用户名: 密码: 验证码:
多巴胺受体在T淋巴细胞中的表达及其在介导T细胞功能调节中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:随着神经-内分泌-免疫相互作用研究的不断深入,目前已知在淋巴细胞上具有α-和β-肾上腺素受体,并且它们都参与调节免疫细胞功能。然而,尽管已有文献报道淋巴细胞上也存在多巴胺(dopamine, DA)受体,但关于T淋巴细胞上存在哪种亚型DA受体,以及这些受体在介导T细胞功能调节中的作用尚不十分清楚。因此,本研究旨在一方面提供T淋巴细胞表达DA两类亚型受体――D1-like受体(包括D1和D5受体)和D2-like受体(包括D2、D3、D4受体)的证据,另一方面探讨D1-like受体和D2-like受体在介导T细胞功能调节中的作用及其信号转导分子,从而为神经-内分泌-免疫调节网络增加新内容。
     方法:取小鼠肠系膜淋巴结细胞,用尼龙毛柱粘附法分离和纯化T淋巴细胞,应用流式细胞术检测T细胞的纯度。用逆转录-聚合酶链反应(reverse transcription-polymerase chain reaction, RT-PCR)法检测T淋巴细胞的各种亚型DA受体mRNA表达。淋巴细胞用各种浓度的D1-like受体激动剂、拮抗剂或D2-like受体激动剂、拮抗剂孵育48 h,然后应用噻唑兰(methyl-thiazole-tetrazolium, MTT)比色法检测淋巴细胞对有丝分裂原――刀豆蛋白A(concanavalin A, Con A)诱导的增殖反应;应用流式蛋白分析系统测定经Con A刺激的淋巴细胞培养物的上清液中细胞因子干扰素-γ(interferon-γ,IFN-γ)、肿瘤坏死因子(tumornecrosisfactor,TNF)和白介素-4(interleukin-4,IL-4)的浓度;应用125I-环一磷酸腺苷(125I-cAMP)放射免疫法检测淋巴细胞内环一磷酸腺苷(cyclic adenosine monophosphate,cAMP)的含量。
     结果:肠系膜淋巴结细胞经分离和纯化后,获得的CD3+淋巴细胞(即T淋巴细胞)在肠系膜淋巴结细胞中的百分比为93.8±0.53%,明显高于未经分离和纯化的肠系膜淋巴结细胞中的T细胞百分比74.1±0.95%,说明用上述方法已获得纯化的T淋巴细胞。T淋巴细胞可表达所有DA亚型受体mRNA,包括D1-like受体的D1和D5受体,及D2-like受体的D2、D3、D4受体。淋巴细胞分别用5个浓度的D1-like受体激动剂SKF38393(10-9~10-5 M)处理后,细胞对Con A诱导的增殖反应均没有发生明显的改变。用Con A刺激的淋巴细胞经SKF38393(10-8 M)处理后,IFN-γ的产生显著低于未经SKF38393处理的淋巴细胞,但TNF和IL-4的产生没有明显改变。D1-like受体拮抗剂SCH23390(10-7 M)能阻断激动剂SKF38393(10-8 M)对淋巴细胞产生IFN-γ的抑制作用。D1-like受体激动剂、拮抗剂或激动剂与拮抗剂一起处理淋巴细胞,均没有明显影响淋巴细胞内cAMP的含量。上述结果说明,D1-like受体在介导T细胞功能调节中不起主导作用。然而,淋巴细胞分别用5个浓度的D2-like受体激动剂quinpirole(10-9~10-5 M)处理后,细胞对Con A诱导的增殖反应均明显减弱。用不同浓度的D2-like受体拮抗剂haloperidol(10-10~10-7 M)与激动剂quinpirole(10-8 M或10-7 M)一起处理淋巴细胞,haloperidol呈现浓度依赖性地阻断quinpirole对T细胞增殖的抑制作用。quinpirole(10-8 M)可抑制Con A刺激的T细胞生成IFN-γ和TNF,但促进T细胞生成IL-4。haloperidol(10-7 M)能阻断quinpirole抑制T细胞生成IFN-γ和TNF的作用,及阻断quinpirole促进T细胞生成IL-4的作用。上述结果充分说明D2-like受体介导调节T细胞的功能。此外,quinpirole(10-8 M和10-7 M)可导致Con A激活的T细胞内cAMP含量明显减少,haloperidol(10-8 M和10-7 M)则可阻断quinpirole减少淋巴细胞内cAMP的作用,提示cAMP参与D2-like受体介导的T淋巴细胞功能调节。
     结论:T淋巴细胞能表达各种DA亚型受体――D1、D5受体(即D1-like受体)及D2、D3、D4受体(即D2-like受体)。在D1-like和D2-like两型DA受体中,D2-like受体是介导T淋巴细胞功能调节的主要受体,它的激活能抑制T淋巴细胞的增殖、减少细胞因子IFN-γ和TNF的生成及增加IL-4的生成,D2-like受体的这些作用经淋巴细胞内第二信使cAMP介导。
Objectives: With the increasing studies on neural-endocrine-immune interaction, lymphocytes have been shown to haveα- andβ-adrenoreceptors and the receptors participate in mediating the regulation of immune cell function. However, although some reports have demonstrated that dopamine (DA) receptors exist in lymphocytes, which DA receptor subtypes are on the T lymphocytes and what roles of the DA receptor subtypes in mediating the modulation of T cell function are less known. Thus, in the present study, on the one hand we provided the further evidence for the expressions of two subtypes of DA receptors, D1-like receptors (including D1 and D5 receptors) and D2-like receptors (including D2, D3 and D4 receptors), in T lymphocytes, and on the other hand we explored the roles of D1-like and D2-like receptors in mediating the modulation of T cell function and signal transduction molecules involved in the modulation in order to extend the comprehension of neural-endocrine-immune regulatory network. Methods: Lymphocytes were separated from the mesenteric lymph nodes of mice. T cells were purified by using a nylon wool column. The purity of the T lymphocytes purified was determined by flow cytometric assay. Reverse transcription-polymerase chain reaction (RT-PCR) was used to