共聚物的多尺度微相结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多尺度结构是由分子聚集而成的聚集体在较大尺度上再次聚集,然后以类似的方式依次在不同的尺度上不断聚集而最终形成的结构中有结构的组装体。共聚物的多尺度微相结构是自组装研究领域的一个重要的方向。多尺度结构的自组装可以满足对多功能材料的需求,并实现仿生材料的构筑。本论文以自洽场理论为主要工具,随机相近似和耗散粒子动力学模拟等为辅助手段,研究了由共聚物自组装形成的纳米尺度上分级的多尺度微相结构。共聚物分子构型包括线性多嵌段共聚物、支化嵌段共聚物以及纳米粒子杂化共聚物等。研究内容包括“共聚物在本体中形成的多尺度微相结构”和“共聚物在稀溶液中形成的多尺度微相结构”两部分。在本体中,通过利用四阶向后差分方法求解自洽场扩散方程,成功地研究了由共聚物在强分凝条件下自组装形成的平行和垂直排列的多尺度结构,模拟结果与实验吻合,并预测了一系列新的结构;在稀溶液中,提出了多核胶束的概念并用自洽场理论证实疏-亲-疏线性三嵌段共聚物具有形成诸如超分子螺旋胶束之类的多核胶束的能力,揭示了由接枝共聚物形成的多尺度囊泡的稳定性及其多级的自组装过程,并探索了纳米粒子杂化共聚物的稀溶液自组装行为。
     1.共聚物在本体中形成的多尺度微相结构
     1) A(BC)n多嵌段共聚物形成的多尺度微相结构
     A(BC)n多嵌段共聚物可以自组装形成一系列多尺度微相结构,如层中有层等。大尺度结构通过A链段和(BC)n链段间的微相分离形成,而小尺度结构由B、C链段的自组装形成。通过改变4链段长度可以得到不同类型的多尺度结构,随着A链段长度的增加,由A链段形成的微区结构由球状变成柱状,再变成层状,最后变成基质;而由B、C链段形成的小尺度结构始终保持层状。链段间的分凝强度对多尺度结构也有影响。当A、B间的分凝强度小于A、C间的分凝强度时,A(BC)n多嵌段共聚物始终形成大、小尺度结构相互平行的多尺度结构;反之,其形成的多尺度结构较为复杂,当B、C间的分凝强度增大到-定值时,大、小尺度结构间的排列方式由平行转变为垂直。
     2)线性-梳状嵌段共聚物形成的多尺度微相结构
     除了三组分的A(BC)n多嵌段共聚物,二组分的线性-梳状嵌段共聚物同样能够自组装形成多尺度结构,如平行和垂直的层中有层等。大尺度结构通过线性链段和梳状链段间的微相分离形成,而小尺度结构由梳状链段内部的主链和侧链间的微相分离形成。改变线性链段长度,既可以改变大尺度结构的形貌,也可以改变小尺度结构的形貌。此外,改变链段间的分凝强度也会引起多尺度结构的形貌以及排列方式的改变。
     3)多侧链接枝共聚物的微相分离
     鉴于线性-梳状嵌段共聚物的接枝共聚物特性,研究了多侧链接枝共聚物的自组装行为。通过随机相近似计算,发现当接枝点的位置和数量比较大时,侧链数量对旋节线影响很小,接枝共聚物表现出线性-梳状嵌段共聚物的特性。此外,利用自洽场理论计算构筑了一系列单尺度结构的相图。随着侧链数量的增加,有序-有序相边界向主链体积分数增大的方向偏移,而且有序结构的周期减小,界面宽度增加。
     2.共聚物在稀溶液中形成的多尺度结构
     1)疏-亲-疏线性ABC三嵌段共聚物的稀溶液自组装
     在稀溶液中,具有亲溶剂的中间链段和疏溶剂的末端链段的线性ABC三嵌段共聚物能够自组装形成诸如超分子螺旋胶束之类的多尺度结构。该多尺度结构具有不同于多舱胶束的特征,因而提出了多核胶束的概念。研究发现,链段的长度和溶解度对多核胶束有很大影响。通过同实验结果比较,发现模拟结果不但能够重复实验现象,而且能够解释实验现象。
     2)接枝共聚物在主链友好型溶剂中的自组装
     除了三组分共聚物,二组分接枝共聚物在主链友好型溶剂中同样能够自组装形成多尺度微相结构,如多层囊泡和复合囊泡等。采用自洽场理论和耗散粒子动力学模拟分别研究了多尺度结构的热力学和动力学行为。自洽场理论的研究表明,由接枝共聚物形成的多尺度囊泡是热力学稳定的,其形成与链段间的分凝强度以及链段的溶解性相关;而耗散粒子动力学的模拟发现,多尺度囊泡的形成过程是分级的,它依赖于一系列中间态的形成。
     3)纳米粒子杂化共聚物的稀溶液自组装
     除了柔性共聚物,纳米粒子杂化共聚物在稀溶液中也能自组装形成多尺度结构。这一共聚物的稀溶液自组装不但涉及到柔性嵌段间的自组装,而且涉及到纳米粒子间的自组装。类似于柔性共聚物的稀溶液自组装,由纳米粒子杂化共聚物形成的多尺度结构依赖于聚合物链段的长度以及聚合物链段与纳米粒子的相容性。
     本论文有助于拓宽人们对于自组装的认识,有助于理解多尺度结构的形成机理;为实验科学提供必要的理论支持,并指导和促进多尺度结构的进一步设计和制备;此外,希望本论文有助于多尺度结构的拓展和应用,比如光电装置、多功能响应性材料以及多尺度复合材料的制备等,并方便科研工作者找到合适的材料样本。
Hierarchical structures are assemblies of molecules or their aggregates that are intertwined with other phases, which in turn are similarly organized at increasing length levels. Study of hierarchical structures is central to the field of self-assembly. The self-assembly of hierarchical structures can provide excellent candidates of materials designed for multifunctional applications and bring us one-step closer to achieve natural assembly. In this dissertation, we directed towards the study of the structures with hierarchy at nanoscale, i.e., hierarchical microstructure, by using self-consistent field theory and other theoretical methods. The dissertation was organized into two main sections, including hierarchical microstructure in bulk and hierarchical microstructure in dilute solution. In bulk, by solving diffusion equations with fourth-order backward differentiation formula, we successfully discovered a series of microstructures that existed at higher interaction strength. The calculations can not only reproduce the experimental results, but also predict various new hierarchical microstructures. In selective solvents, we proposed a concept of multcore micelles and further confirmed that the linear terpolymers are capable of forming multicore micelles. Furthermore, we discovered a variety of hierarchcal vesicles with hierarchical self-assembly process in graft copolymer solutions, and various hybrid aggregates in the solution of nanoparticle tethered block copolymers.
