6]Haran, M.; Chowdhury, A.; Manohar, C.; Bellare, J. Myelin growth and coiling[J]. Colloids And Surfaces A-Physicochemical And Engineering Aspects.2002,205(1-2):21-30.
    [7]李莉.多组分脂质囊泡的侧向相分离与出芽[D].上海:复旦大学,2005.
    [8]Amato, I. Catching The Rhythm Of The Bacterial Twist[J]. Science.1992,255(5040): 32-33.
    [9]Potera, C. Microbiology-Physics, biology meet in self-assembling bacterial fibers[J]. Science.1997,276(5318):1499-1500.
    [10]Mendelson, N. H. Helical growth of bacillus subtilis:a new model of cell growth[J]. Proceedings of the National Academy of Sciences of the United States of America.1976, 73(5):1740-1744.
    [11]Frette, V.; Tsafrir, I.; Guedeau-Boudeville, M. A.; Jullien, L.; Kandel, D.; Stavans, J. Coiling of cylindrical membrane stacks with anchored polymers[J]. Physical Review Letters. 1999,83(12):2465-2468.
    [12]Stavans, J. Instabilities of membranes with anchored polymers[J]. Physica A-Statistical Mechanics And Its Applications.2002,306(1-4):368-375.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700