measure the expression of each subtype of DA receptor mRNA in the purified T cells. The lymphocytes from the mesenteric lymph nodes of mice were incubated with concanavalin A (Con A) and treated with selective D1-like receptor agonist (SKF38393) and antagonist (SCH23390), or with selective D2-like receptor agonist (quinpirole) and antagonist (haloperidol) for 48 h. Colorimetric assay of methylthiazol tetrazolium bromide (MTT) was employed to measure the proliferative response of the lymphocytes to Con A. Cytometric bead array was used to examine the levels of cytokines interferon-γ(IFN-γ), tumor necrosis factor (TNF) and interleukin-4 (IL-4) in the supernatants of the Con A-stimulated lymphocyte cultures. The content of cAMP in the Con A-activated lymphocytes was measured by 125I-cAMP radioimmunoassay. Results: The percentage of purified T lymphocytes (CD3+) in the mesenteric lymph node cells was 93.8±0.53%, which was significantly higher than 74.1±0.95% of T cells that were not purified. The purified T lymphocytes expressed the all subtypes of DA receptor mRNA, including D1 and D5 of D1-like receptors, as well as D2, D3 and D4 of D2-like receptors. After the lymphocytes were treated with D1-like receptor agonist SKF38393 (10-9 to 10-5 M), the proliferative response of the lymphocytes to Con A did not exhibit an evident change. Similarly, the production of TNF and IL-4 by the con A-stimulated lymphocytes that were treated with SKF38393(10-8 M)did not show remarkable change, but the IFN-γproduction by the lymphocytes treated with SKF38393 was notably lower than that of SKF38393-untreated lymphocytes. D1-like receptor antagonist SCH23390 (10-7 M) blocked the inhibitory effect of agonist SKF38393 on the IFN-γproduction by the Con A-stimulated lymphocytes. The content of cAMP in the Con A-activated lymphocytes did not exhibit a notable change no matter what treatments were used with D1-like receptor agonist and antagonist. However, the treatment of lymphocytes with D2-like receptor agonist quinpirole(10-9 to 10-5 M)led to a dramatic attenuation in the proliferative response of the lymphocytes to Con A. D2-like receptor antagonist haloperidol ( 10-10 to 10-7 M ) represented a concentration-dependent blockage of the suppressive effect of quinpirole on the Con A-induced lymphocyte proliferation. Furthermore, quinpirole (10-8 M) reduced the production of IFN-γand TNF, but increased the IL-4 production by the Con A-stimulated lymphocytes. Haloperidol (10-7 M) blocked the quinpirole-induced decrease in IFN-γand TNF levels and the increase in IL-4 production. The cAMP content in the lymphocytes was found decreased after the lymphocytes were treated with quinpirole (10-8 and 10-7 M), and haloperidol (10-8 and 10-7 M) blocked the decrease in cAMP content induced by quinpirole. Conclusions: T lymphocytes can express all the subtypes of DA receptors, including D1 and D5 receptors (i.e., D1-like receptors) and D2, D3, and D4 receptors (i.e., D2-like receptors). Of DA D1-like and D2-like receptors, D2-like receptors are more important in mediating the modulation of T cell function. The activation of D2-like receptors results in an inhibition of T cell proliferation, a decrease in IFN-γand TNF production and an increase in IL-4 level. The immunomodulation mediated by D2-like receptors may be performed by the second messenger cAMP in lymphocytes.