     1. Hierarchical Microstructures Self-Assembled from Copolymers in Bulk
     1) Hierarchical Microstructures Self-Assembled from A(BC)n Multiblock Copolymer
     A(BC)n multiblock copolymer are capable of self-assembling into various hierarchical microstructures such as lamellae-in-lamella. In the hierarchical microstructures, the large-length-scale structures were formed by the separation between A blocks and (BC)n blocks, while the small-length-scale structures were obtained by the separation between B and C blocks. The hierarchical microstructures can be tuned by changing the A block length. As A block length increases, the A domain can be changed from sphere to cylinder, then to lamella, and finally to matrix, while the small-length-scale structures still remain lamella. In addition, the interaction strength between each blocks have an influence on the hierarchical structures. When the interaction strength between A and B blocks is smaller than that between A and C blocks, the small structures and the large structures in hierarchical microstructures are packed in parallel; in reverse, the hierarchical structure become more complex, where the small structure are arranged perpendicular to the large structures as the interaction strength between B and C blocks is significantly high.
     2) Hierarchical Microstructures Self-Assembled from Coil-Comb Block Copolymers
     In addition to ternary copolymers, binary coil-comb block copolymers are able to self-assemble into hierarchical microstructures including parallel and perpendicular lamellae-in-lamella. The large-length-scale structures are formed by the sparation between coil blocks and comb blocks, whereas the small-length-scale structures are obtained by the self-assembly within the comb blocks. The variation of the coil block length can not only change the large-length-scale structure, but also the small-length-scale structures. Furthermore, the change of interaction strength can lead to a change of the hierarchical microstructures.
     3) Microphase Saparation in Multigraft Copolymer Melts
     Because of the nature of coil-comb block copolymer, the phase behavior of multigraft copolymers was also investigated. The study of random phase approximation reveals that the spinodals are independent of the junction number and junction position as the junction number and junction position are large enough. In this sense, the graft copolymers perform as the coil-comb block copolymers. Using the self-consistent field theory, phase diagrams of the conventional structures were also mapped out.
     2. Hierarchical Microstructrues Self-assembled from Copolymers in Dilute Solution
     1) Self-Assembly of Linear ABC Terpolymers in B-Selective Solvents
     In selective solvents, linear ABC terpolymer combining a solvophilic midblock and two mutually imcompatible solvophobic endblocks are capable of self-assembling into hierarchical microstructures like superhelix. The characteristic of these hierarchical microstructures is different from the multicompartment micelles, and therefore a concept of multicore micelles was proposed. The length and solubility of the blocks shows a pronounced effect on the morphology of multicore micelles. The theoretical calculations not only reproduced the experimental results, but also provided a deep insight into the experimental phenomena.
     2) Self-Assembly of Graft Copolymers in Backbone-Selective Solvents
     In addition to ternary copolymers, binary graft copolymer can also self-assemble into hierarchical microstructures in a backbone-selective solvent. The example of hierarchical microstructures includes multilamellar vesicles and large-compound vesicles. The self-consistent field calculations revealed that the hierarchical vesicles are thermodymic stable. The formation of hierarchical vesicles depends on the solubility of blocks as well as the interaction strength between backbone and graft arms. The dissipative particle dynamics simulations demonstrated that the self-assembly process of the hierarchical vesicle is hierarchical, depending on the formation of multiple intermediate structures.
     3) Self-Assembly of Nanoparticle Tethered Block Copolymers in Dilute Solution
     In addition to flexible copolymers, nanoparticle tethered block copolymers are capable of self-assembling into hierarchical microstructures in selective solvents. The self-assembly of nanoparticle tethered block copolymers involve not only the microphase separation between different blocks, but also the close packing of nanoparticles. Similar to flexible copolymers, the self-assembled microstructures are dependent of the block lengths as well as the incompatibility between polymeric blocks and nanoparticles.
     The study is helpful for expanding the morphological window of copolymers and understanding the self-assembly mechanism of hierarchical microstructures. The results provided a theoretical support for the experiments and further guide the future experiments. The work is anticipated to facilitate the application of hierarchical materials, such as the design of photovoltaic devices, the development of materials with enhanced mechanical response, and the production of hierarchical organic/inorganic hybrid nanocomposites.
引文
[1]Committee on Synthetic Hierarchical Structures et al. Hierarchical Structures in Biology as a Guide for New Materials Technology [M]. Washington D. C.:National Academy Press,1994.
    [2]Lakes R. Material with Structural Hierarchy [J]. Science 1993,361:511-515.
    [3]Kastelic J., Galeski A., and Baer E. The Multicomposite Structure of Tendon [J]. Connective Tissue Research.1978,6:11-23.
    [4]Sanchez C., Arribart H., Madeleine, M., Guille, G. Biomimetism and Bioinspiration as Tools for the Design of Innovative Materials and Systems [J]. Nat. Mater.2005,4: 277-288.
    [5]Matyjaszewski K., Xia J. Atom Transfer Radical Polymerization [J]. Chem. Rev.2001, 101:2921-2990.
    [6]Hadjichristidis N., Pitsikalis M., Pispas S., Iatrou H. Polymers with Complex Architecture by Living Anionic Polymerization [J]. Chem. Rev.2001,101:3747-3792.
    [7]Sanchez C., Boissiere C., Grosso D., Laberty C., Nicole L. Design, Synthesis, and Properties of Inorganic and Hybrid Thin Films Having Periodically Organized Nanoporosity [J]. Chem. Mater.2008,20:682-737.