引文
Besedovsky HO, Sork in E. Net work of immuno-meuro-endocrine interactions. Clin Exp Immuno1, 1977; 27: 1-6.
    Blalock JE. The syntax of immune-neuroendocrine communication. Immunol Today 1994; 15(11): 504-511.
    Floresco SB. Dopaminergic regulation of limbic-striatal interplay. Journal of Psychiatry & Neuroscience, 2007; 32: 400-411.
    Jucaite A. Dopaminergic modulation of cerebral activity and cognitive functions. Medicina, 2002; 38: 357-362.
    Zeng C, Sanada H, Watanabe H, Eisner GM, Felder RA, Jose PA. Functional genomics of the dopaminergic system in hypertension. Physiolgenomics, 2004; 19: 233-246.
    Seutin V. Doapmine neurons: much more than dopamine? British Journal of Pharmacology, 2005; 146: 167-169.
    Czermak C, Lehofer M, Renger H, Wagner EM, Lemonis L, Rohrhofer A, Schauenstein K, Liebmann PM. Dopamine receptor D3 mRNA expression in human lymphocytes is negatively correlated with the personality trait of persistence. Journal of Neuroimmunology, 2004; 150: 145-149.
    Nistico G, Caroleo MC, Arbitrio M, Pulvirenti L. Evidence for an involvement of dopamine D1 receptors in the control of immune mechanisms. Neuroimmunomodulation, 1994; 1: 174-80.
    Cosentino M, Rasini E, Colombo C, Marino F, Blandini F, Ferrari M, Samuele A, Lecchini S, Nappi G, Frigo G. Dopaminergic modulation of oxidative stress and apoptosis in human peripheral blood lymphocytes: evidence for a D1-like receptor-dependent protective effect. Free Radical Biology & Medicine, 2004; 36: 1233-1240.
    Caronti B, Calderaro C, Passarelli F, Palladini G, Pontieri FE. Dopaminereceptor mRNAs in the rat lymphocytes. Life sciences, 1998; 62: 1919-1925.
    Ricci A, Bronzetti E, Miqnini F, Tayebati SK, Zaccheo D, Amenta F. Dopamine D1-like receptor subtypes in human peripheral blood lymphocytes. Journal of Neuroimmunology, 1999; 96: 234-240.
    Rocca P, Leo CD, Eva C, Marchiaro L, Milani AM, Musso R, Ravizza L, Zanalda E, Bogetto F. Decrease of the D4 dopamine receptor messenger RNA expression in lymphocytes from patients with major depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 2002; 26: 1155-1160.
    Vallone D, Picetti R, Borrelli E. Structure and function of dopamine receptor. Neurosci Biobehav Rev, 2000; 24: 125-132.
    McKenna F, McLaughlin PJ, Lewis BJ, Sibbring GC, Cummerson JA, Bowen-Jones D, Moots RJ. Dopamine receptor expression on human T- and B-lymphocytes, monocytes, neutrophils, eosinophils and NK cells: a flow cytometric study. Journal of Neuroimmunology, 2002; 132: 34-40.
    Girault JA, Greenqard P. The neurobiology of dopamine signaling. Archives of Neurology, 2004; 61: 641-644.
    Pivonello R, Ferone D, Lombardi G, Colao A, Lamberts SW, Hofland LJ. Novel insights in dopamine receptor physiology. Eur J Endocrinol, 2007; 156: S13-S21.
    Batra A, Zeitz M, Siegmund B. The role of leptin in the immune system--a linking of endocrinology and immunology. Dtsch Med Wochenschr, 2005;130:226-229.
    Sawamoto N, Piccini P, Hotton G, Pavese N, Thielemans K, Brooks DJ. Cognitive deficits and striato-frontal dopamine release in Parkinson’s diseases. Brain, 2008; 131: 1294-1302.
    Kwak YT, Koo MS, Choi CH, Sunwoo I. Change of dopamine receptor mRNA expression in lymphocyte of schizophrenic patients. BMC Med Genet, 2001; 2:3.
    Saha B, Mondal AC, Basu S, Dasgupta PS. Circulating dopamine level, in lung carcinoma patients, inhibits proliferation and cytotoxicity of CD4+ and CD8+ T cells by D1 dopamine receptors: an in vitro analysis. Int Immunopharmacol, 2001; 1: 1363-1374.
    Barbanti P, Fabbrini G, Ricci A, Bruno G, Cerbo R, Bronzetti F. Reduced density of dopamine D2 like receptors on peripheral blood lymphocytes in Alzheimers disease. Mech Ageing Dev, 2000; 120: 65-75.
    Barbanti P, Fabbrini G, Ricci A, Bruno G, Cerbo R, Bronzetti F. Migraine patients show an increased density of dopamine D3 and D4 receptors on lymphocytes. Cephalagia, 2000; 20: 15-29.
    Basu S, Dasgupta PS. Dopamine, a neurotransmitter, influences the immune system. Journal of Neuroimmunology, 2000; 102: 113-124.
    Devoino L, Alperina E, Idova G. Dopaminergic stimulation of the immune reaction: interaction of serotoninergic and dopaminergic systems in neuroimmunomodulation. The International journal of neuroscience, 1988; 40: 271-288.
    Torres KCL, Antonelli LRV, Souza ALS, Teixeira MM, Dutra WO, Gollob KJ. Norepinephrine, dopamine and dexamethasone modulate discrete leukocyte subpopulations and cytokine profiles from human PBMC. Journal of Neuroimmunology, 2005; 166: 144-157.
    Cook-Mills JM, Cohen RL, Perlman RL, Chambers DA. Inhibition of lymphocyte activation by catecholamines: evidence for a non classical mechanism of catecholamine action. Immunology, 1995; 4: 544-549.
    Yasunari K, Kohno M, Kano H, Hanehira T, Minami M, Yoshikawa J. Anti-atherosclerotic action of vascular D1 receptors. Clinical and experimental pharmacology & physiology, 1999; 26: S36-S40.
    Han JY, Heo JS, Lee JH, Taub M, Han HJ. Dopamine stimulates 45Ca2+ uptake through cAMP, PLC/PKC, and MAPKs in renal proximal tubule cells. Journal of cellular physiology, 2007; 211: 486-494.
    Lee MY, Heo JS, Han HJ. Dopamine regulates cell cycle regulatory proteinsvia cAMP, Ca(2+)/PKC, MAPKs, and NF-kappaB in mouse embryonic stem cells. Journal of cellular physiology, 2006; 208: 399-406.
    
    1.韩济生主编,神经科学原理。北京医科大学,中国协和医科大学联合出版社,2000 : 365-382。
    2. Pani L. Clinical implications of dopamine research in schizophrenia. Current medical reaserch and opinion, 2002; 18: 3-7.
    3. Pereira EA, Aziz TZ. Parkinson’s disease and primate research: past, present, and future. Postgraduate Medical Journal, 2006; 82: 293-9.
    4. Jaber M, Robinson SW and Missale C. Dopamine receptors and brain function. Neuropharmacology, 1996; 35: 1503-1519.
    5. Lan H, Durand CJ, Teeter MM, Neve KA. Structural determinants of pharmacological specificity between D1 and D2 dopamine receptors. Molecular pharmacology, 2006; 69: 185-194.
    6. Suhara T and Miyoshi M. Distribution and function of dopamine D1, D2 receptor. Clinical nuerology, 2007; 47: 826-828.
    7. Vaamonde J, Ibanez R, Garcia AM, Poblete V. Study of the pre and post-synaptic dopaminergic system by DaTSCAN/IBZM SPECT in the differential diagnosis of parkinsonism in 75 patients. Neurologia, 2004; 19: 292-300.
    8. Rinne JO, Ruottinen HM, Naqren K, Aberq LE, Santavuori P. Positron emission tomography shows reduced striatal dopamine D1 but not D2 receptors in juvenile neuronal ceroid lipofuscinosis. Neuropediatrics, 2002; 33: 138-141.
    9. Hietala J and Sayvlahti E. Dopamine in schizophrenia. Annals of Medicine, 1996; 28: 557-561.
    10. Murray RM, Lappin J, Di Forti M. Schizophrenia: From developmental deviance to dopamine dysregulation. European neuropsychopharmacology, 2008; [Epub ahead of print].
    11. Nieoullon A. Dopamine and the regulation of cognition and attention. Progress in neurobiology, 2002; 67: 53-83.
    12. Williams GV, Castner SA. Under the curve: critical issues for elucidating D1 receptor function in working memory. Neuroscience, 2006; 139: 263-276.
    13. Cowen MS, Lawrence AJ. The role of opioid-dopamine interactions in the induction and maintenance of ethanol consumption. Progress in neuropsychopharmacology & biological psychiatry, 1999; 23: 1171-1212.
    14. Mattay VS, Tessitore A, Callicott JH, Bertolino A, Goldberg TE, Chase TN, Hyde TM,Weinberger DR. Dopaminergic modulation of cortical function in patients with Parkinson's disease. Ann Neurol, 2002; 51:156-64.
    15. Funahashi S. Neuronal mechanisms of executive control by the prefrontal cortex. Neurosci Res, 2001; 39:147-165.
    16. Lewis DA, Melchitzky DS, Burgos GG. Specificity in the functional architecture of primate prefrontal cortex. J Neurocytol, 2002; 31: 265-276.