    [8]Service R. F. How Far Can We Push Chemical Self-Assembly [J]. Science 2005,309:95.
    [9]Hamley I. W. Nanotechnology with Soft Materials [J]. Angew. Chem. Int. Ed.2003,42: 1692-1712.
    [10]Hamley I. W. The Physics of Block Copolymers [M]. Oxford:Oxford University Press, 1998.
    [11]Rembaum A. A., Ells F. R., Morrow R. C., Tobolsky A. V. Some Results of Cesium-Initiated Diene Polymerization and Copolymerization [J]. J. Polym. Sci.1962,61: 155-165.
    [12]Matsuo M., Ueno T., Horino H., Chujyo S., Asai H. Fine Structures and Physical Properties of Styrene-Butadiene Block Copolymers [J]. Polymer 1968,9:425-436.
    [13]Kato K. Osmium Tetroxide Fixation of Rubber Lattices [J]. J. Polym. Sci., Part B:Polym. Lett.1966,4:35-38.
    [14]Inoue T., Soen T., Kawai H., Fukatsu M., Kurata M. Electron Microscopic Texture of A-B Type Block Copolymers of Isoprene with Styrene [J]. J. Polym. Sci., Part B:Polym. Lett. 1968,6:75-81.
    [15]Matsuo M., Sagae S., Asai H. Fine structures of styrene-butadiene block copolymer films cast from toluene solution [J]. Polymer 1969,10:79-87.
    [16]Helfland E. Block Copolymer Theory. Ⅲ. Statistical Mechanics of the Microdomain Structure [J]. Macromolecules 1975,8:552-556.
    [17]Leibler L. Theory of Microphase Separation in Block Copolymers [J]. Macromolecules 1980,13:1602-1617.
    [18]Ohta T., Kawasaki K. Equilibrium Morphology of Block Copolymer Melts [J]. Macromolecules 1986,19:2621-2632.
    [19]Matsushita Y., Choshi H., Fujimoto T., Nagasawa M. Preparation and Morphological Properties of a Triblock Copolymer of the ABC Type [J]. Macromolecules 1980,13: 1053-1058.
    [20]Hashimoto T., Shibayama M., Kawai H. Domain-Boundary Structure of Styrene-Isoprene Block Copolymer Films Cast from Solution.4. Molecular-Weight Dependence of Lamellar Microdomains [J]. Macromolecules 1980,13:1237-1247.
    [21]Fredrickson G. H. Steady Shear Alignment of Block Copolymers Near the Isotropic-Lamellar Transition [J]. J. Rheol.1994,38:1045.
    [22]Bates F. S., Rosedale J. H., Fredrickson G. H. Fluctuation Effects in a Symmetric Diblock Copolymer Near the Order-Disorder Transition [J]. J. Chem. Phys.1990,92:6255-6270.
    [23]Hadziioannou G, Picot C., Skoulios A., Ionescu M.-L., Mathis A., Duplessix R., Gallot Y., Lingelser J.-P. Low-Angle Neutron Scattering Study of the Lateral Extension of Chains in Lamellar Styrene/Isoprene Block Copolymers [J]. Macromolecules 1982,15:263-267.
    [24]Matsushita Y., Mori K., Mogi Y., Saguchi R., Noda I., Nagasawa M., Chang T., Glinka C. J., Han C. C. Chain Conformation of a Block Polymer in a Microphase-Separated Structure [J]. Macromolecules 1990,23:4317-4321.
    [25]Hasegawa H., Tanaka H., Yamasaki K., Hashimoto T. Bicontinuous Microdomain Morphology of Block Copolymers.1. Tetrapod-Network Structure of Polystyrene-Polyisoprene Diblock Polymerst [J]. Macromolecules 1987,20:1651-1662.
    [26]Hadjichristidis N., Pispas S., Floudas G Block Copolymers:Synthetic Strategies, Physical Properties, and Applications [M]. Chichester:John Wiley & Sons,2003.
    [27]Odian, G. Principles of Polymerization [M]. Hoboken:John Wiley & Sons, Ltd,2004.
    [28]Suzuki J., Seki M., Matsushita Y. The Tricontinuous Double-Gyroid Structure from a Three-Component Polymer System [M]. J. Chem. Phys.2000,112:4862-4868.
    [29]Hamley I. W. Block Copolymers in Solution:Fundamentals and Application [M].New York:John Wiley & Sons,2005.
    [30]江明,艾森伯格,刘国军,张希.大分子自组装[M].北京:科学出版社,2006.
    [31]Zhang L., Eisenberg A. Multiple Morphologies of "Crew-Cut" Aggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers [J]. Science 1995,268:1728-1731.
    [32]Discher D. E., Eisenberg A. Polymer Vesicles [J]. Science 2002,297:967-973.
    [33]Zhang L., Eisenberg A. Multiple Morphologies and Characteristics of "Crew-Cut" Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in Aqueous Solutions [J]. J. Am. Chem. Soc. 1996,118:3168-3181.
    [34]Yu Y., Eisenberg A. Control of Morphology through Polymer-Solvent Interactions in Crew-Cut Aggregates of Amphiphilic Block Copolymers [J]. J. Am. Chem. Soc.1997, 119:8383-8384.
    [35]Shen H.; Zhang L.; Eisenberg A. Multiple pH-Induced Morphological Changes in Aggregates of Polystyrene-block-poly(4-vinylpyridine) in DMF/H2O Mixtures [J]. J. Am. Chem. Soc.1999,121:2728-2740.
    [36]Luo L., Eisenberg A. Thermodynamic Stabilization Mechanism of Block Copolymer Vesicles [J]. J. Am. Chem. Soc.2001,123:1012-1013.
    [37]Liu F., Eisenberg A. Preparation and pH Triggered Inversion of Vesicles from Poly(acrylic Acid)-block-Polystyrene-block-Poly(4-vinyl Pyridine) [J]. J. Am. Chem. Soc.2003,125: 15059-15064.
    [38]Luo L., Eisenberg A. Thermodynamic Size Control of Block Copolymer Vesicles in Solution [J]. Langmuir 2001,17:6804-6811.