    17. Diana M. Drugs of abuse and dopamine cell aetivity. Advances in Pharmacology, 1998; 42: 703-721; 998-1029.
    18. Durstewitz D, Seaman JK, Sejnowski TJ. Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J Neurophysiol, 2000; 83: 1733-1750.
    19. Cabib S and Puglisi S. Stress, depression and the mesolimbic dopamine system. Psychopharmacology, 1996; 128: 331-342.
    20. Finlay JM and Zigmond MJ. The effects of stress on central dopaminergic neurons: possible clinical implications. Neurochemical Research, 1997; 22: 1387-1394.
    21. Chrousos GP. Sress as a medical and scientific idea and its implications. Advances in Pharmacology, 1998; 42: 552-567.
    22. Iversen LL. Dopamine receptors in the brain. Science, 1975; 188: 1084-1089.
    23. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine Receptors: From Structure to Function. Physiol Rev, 1998; 78: 189-225.
    24. Nistico G, Caroleo MC, Arbitrio M, Pulvirenti L. Evidence for an involvement of dopamine D1 receptors in the limbic system in the control of immune mechanisms. Neuroimmunomodulation, 1994; 1: 174-180.
    25. Suri RE, Bargas J, Arbib MA. Modeling functions of striatal dopamine modulation in learning and planning. Neuroscience, 2001; 103: 65-85.
    26. Salum C, Roque SA, Pickering A. Striatal dopamine in attentional learning: a computational model. Neurocomputing, 1999; 26: 845-854.
    27. Goldberg LI. The dopamine vascular receptor. Biochem Pharmacol, 1975; 24: 651-653.
    28. Carlsson A, Waters N, Waters S, Carlsson ML. Network interactions in schizophrenia-therapeutic implications. Brain Research Reviews, 2000; 31: 342-349.
    29. Berger B, Gaspar P, Verney C. Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci, 1991; 14: 21-27.
    30. Ghashghaei HT, Barbas H. Neural interaction betweem the basal forebrain and functionally distinct prefrontal cortices in the rhesus monkey. Neuroscience, 2001; 103: 593-614.
    31. Desouza H, et al. Intransal administration of the dopaminergic agonists LDOPA, amphetamine and cacaine increases dopamine activity in the neostriatum: a microdialysis study in the rat. Neurochem, 1997; 68: 233-239.
    32. Kruk ZL, Pycoek CJ. Neurotransmitters and Drugs. Croom Hlem Ltd, 1979; 58: 73-104.
    33.金国章.脑内多巴胺的生物医学.上海科技教育出版社, 1998: 7-19, 57-72, 122-145, 181-189.
    34. Garzon M, Vauqhan RA, Uhl GR, Kuhar MJ, Pickel VM. Cholinergic axon terminals in the ventral tegmental area target a subpopulation of neurons expressing low levels of the dopamine transporter. J Comp Neurol, 1999; 410: 197-210.
    35. Baik JH, Picetti R, Saiardi A, Thiriet G, Dierich A, Depaulis A, Le Meur M, Borrelli E. Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature, 1995; 377: 424-428.
    36. Xu M, Moratalla R, Gold LH, Hiroi N, Koob GF, Graybiel AM,Toneqawa S. Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses. Cell, 1994; 79: 729-742.
    37. Hall W, Carter L, Morley KI. Neuroscience research on the addictions: a prospectus for future ethical and policy analysis. Addict Behav, 2004; 29:1481-1495.
    38. Wise RA. Neurobiology of addiction. Curr Opin Neurobiol, 1996, 6: 243-251.
    39. Previc FH. Dopamine and the origins of human intelligence. Brain Cogn; 1999; 41: 299-350.
    40. Slovin H, Abeles M, Vaadia E, Haalman I, Prut Y, Berqman H. Frontal cognitive impairments and saccadic deficits in low-dose MPTP-treated monkeys. Neurophysiology, 1999; 81: 858-874.
    41. Stefanis NC, Bresnick JN, Kerwin RW, Schofield WN, McAllister G. Elevation of D4 dopamine receptor mRNA in postmortem schizophrenic brain. Brain Res Mol Brain Res, 1998; 53: 112-119.
    42. Murphy BL, Arnsten AF, Goldman-Rakic PS, Roth RH. Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc Natl Acad Sci USA, 1996; 93: 1325-1329.
    43. Schultz W, Apicella P, Ljungberg T. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps oflearning a delayed response task. Neurosci, 1993; 13: 900-913.
    44. Watanabe M, Kodama T, Hikosaka K. Increase of extracellular dopamine in primate prefrontal cortex during a working memory task. Neurophysiol, 1997; 78: 2795-2798.
    45. Da Cunha C, Wietzikoski S, Wietzikoski EC, Miyoshi E, Ferro MM, Anselmo-Franci JA, Canteras NS. Evidence for the substantia nigra pars compacta as an essential component of a memory system independent of the hippocampal memory system. Neurobiol Learn Mem , 2003; 79: 236-242.
    46. Phillips GD, Setzu E, Vugler A, Hitchcott PK. Immunohistochemical assessment of mesotelencephalic dopamine activity during the acquisition and expression of Pavlovian versus instrumental behaviours. Neuroscience, 2003; 117: 755-767.
    47. Rosenkranz JA, Grace AA. Dopamine-mediated modulation of odour-evoked amygdala potentials during Pavlovian conditioning. Nature, 2002; 417: 282-287.
    48. Sawaguchi T. The effects of dopamine and its antagonists on directional delay-period activity of prefrontal neurons in monkeys during an oculomotor delayed-response task. Neurosci Res, 2001; 41: 115-128.
    49. Kozlov AP, Druzin MY, Kurzina NP, Malinina EP. The role of D1-dependent dopaminergic mechanisms of the frontal cortex in delayed responding in rats. Neurosci Behav Physiol, 2001; 31: 405-411.
    50. El-Ghundi M, Fletcher PJ, Drago J. Spatial learning deficit in dopamine D1 receptor knockout mice. Eur J Pharmacol, 1999; 383: 95-106.
    51. Baldwin AE, Sadeghian K, Kelley AE. Appetitive instrumental learning requires coincident of NMDA and dopamine D1 receptors within the medial prefrontal cortex. Neurosci, 2002; 22: 1063-1071.
    52. Wilkerson A, Levin ED. Ventral hippocampal dopamine D1 and D2 systems and spatial working memory in rats. Neuroscience, 1999; 89: 743-749.
    53. Umegaki H, Munoz J, Meyer RC, Spanqler EL,Yoshimura J, Ikari H, Iquchi A, Inqram DK. Involvement of dopamine D2 receptors in complex maze learning and acetylcholine release in ventral hippocampus of rats. Neuroscience, 2001; 103: 27-33.
    54. Greba Q, Gifkins A, Kokkinidis L. Inhibition of amygdaloid dopamine D2 receptors impairs emotional learning measured with fear2potentiated startle. Brain Res, 2001; 899: 218-226.
    55. Smith JW, Fetsko LA, Xu R, Wanq Y. Dopamine D2L receptor knockout mice display deficits in positive and negative reinforcing properties of morphine and in avoidance learning. Neuroscience, 2002;113: 755-765.
    56. Sibley DR, Monsma FJ. Molecular biology of dopamine receptors. Trends Pharmacol Sci, 1992; 13: 61-69.
    57. Faun JE, Crocker AD. The effect of selective dopamine receptor agonists and antagonist on body temperature in rats. Eur J Pharmacol, 1987; 133: 243-247.
    58. Salmi P, Jimenez P, Ahlenius S. Evidence for specific involvement of dopamine D1 and D2 receptors in the regulation of body temperature in the rat. Eur J Phamacol, 1993; 236: 395-400.
    59. Kulinskii VI, Kolesnichenko LS. Catecholamines: biochemistry, pharmacology, physiology, clinical aspects. Vopr Med Khim, 2002; 48: 45-67.
    60. Olsen NV, Bonde J. Dopamine in "kidney-friendly" doses. Ugeskr Laeger, 2000; 162: 2864-2867.
    61. Hentschel K, Fleckenstein AE, Toney TW, Lawson DM, Moore KE, Lookingland KJ. Prolactin regulation of tuberoinfundibular dopaminergic neurons: immunoneutralization studies. Brain Res, 2000;852: 28-36.
    62. Martin JB. Brain regulation of growth bormone secretion. In Fronitiers in Neuroendocrinology, 1976; 4: 129-168.
    63. Seki K, Nagata I. Effects of a dopamine antagonist (metoclopramide) on the release of LH, FSH, TSH and PRL in normal women throughout the menstrual cycle. Acta Endocrinol (Copenh), 1990; 122: 211-216.
    64. Leblanc H. Effects of dopamine infusion on insulin and glucagon secretion in man. Clin Endocrino Metablism, 1977; 44: 196-198.
    65. Hakansen R. Formation of amines in the gastric musosa of the rat. Nature, 1965; 218: 793-794.
    66. Cegrell L. Dopamine in the pancreas of albinic and pigmented newborn guinea-pigs. Life Sci, 1967; 6: 2491-2495.
    67. Hiltebrand LB, Krejci V, Sigurdsson GH. Effects of dopamine, dobutamine, and dopexamine on microcirculatory blood flow in the gastrointestinal tract during sepsis and anesthesia. Anesthesiology, 2004; 100: 1188-1197.
    68. Mezey E, Eisenhofer G, Hansson S, Harta G, Hoffman BJ, Gallatz K, Palkovits M, Hunyady B. Non-neuronal dopamine in the gastrointestinal system. Clin Exp Pharmacol Physiol Suppl, 1999; 26: S14-S22.