    [39]Discher B. M., Won Y.-Y., Ege D. S., Lee J. C-M., Bates F. S., Discher D. E., Hammer D. A. Polymersomes Tough Vesicles Made from Diblock Copolymers [J]. Science 1999,284: 1143-1146.
    [40]Saito N., Liu C., Lodge T. P., Hillmyer M. A. Multicompartment Micelles from Polyester-Containing ABC Miktoarm Star Terpolymers [J]. Macromolecules 2008,41: 8815-8822.
    [41]Li Z., Hillmyer M. A. Lodge T. P. Morphologies of Multicompartment Micelles Formed by ABC Miktoarm Star Terpolymers [J]. Langmuir 2006,22:9409-9417.
    [42]Li Z., Hillmyer M. A. Lodge T. P. Laterally Nanostructured Vesicles, Polygonal Bilayer Sheets, and Segmented Wormlike Micelles [J]. Nano Lett.2006,6:1245-1249.
    [43]Li Z., Kesselman E., Talmon Y., Hillmyer M. A., Lodge T. P. Multicompartment Micelles from ABC Miktoarm Stars in Water [J]. Science 2004,306:98-101.
    [44]Jain S., Bates F. S. On the Origins of Morphological Complexity in Block Copolymer Surfactants [J]. Science 2003,300:460-464.
    [45]Mogi Y., Mori K., Matsushita Y., Noda I. Tricontinuous Morphology of Triblock Copolymers of the ABC Type [J]. Macromolecules 1992,25:5412-5415.
    [46]Mogi Y., Nomura M., Kotsuji H., Ohnishi K., Matsushita Y., Noda I. Superlattice Structures in Morphologies of the ABC Triblock Copolymers [J]. Macromolecules 1994, 27:6755-6760.
    [47]Takano A., Wada S., Sato S., Araki T., Hirahara K., Kazama T., Kawahara S., Isono Y., Ohno A., Tanaka N., Matsushita Y. Observation of Cylinder-Based Microphase-Separated Structures from ABC Star-Shaped Terpolymers Investigated by Electron Computerized Tomography [J]. Macromolecules 2004,37:9941-9946.
    [48]Mogi Y., Kotsuji H., Kaneko Y., Mori K., Matsushita Y., Noda I. Preparation and Morphology of Triblock Copolymers of the ABC Type [J]. Macromolecules 1992,25: 5408-5411.
    [49]Takano A., Kawashima W., Noro A., Isono Y., Tanaka N., Dotera T., Matsushita Y. A Mesoscopic Archimedean Tiling Having a New Complexity in an ABC Star Polymer [J]. J. Polym. Sci., Part B:Polym. Phys.2005,43:2427-2432.
    [50]Hayashida K., Kawashima W., Takano A., Shinohara Y., Amemiya Y., Nozue Y., Matsushita Y. Archimedean Tiling Patterns of ABC Star-Shaped Terpolymers Studied by Microbeam Small-Angle X-ray Scattering [J]. Macromolecules 2006,39:4869-4872.
    [51]Hayashida K., Takano A., Arai S., Shinohara Y., Amemiya Y., Matsushita Y. Systematic Transitions of Tiling Patterns Formed by ABC Star-Shaped Terpolymers [J]. Macromolecules 2006,39:9402-9408.
    [52]Hayashida K., Saito N., Arai S., Takano A., Tanaka N., Matsushita Y. Hierarchical Morphologies Formed by ABC Star-Shaped Terpolymers [J]. Macromolecules 2007,40: 3695-3699.
    [53]Yamauchi K., Akasaka S., Hasegawa H., Iatrou H., Hadjichristidis N. Blends of a 3-Miktoarm Star Terpolymer (3μ-ISD) of Isoprene (Ⅰ), Styrene (S), and Dimethylsiloxane (D) with PS and PDMS. Effect on Microdomain Morphology and Grain Size [J]. Macromolecules 2005,38:8022-8027.
    [54]Sioula S., Tselikas Y., Hadjichristidis N. Synthesis of Model 3-Miktoarm Star Terpolymers of Styrene, Isoprene, and Methyl Methacrylate [J]. Macromolecules 1997,30:1518-1520.
    [55]Masuda J., Takano A., Suzuki J., Nagata Y., Noro A., Hayashida K., Matsushita Y. Composition-Dependent Morphological Transition of Hierarchically-Ordered Structures Formed by Multiblock Terpolymers [J]. Macromolecules 2007,40:4023-4027.
    [56]Nagata Y., Masuda J., Noro A., Cho D., Takano A., Matsushita Y. Preparation and Characterization of a Styrene-Isoprene Undecablock Copolymer and Its Hierarchical Microdomain Structure in Bulk [J]. Macromolecules 2005,38:10220-10225.
    [57]Matsushita Y. Precise Molecular Design of Complex Polymers and Morphology Control of Their Hierarchical Multiphase Structures [J]. Polym. J.2008,40:177-183.
    [58]Masuda J., Takano A., Nagata Y., Noro A., Matsushita Y. Nanophase-Separated Synchronizing Structure with Parallel Double Periodicity from an Undecablock Terpolymer [J]. Phys. Rev. Lett.2006,97:098301.
    [59]Matsushita Y Creation of Hierarchically Ordered Nanophase Structures in Block Polymers Having Various Competing Interactions [J]. Macromolecules 2007,40: 771-776.
    [60]Fleury G., Bates F. S. Perpendicular Lamellae in Parallel Lamellae in a Hierarchical CECEC-P Hexablock Terpolymer [J]. Macromolecules 2009,42:1691-1694.
    [61]Fleury G., Bates F. S. Structure and Properties of Hexa-and Undecablock Terpolymers with Hierarchical molecular architecture [J]. Macromolecules 2009,42:3598-3610.
    [62]Ikkala O., ten Brinke G. Hierarchical Self-Assembly in Polymeric Complexes:Towards Functional Materials [J]. Chem. Commun.2004,2131-2137.
    [63]van Zoelen W., van Ekenstein G. A., Ikkala O., ten Brinke G. Incorporation of PPE in Lamellar Self-Assembled PS-b-P4VP(PDP) Supramolecules and PS-b-P4VP Diblock Copolymers [J]. Macromolecules 2006,39:6574-6579.
    [64]Nandan B., Lee C.-H., Chen H.-L., Chen W.-C. Molecular Architecture Effect on Microphase Separation in Supramolecular Comb-Coil Complexes of Polystyrene-block-poly(2-vinylpyridine) with Dodecylbenzenesulfonic Acid:AnBn Heteroarm Star Copolymer [J]. Macromolecules 2006,39:4460-4468.
    [65]ten Brinke G., Ikkala O. Smart Material Based on Self-Assembled Hydrogen-Bonded Comb-Shaped Supramolecules [J]. The Chemical Record 2004,4:219-230.
    [66]Chen H.-L., Lu J.-S., Yu C.-H., Yeh C.-L., Jeng U-S., Chen W.-C. Tetragonally Packed Cylinder Structure via Hierarchical Assembly of Comb-Coil Copolymers [J]. Macromolecules 2007,40:3271-3276.
    [67]Ruokolainen J., Makinen R., Torkkeli M., Makela T., Serimaa R., ten Brinke G., Ikkala O. Switching Supramolecular Polymeric Materials with Multiple Length Scales [J]. Science 1998,280:557-560.
    [68]Chiang W.-S., Lin C.-H., Yeh C.-L., Nandan B., Hsu P.-N., Lin C.-W., Chen H.-L., Chen W.-C. Tetragonally Packed Cylinder Structures of Comb-Coil Block Copolymer Bearing Heteroarm Star Architecture [J]. Macromolecules 2009,42:2304-2308.
    [69]Valkama S., Ruotsalainen T., Nykanen A., Laiho A., Kosonen H., ten Brinke G., Ikkala O., Ruokolainen J. Self-Assembled Structures in Diblock Copolymers with Hydrogen-Bonded Amphiphilic Plasticizing Compounds [J]. Macromolecules 2006,39: 9327-9336.
    [70]Asari T., Matsuo S., Takano A., Matsushita Y. Three-Phase Hierarchical Structures from AB/CD Diblock Copolymer Blends with Complemental Hydrogen Bonding Interaction [J]. Macromolecules 2005,38:8811-8815.
    [71]Dobrosielska K., Takano A., Matsushita Y. Creation of Hierarchical Nanophase-Separated Structures via Supramacromolecular Self-Assembly from Two Asymmetric Block Copolymers with Short Interacting Sequences Giving Hydrogen Bonding Interaction [J]. Macromolecules 2010,43:1101-1107.
    [72]Asari T., Arai S., Takano A., Matsushita Y. Archimedean Tiling Structures from ABA/CD Block Copolymer Blends Having Intermolecular Association with Hydrogen Bonding [J]. Macromolecules 2006,39:2232-2237.
    [73]Lutz J.-F., Laschewsky, A. Multicompartment Micelles Has the Long-Standing Dream Become a Reality [J]. Macromol. Chem. Phys.2005,206:813-817.
    [74]Laschewsky, A. Polymerized Micelles with Compartments [J]. Curr. Opin. Colloid Interface Sci.2003,8:274-281.
    [75]Kubowicz S., Baussard J.-F., Lutz J.-F., Thunemann A. F., von Berlepsch H., Laschewsky A. Multicompartment Micelles Formed by Self-Assembly of Linear ABC Triblock Copolymers in Aqueous Medium [J]. Angew. Chem. Int. Ed.2005,44:5262-5265.
    [76]Skrabania K., Laschewsky A., von Berlepsch H., Bottcher C. Synthesis and Micellar Self-Assembly of Ternary Hydrophilic-Lipophilic-Fluorophilic Block Copolymers with a Linear PEO Chain [J]. Langmuir 2009,25:7594-7601.
    [77]Skrabania K., von Berlepsch H., Bottcher C., Laschewsky A. Synthesis of Ternary, Hydrophilic-Lipophilic-Fluorophilic Block Copolymers by Consecutive RAFT Polymerizations and Their Self-Assembly into Multicompartment Micelles [J]. Macromolecules 2010,43:271-281.
    [78]Fang B., Walther A., Wolf A., Xu Y., Yuan J., Miiller A. H. E. Undulated Multicompartment Cylinders by the Controlled and Directed Stacking of Polymer Micelles with a Compartmentalized Corona [J]. Angew. Chem. Int. Ed.2009,48: 2877-2880.
    [79]Walther A., Barner-Kowollik C., Miiller A. H. E. Mixed, Multicompartment, or Janus Micelles? A Systematic Study of Thermoresponsive Bis-Hydrophilic Block Terpolymers [J]. Langmuir 2010,26:12237-12246.
    [80]Schacher S., Walther A., Miiller A. H. E. Dynamic Multicompartment-Core Micelles in Aqueous Media [J]. Langmuir 2009,25:10962-10969.
    [81]von Berlepsch H., Bottcher C., Skrabania K., Laschewsky A. Complex Domain Architecture of Multicompartment Micelles from A Linear ABC Triblock Copolymer Revealed by Cryo-TEM [J]. Chem. Commun.2009,2290-2292.
    [82]Hadjichristidis N., Iatrou H., Pitsikalis M., Pispas S., Avgeropoulos A. Linear and Non-Linear Triblock Terpolymers. Synthesis, Self-Assembly in Selective Solvents and in Bulk [J]. Prog. Polym. Sci.2005,30:725-782.
    [83]Shen H., Eisenberg A. Control of Architecture of Block-Copolymer Vesicles [J]. Angew. Int. Chem. Ed.2000,39:3310-3312.
    [84]Zhang L., Bartels C., Yu Y., Shen H., Eisenberg A. Mesosized Crystal-like Structure of Hexagonally Packed Hollow Hoops by Solution Self-Assembly of Diblock Copolymers [J]. Phys. Rev. Lett.1997,79:5034-5037.
    [85]Cui H., Chen Z., Zhong S., Wooley K. L., Pochan D. J. Block Copolymer Assembly via Kinetic Control [J]. Science 2007,317:647-650.