    69. Eldrup E, Richter EA. DOPA, dopamine, and DOPAC concentrations in the rat gastrointestinal tract decrease during fasting. Am J Physiol Endocrinol Metab, 2000; 279: E815-E822.
    70. Eisenhofer G, Aneman A, Friberg P, Hooper D, Fandriks L, Lonroth H, Hunyady B, Mezey E. Substantial production of dopamine in the human gastrointestinal tract. J Clin Endocrinol Metab, 1997; 82: 3864-3871.
    71. Ghosh MC, Mondala AC, Basu A, Banerjee S, Majumder J, Bhattacharya D, Dasgupt PS. Dopamine inhibits cytokine release andexpression of tyrosine kinases, Lck and Fyn in activated T cells. International Immunopharmacology, 2003; 3: 1019–1026.
    72. Ilani T, Strous RD, and Fuchs S. Dopaminergic regulation of immune cells via D3 dopamine receptor: a pathway mediated by activated T cells. The FASEB Journal, 2004; 10: 1640-1052.
    73. Cook-Mills JM, Cohen RL, Perlman RL, and Chambers DA. Inhibition of lymphocyte activation by catecholamines: evidence for a non-classical mechanism of catecholamine action. Immunology, 1995; 85: 544-549.
    74. Morikawa K, Oseko F, and Morikawa S. Immunosuppressive activity of bromocriptine on human T lymphocyte function in vitro. Clin. Exp. Immunol, 1994; 95: 514-518.
    75. Levite M, and Chowers Y. Nerve-driven immunity: neuropeptides regulate cytokine secretion of T cells and intestinal epithelial cells in a direct, powerful and contextual manner. Ann. Oncol, 2001; 12, Suppl 2, S19-S25.
    76. Levite M. Nerve-driven immunity. The direct effects of neurotransmitters on T-cell function. Ann. N. Y. Acad. Sci, 2000; 917: 307-321.
    77. Levite M, Chowers Y, Ganor Y, Besser M, Hershkovits R, and Cahalon L. Dopamine interacts directly with its D3 and D2 receptors on normal human T cells, and activates beta1 integrin function. Eur. J. Immunol, 2001; 31: 3504-3512.
    78. McKenna F, McLaughlin PJ, Lewis BJ, Sibbring GC, Cummerson JA, Bowen-Jones D, Moots RJ. Dopamine receptor expression on human T- and B-lymphocytes, monocytes, neutrophils, eosinophils and NK cells: a flow cytometric study. Journal of Neuroimmunology, 2002; 132: 34-40.
    79. Kelly RB. Storage and release of neurotransmitters. Neuron, 1993; 10: 43-53.
    80. Bunney BS, Chiodo LA, Grace AA. Midbrain dopamine system electrophysiological functioning: a review and new hypothesis. Synapse, 1991; 9: 79-94.
    81. Amara SG, Kuhar MJ. Neurotransmitter transporters: recent progress. Annu Rev Neurosci, 1993; 16: 73-93.
    82. Bannon MJ, Michelhauqh SK, Wanq J, Sacchetti. The human dopamine transporter gene: gene organization, transcriptional regulation, and potential involvement in neuropsychiatric disorders. Eur Neuropsychopharmacol, 2001; 11: 449-455.
    83. Axelrod J, Weinshilboum R. Catecholamines. N Engl J Med, 1972; 287: 237-242.
    84. Traba ML. Metabolism and pathology of catecholamines. Rev Clin Esp, 1981; 162: 5-13.
    85. Gupta PK. Signal transduction in the nervous system: The 2000 Nobel Prize for physiology or medicine. Current Science, 2000; 79: 9-11.
    86. Mijnster MJ, Isovich E, Flugge G, Fuchs E. Localization of dopamine receptors in the tree shrew brain using [3H]-SCH23390 and [125I]-epidepride. Brain Res, 1999; 841: 101-113.
    87. Kebabian JW, Calne DB. Multiple receptors for dopamine. Nature, 1979; 277 : 93-96.
    88. Chu J, Wilczynski W, Wilcox RE. Pharmacological characterization of the D1- and D2-like dopamine receptors from the brain of the leopard frog, Rana pipiens. Brain Behav Evol, 2001; 57: 328-342.
    89. Baldo BA, Sadeghian K, Basso AM, Kelley AE. Effects of selective dopamine D1 or D2 receptor blockade within nucleus accumbens subregions on ingestive behavior and associated motor activity. Behav Brain Res, 2002; 137: 165-177.
    90. Sibley DR. New insights into dopaminergic receptor function using antisense and genetically altered animals. Ann Rev pharmacol Toxiol, 1999; 39: 313-341.