    [86]Zhong S., Cui H., Chen Z., Wooley K. L., Pochan D. J. Helix Self-Assembly Through the Coiling of Cylindrical Micelle [J]. Soft Matter 2008,4:90-93.
    [87]Mai Y., Zhou Y., Yan D. Real-Time Hierarchical Self-Assembly of Large Compound Vesicles from an Amphiphilic Hyperbranched Multiarm Copolymer. Small 2007,3: 1170-1173.
    [88]Wang J., Jiang M. Polymeric Self-Assembly into Micelles and Hollow Spheres with Multiscale Cavities Driven by Inclusion Complexation [J]. J. Am. Chem. Soc.2006,128: 3703-3708.
    [89]Zhu J., Hayward R. C. Wormlike Micelles with Microphase-Separated Cores from Blends of Amphiphilic AB and Hydrophobic BC Diblock Copolymers [J]. Macromolecules 2008, 41:7794-7797.
    [90]Cai C., Lin J., Chen T., Wang X.-S., Lin S. Super-helices Self-Assembled from a Binary System of Amphiphilic Polypeptide Block Copolymers and Polypeptide Homopolymers [J]. Chem. Commun.2009,2709-2711.
    [91]de Gennes P. G. Scaling Concepts in Polymer Physics [M]. Ithaca:Cornell University Press,1979.
    [92]吴大诚.高分子的标度和蛇形理论[M].四川:四川教育出版社,1989.
    [93]Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics [M]. Oxford:Oxford University Press,1986.
    [94]Helfand E.; Tagami Y. Theory of the Interface between Immiscible Polymers [J]. J. Polym. Sci. B 1971,9:741-746.
    [95]Helfand E.; Tagami Y. Theory of the Interface between Immiscible Polymers II [J]. J. Chem. Phys.1972,56:3592-3601.
    [96]Helfand E. Theory of Inhomogeneous Polymers:Fundamentals of the Gaussian Random Walk Model [J]. J. Chem. Phys.1975,62:999-1005.
    [97]Helfand E.; Wasserman Z. R. Block Copolymer Theory 4:Narrow Interphase Approximation [J]. Macromolecules 1976,9:879-888.
    [98]Helfand E.; Wasserman Z. R. Block Copolymer Theory 5:Spherical Domains [J]. Macromolecules 1978,11:960-966.
    [99]Semenov A. N. Contribution to the Theory of Microphase Layering in Block Copolymer Melts [J]. Sov. Phys. JETP 1985,61:733-742.
    [100]Fredrickosn G. H. The Equilibrium Theory of Inhomogeneous Polymers [M]. Oxford: Oxford University Press,2006.
    [101]Matsen M. W., Schick M. Stable and Unstable Phase of a Diblock Copolymer Melt [J]. Phys. Rev. Lett.1994,72:2660-2663.
    [102]Matsen M. W., Schick M. Stable and Unstable Phases of a Linear Multiblock Copolymer [J]. Macromolecules 1994,27:7157-7163.
    [103]Matsen M. W. Self-Consistent Field Theory and Its Application, In Soft Matter, Volume 1: Polymer Melts and Mixtures [M]. Edited by Gompper G., Schick M. Weinheim: Wiley-VCH,2006.
    [104]Guo Z., Zhang G., Qiu F., Zhang H., Yang Y. Discovering Ordered Phases of Block Copolymers:New Results from a Generic Fourier-Space Approach [J]. Phys. Rev. Lett. 2008,101:028301.
    [105]Drolet F.; Fredrickson G. H. Combinatorial Screening of Complex Block Copolymer Assembly with Self-Consistent Field Theory [J]. Phys. Rev. Lett.1999,83:4317-4320.
    [106]Bohbot-Raviv Y., Wang Z.-G. Discovering New Ordered Phases of Block Copolymers. Phys. Rev. Lett.2000,85:3428-3431.
    [107]Fredrickson G. H.; Ganesan V.; Drolet F. Field-Theoretic Computer Simulation Methods for Polymers and Complex Fluids [J]. Macromolecules 2002,35:16-39.
    [108]Ganesan V., Fredrickson G. H. Field-Theoretic Polymer Simulations. Europhys. Lett. 2001,55:814-820.
    [109]Matsen M. W. The Standard Gaussian Model for Block Copolymer Melts [J]. J. Phys.: Condens. Matter 2002,14:R21-R47.
    [110]Matsen M. W., Bates F. S. Origins of Complex Self-Assembly in Block Copolymers [J]. Macromolecules 1996,29:7641-7644.
    [111]Matsen M. W.; Bates F. S. Block Copolymer Microstructures in the Intermediate-Segregation Regime [J]. J. Chem. Phys.1997,106:2436-2448.
    [112]Matsen M. W. Thin Films of Block Copolymer [J]. J. Chem. Phys.1997,106:7781-7791.
    [113]Matsen M. W., Bates F. S. Unifying Weak-and Strong-Segregation Block Copolymer Theories [J]. Macromolecules 1996,29:1091-1098.
    [114]Matsen M. W. Stabilizing New Morphologies by Blending Homopolymer with Block Copolymer [J]. Phys. Rev. Lett.1995,74:4225-4228.
    [115]Rasmussen K.O.; Kalosakas G. Improved Numerical Algorithm for Exploring Block Copolymer Mesophases [J]. J. Polym. Sci.:Part B:Polym. Phys.2002,40:1777-1783.
    [116]Frigo M., Johnson S. G. The Fast Fourier Transform in the West 2.1.3. MIT:Cambridge, MA,2000. http://www.fftw.org.
    [117]Cochran E. W., Garcia-Cervera C. J., Fredrickson G. H. Stability of the Gyroid Phase in Diblock Copolymers at Strong Segregation [J]. Macromolecules 2006,39:2449-2451.
    [118]Bosse A. W., Sides S. W., Katsov K., Garcia-Cervera C. J., Fredrickson G. H. Defects and Their Removal in Block Copolymer Thin Film Simulations [J]. J. Polym. Sci.:Part B: Polym. Phys.2006,44:2495-2511.
    [119]Xia J., Sun M., Qiu F., Zhang H., Yang Y. Microphase Ordering Mechanisms in Linear ABC Triblock Copolymers. A Dynamic Density Functional Study [J]. Macromolecules 2005,38:9324-9332.
    [120]Sun M., Wang P., Qiu F., Tang P., Zhang H., Yang, Y. Morphology and Phase Diagram of ABC Linear Triblock Copolymers:Parallel Real-Space Self-Consistent-Field-Theory Simulation [J]. Phys. Rev. E 2008,77:016701.
    [121]Tang P., Qiu F., Zhang H., Yang Y. Morphology and Phase Diagram of Complex Block Copolymers:ABC Linear Triblock Copolymers [J]. Phys. Rev. E 2004,69:031803.
    [122]Tyler C. A., Qin J., Bates F. S., Morse D. C. SCFT Study of Nonfrustrated ABC Triblock Copolymer Melts [J]. Macromolecules 2007,40:4654-4668.
    [123]Nap R., Sushko N., Erukhimovich I., ten Brinke G. Double Periodic Lamellar-in-Lamellar Structure in Multiblock Copolymer Melts with Competing Length Scales [J]. Macromolecules 2006,39:6765-6770.
    [124]Li W., Shi A.-C. Theory of Hierarchical Lamellar Structures from A(BC)nBA Multiblock Copolymers [J]. Macromolecules 2009,42:811-819.
    [125]Xu Y., Li W., Qiu F., Yang Y., Shi A.-C. Stability of Perpendicular and Parallel Lamellae within Lamellae of Multiblock Terpolymer. J. Phys. Chem. B 2010,10.1021/jp1068335.
    [126]Tang C., Lennon E. M., Fredrickson G. H., Kramer E. J., Hawker C. J. Evolution of Block Copolymer Lithography to Highly Ordered Square Arrays [J]. Science 2008,322: 429-432.
    [127]Ma Z., Yu H., Jiang W. Bump-Surface Multicompartment Micelles from a Linear ABC Triblock Copolymer:A Combination Study by Experiment and Computer Simulation [J]. J. Phys. Chem. B 2009,113:3333-3338.
    [128]Wang R., Tang P., Qiu F., Yang Y. Aggregate Morphologies of Amphiphilic ABC Triblock Copolymer in Dilute Solution Using Self-Consistent Field Theory [J]. J. Phys. Chem. B 2005,109:17120-17127.
    [129]Ma J. W., Li X., Tang P., Yang Y. Self-Assembly of Amphiphilic ABC Star Triblock Copolymers and Their Blends with AB Diblock Copolymers in Solution:Self-Consistent Field Theory Simulations [J]. J. Phys. Chem. B 2007,111:1552-1558.
    [130]Fraaije J. G. E. M., Sevink G. J. A. Model for Pattern Formation in Polymer Surfactant Nanodroplets [J]. Macromolecules 2003,36:7891-7893.
    [131]He X., Schmid F. Using Prenucleation to Control Complex Copolymeric Vesicle Formation in Solution [J]. Macromolecules 2006,39:8908-8910.
    [132]Hoogerbrugge P. J., Koelman J. M. V. A. Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics [J]. Europhys. Lett.1992,19:155-160.
    [133]Flekkφy E. G., Coveney P. V. From Molecular Dynamics to Dissipative Particle Dynamics [J]. Phys. Rev. Lett.1999,83:1775-1778.
    [134]Yamamoto S., Hyodo S.-a. Budding and Fission Dynamics of Two-Component Vesicles [J]. J. Chem. Phys.2003,118:7937-7943.
    [135]Yamamoto S., Maruyama, Y., Hyodo S.-a. Dissipative Particle Dynamics Study of Spontaneous Vesicle Formation of Amphiphilic Molecules [J]. J. Chem. Phys.2002,116: 5842-5849.
    [136]陈正隆,徐为人,汤立达.分子模拟的理论与实践[M].北京:化学工业出版社.2007,240-255.
    [137]Groot R. D., Warren P. B. Particle Dynamics:Bridging the Gap Between Atomistic and Mesoscopic Simulation [J]. J. Chem. Phys.1997,107:4423-4435.
    [138]Groot R. D., Madden T. J. Dynamic Simulation of Diblock Copolymer Microphase Separation [J]. J. Chem. Phys.1998,108:8713-8724.
    [139]Allen M. P., Tildesley D. J. Computer Simulation of Liquids [M]. Oxford:Clarendon Press,1987.
    [140]Klymko T., Markov V, Subbotin A., ten Brinke G. Lamellar-in-Lamellar Self-Assembled C-b-(B-b-A)m-b-B-b-C Multiblock Copolymers:Alexander-de Gennes Approach and Dissipative Particle Dynamics Simulations [J]. Soft Matter 2009,5:98-103.
    [141]Huang C.-I. Self-Assembling Behavior of Block Copolymers Involving Competing Length Scales [J]. React. Funct. Polym.2009,69:530-538.
    [142]Huang C.-I., Fang H.-K., Lin C.-H. Morphological Transition Behavior of ABC Star Copolymers by Varying the Interaction Parameters [J]. Phys. Rev. E 2008,77:031804.
    [143]Chou S.-H., Tsao H.-K., Sheng Y.-J. Morphologies of Multicompartment Micelles Formed by Triblock Copolymers [J]. J. Chem. Phys.2006,125:194903.
    [144]Zhong C., Liu D. Understanding Multicompartment Micelles Using Dissipative Particle Dynamic Simulation [J]. Macromol. Theory Simul.2007,16:141-157.
    [145]Xin J., Liu D., Zhong C. Multicompartment Micelles from Star and Linear Triblock Copolymer Blends [J]. J. Phys. Chem. B 2007,111:13675-13682.
    [146]Subbotin A., Klymko T., ten Brinke G. Lamellar-in-Lamellar Structure of A-b-(B-b-C)m-b-B-b-A Multiblock Copolymers [J]. Macromolecules 2007,40: 2915-2918.
    [147]Klymko T., Subbotin A., ten Brinke G. Lamellar-in-Lamellar Structure of Binary Linear Multiblock Copolymer [J]. J. Chem. Phys.2008,129:114902.