    91. Neve KA, Seamans JK, Trantham-Davidson H. Dopamine receptor signaling. Journal of receptor and signal transduction research, 2004; 24: 165-205.
    92. Sunahabra RK, Niznik HB, Weiner DM, Stormann TM, Brann MR, Kennedy JL, Gelernter JE, Rozmahel R, Yang YL, Israel Y. Human dopamine D1 receptor encoded by an intronless gene on chromosome 5. Nature, 1990; 347: 80-83.
    93. Grandy DK, Marchionni MA, Makam H, Stofko RE, Alfano M, Frothingham L, Fischer JB, Burke-howie KJ, Bunzow JR, Server AC. Cloning of the cDNA and gene for a human D2 dopamine receptor. Proc Natl Acad Sci USA, 1989; 86: 9762– 9766.
    94. John LW, Jeremiah JC, Fergal NM. The psychopharmacology-molecular biology interface: exploring the behavioural roles of dopamine receptor subtypes using targeted gene delection (knockout). Prog Neuro-psychopharmacol & Biol Psychtat, 2001; 25: 925-964.
    95. Roth RH. Dopamine autoreceptors: pharmacology, function and comparison with post-synaptic dopamine receptors. Commun Psychopharmacol, 1979; 3:429-445.
    96. Waszczak BL, Martin LP, Finlay HE, Zahr N, Stellar JR. Effects of individual and concurrent stimulation of striatal D1 and D2 dopamine receptors on electrophysiological and behavioral output from rat basal ganglia. J Pharmacol Exp Ther, 2002; 300: 850-861.
    97. Skirboll LR, Grace AA, Bunney Bs. Dopamine auto- and postsynaptic receptors: electrophysiological evidence for differential sensitivity to dopamine agonists. Science, 1979; 206: 80-82.
    98. Battaglia G, Norman AB, Hess EJ, Creese I. Forskolin potentiates the stimulation of rat striatal adenylate cyclase mediated by D-1 dopamine receptors, guanine nucleotides, and sodium fluoride. J Neurochem, 1986; 46: 1180-1185.
    99. Crace AA, Bunney BS. Low doses of apomorphine elicit two opposing influences on dopamine cell electrophysiology. Brain Res, 1985; 333: 285-298.
    100. Jaber M, Robinson SW, Missale C. Dopamine receptors and brain function. Neuropharmacology, 1996; 11: 1503-1519.
    101. McNamara RK,Logue A,Stanford K.Dose-response analysis of locomotor activity and stereotypy in dopamine D3 receptor mutant mice following acute amphetamine. Synapse, 2006; 60: 399-405.
    102. Pritchard LM, Logue AD, Hayes S. 7-OH-DPAT and PD128907 selectively activate the D3 dopamine receptor in a novel environment. Neuropsychopharmacology, 2003; 28: 100-107.
    103. Zhang D, Zhang L, Lou DW. The dopamine D1 receptor is acritical mediator for cocaine-induced gene expression.J Neuro-chem, 2002; 82: 1453-1464.
    104. Xu M, Guo Y, Vorhees CV. Behavioral responses to cocaine and amphetamine administration in mice lacking the dopamine D1 receptor. Brain Res, 2000; 852: 198-207.
    105. Koeltzow TE, Xu M, Cooper DC. Alterations in dopamine release but not dopamine autoreceptor function in dopamine D3 receptor mutant mice. J Neurosci, 1998; 18: 2231-2238.
    106. Moratalla R, Xu M, Tonegawa S. Cellular responses to psychomotor stimulant and neuroleptic drugs are abnormal in mice lacking the D1 dopamine receptor. Proc Natl Acad Sci U S A, 1996; 93: 14928-14933.
    107. Xu M, Hu XT, Cooper DC, et a1. Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutant mice. Cell, 1994; 79(6): 945-955
    108. Xu M, Koehzow TE, Santiago GT. Dopamine D3 receptor mutant mice exhibit increased behavioral sensitivity to concurrent stimulation of D1 and D2 receptors. Neuron, 1997; 19: 837-848.
    109. Xu M, Moratalla R, Gold LH. Dopamine D1 receptor mutant miceare deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses. Cell, 1994; 79: 729-742.
    110. Xu M, Koeltzow TE, Cooper DC. Dopamine D3 receptor mutant and wild-type mice exhibit identical responses to putative D3 receptor-selective agonists and antagonists. Synapse, 1999; 31: 210-215.
    111. Wu KD, Chen YM, Chu TS, Chueh SC, Wu MH, Bor-Shen H. Expression and localization of human dopamine D2 and D4 receptor mRNA in the adrenal gland, aldosterone-producing adenoma, and pheochromocytoma. J Clin Endocrinol Metab, 2001; 86: 4460-4467.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700