    [148]Subbotin A., Markov V, ten Brinke G. Parallel versus Perpendicular Lamellar-within-Lamellar Self-Assembly of A-b-(B-b-A)n-b-C Ternary Multiblock Copolymer Melts [J]. J. Phys. Chem. B 2010,114:5250-5256.
    [149]Kriksin Y. A., Erukhimovich I. Y., Khalatur P. G., Smirnova Y. G.,ten Brinke G Nonconventional Morphologies in Two-Length Scale Block Copolymer Systems Beyond the Weak Segregation Theory [J]. J. Chem. Phys.2008,128:244903.
    [150]Nap R. J., ten Brinke G. Ordering at Two Length Scales in Comb-Coil Diblock Copolymers Consisting of Only Two Different Monomers [J]. Macromolecules 2002,35: 952-959.
    [151]Eyert V. A. Comparative Study on Methods for Convergence Acceleration of Iterative Vector Sequences [J]. J. Comput. Phys.1996,124:271-285.
    [152]Thompson R. B.; Rasmussen, K.φ.; Lookman, T. Improved Convergence in Block Copolymer Self-Consistent Field Theory by Anderson Mixing [J]. J. Chem. Phys.2004, 120:31-34.
    [153]Nap R. J., Kok C., ten Brinke G., Kuchanov S. I. Microphase Separation at Two Length Scales [J]. Eur. Phys. J. E 2001,4:515-519.
    [154]Xu F., Li T., Xia J., Qiu F., Yang Y. (Polystyrene-g-Polyisoprene)-b-Polystyrene Comb-Coil Block Copolymer in Selective Solvent [J]. Polymer 2007,48:1428-1434.
    [155]Beyer F. L., Gido S. P., Biischl C., Iatrou H., Uhrig D., Mays J. W., Chang M. Y., Garetz B. A., Balsara N. P.,Tan N. B., Hadjichristidis N. Graft Copolymers with Regularly Spaced, Tetrafunctional Branch Points:Morphology and Grain Structure [J]. Macromolecules 2000,33:2039-2048.
    [156]Xenidou M., Beyer F. L., Hadjichristidis N., Gido S. P., Tan N. B. Morphology of Model Graft Copolymers with Randomly Placed Trifunctional and Tetrafunctional Branch Points [J]. Macromolecules 1998,31:7659-7667.
    [157]Gido S. P., Lee C., Pochan D. J., Pispas S., Mays J. W., Hadjichristidis N. Synthesis, Characterization, and Morphology of Model Graft Copolymers with Trifunctional Branch Points [J]. Macromolecules 1996,29:7022-7028.
    [158]Weidisch R., Gido S. P., Uhrig D., Iatrou H., Mays J. W., Hadjichristidis N. Tetrafunctional Multigraft Copolymers as Novel Thermoplastic Elastomers [J]. Macromolecules 2001,34:6333-6337.
    [159]Milner S. T. Chain Architecture and Asymmetry in Copolymer Microphases [J]. Macromolecules 1994,27:2333-2335.
    [160]Shinozaki, A., Jasnow D., Balazs A. C. Microphase Separation in Comb Copolymers [J]. Macromolecules 1994,27:2496-2502.
    [161]Palyulin V. V., Potemkin I. I. Microphase Separation of Double-Grafted Copolymers (Centipedes) with Gradient, Random, and Regular Sequence of the Branch Points [J]. J. Chem. Phys.2007,127:124903.
    [162]Palyulin V. V., Potemkin I. I. Microphase Separation in Melts of Double Comb Copolymers [J]. Polym. Sci., Ser. A,2007,49:473-481.
    [163]Ma Y., Cao T., Webber S. E. Polymer Micelles from Poly(acrylic acid)-graft-polystyrene [J]. Macromolecules 1998,31:1773-1778.
    [164]Kikuchi A., Nose T. Unimolecular Micelle Formation of Poly(methyl methacrylate)-graft-Polystyrene in Mixed Selective Solvents of Acetonitrile/Acetoacetic Acid Ethyl Ether [J]. Macromolecules 1996,29:6770-6777.
    [165]Kikuchi A., Nose T. Multimolecular-Micelle Formation of Poly(methyl methacrylate)-graft-Polystyrene in Acetonitrile/(Acetoacetic Acid Ethyl Ether) [J]. Macromolecules 1997,30:896-902.
    [166]Sevink G. J. A., Zvelindivsky A. V. Self-Assembly of Complex Vesicle [J] Macromolecules 2005,38,7502-7513.
    [167]Westenhoff S., Kotov N. A. Quantum Dot on a Rope [J]. J. Am. Chem. Soc.,2002,124: 2448-2449.
    [168]Sung K.-M., Mosley D. W., Peelle B. R., Zhang S., Jacobson J. M. Synthesis of Monofunctionalized Gold Nanoparticles by Fmoc Solid-Phase Reactions [J]. J. Am. Chem. Soc.,2004,126:5064-5065.
    [169]Huo F., Lytton-Jea A. K. R., Mirkin C. A. Asymmetric Functionalization of Nanoparticles Based on Thermally Addressable DNA Interconnects [J] Adv. Mater.2006,18: 2304-2306.
    [170]Worden J. G., Shaffer A. W., Huo Q. Controlled Functionalization of Gold Nanoparticles through A Solid Phase Synthesis Approach [J] Chem. Commun.2004,518-519.
    [171]Iacovella C. R., Key A. S., Horsch M. A., Glotzer S. C. Icosahedral Packing of Polymer-Tethered Nanospheres and Stabilization of the Gyroid Phase [J]. Phys. Rev. E. 2007,75:040801.
    [172]Phillips C. L., Iacovella C. R., Glotzer S. C. Stability of The Double Gyroid Phase to Nanoparticle Polydispersity in Polymer-Tethered Nanosphere Systems [J]. Soft Matter 2010,6:1693-1703.
    [173]Iacovella C. R., Glotzer S. C. Complex Crystal Structures Formed by the Self-Assembly of Ditethered Nanospheres [J]. Nano Lett.2009,9:1206-1211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700