血浆RNA和PBMCs DNA HIV-1耐药准种多态性和分子进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人免疫缺陷病毒(Human Immunodeficiency Virus,HIV)是高度变异的人类病原体,在抗逆转录病毒药物压力下,快速突变产生耐药性,导致抗逆转录病毒治疗(antiretroviral therapy,ART)的失败。耐药HIV毒株还可以传播,使得从未接受过抗病毒治疗的艾滋病(acquired immunodeficiency syndrome,AIDS,获得性免疫缺陷综合征)病人具有对药物的耐受性。HIV的耐药性已成为严重的公共卫生问题,是艾滋病防治的主要障碍。了解HIV耐药的分子进化规律并理解新耐药突变的作用,是全面认识HIV耐药分子机制的基础,将为有效遏制耐药毒株、做好针对耐药毒株的艾滋病防治提供科学依据。
     为了揭示血浆和外周血单个核细胞(peripheral blood mononuclear cells,PBMCs)中HIV耐药的分子进化规律、阐明新型耐药突变对耐药的贡献,本研究以河南某乡接受抗病毒治疗艾滋病患者队列为基础,开展了系列研究。首先对河南某乡接受抗病毒治疗的艾滋病患者更换二线药物前后的病毒耐药发生和演变情况进行了调查,对部分患者进行了病毒分离培养和基因型耐药鉴定;然后,基于长期随访获得的部分患者系列血浆和PBMCs标本,采用大量克隆测序及基因型耐药分析的方法,揭示血浆和PBMCs中耐药准种进化的规律;针对患者中大量出现的尚未有明确表型解释的H221Y突变,通过构建系列突变病毒并进行表型耐药测定的方式,阐明H221Y及其它突变联合对耐药的作用。
     第一部分河南某乡接受抗病毒治疗的艾滋病患者更换二线治疗方案前后的耐药性研究
     河南某乡是我国最早开展艾滋病免费抗病毒治疗的地区之一,采用的是使用统一的治疗方案、同时开始治疗,由村医管理患者并监督服药的治疗模式。自初始治疗(2003年9月)起,我们实验室对这个地区艾滋病患者的HIV耐药情况进行了连续7年的监测。根据患者的临床表现、病毒载量、CD4+T淋巴细胞计数检测的结果及病毒耐药监测的结果,2010年2月起,部分患者由一线治疗方案更换为二线治疗方案。本部分研究的目的是了解更换二线治疗方案后的HIV耐药发生发展的特点和规律,同时,观察更换二线治疗方案后的病毒学和免疫学应答,从而为抗病毒治疗方案的改进提供依据。
     对抗病毒治疗患者队列中的77名患者进行了两次随访,时间为2009年10月和2010年6月,共调查和采血154人次。其中43例患者在首次随访时(2010年2~3月)更换了二线治疗方案,34例患者仍然使用一线治疗方案。对所有患者使用统一的调查表进行流行病学调查,了解服药依从性、临床表现等信息,采集血液标本进行病毒载量和CD4+T淋巴细胞计数检测,采用耐药基因型方法进行耐药性检测和分析。主要结果和结论有:
     1.换药组患者在换药3个月后病毒载量显著下降(P值=0.005)。病毒抑制率由治疗前的46.34%(19/41)上升至换药后的65.80%(27/41);未换药组患者的病毒载量也显著下降(P值<0.05),病毒抑制率由首次随访的21.86%(7/32)上升至第二次随访的40.63%(13/32)。
     2.换药组患者在换药前后CD4+T淋巴细胞计数没有显著变化(P=0.279),换药前CD4+T淋巴细胞计数>350cells/μl的患者有39.53%(17/43),换药后有44.19%(19/43),比换药前略有增加;未换药组在两次随访中CD4+T淋巴细胞计数也无显著变化(P值=0.608),首次随访时CD4+T淋巴细胞计数>350cells/μl的患者有82.35%(28/34),第二次随访时CD4+T淋巴细胞计数>350cells/μl的患者的比例是70.59%(24/34)。
     3.换药组和未换药组患者在第二次随访中耐药的比例均有所下降:换药患者的耐药率由换药前的7/9降至换药后的6/11;未换药患者的耐药率人群由首次随访的12/20降至第二次随访的7/14。换药的患者在换药前后耐药毒株的演变情况较未换药患者更为复杂。
     总体来看,换药显著提高了患者的病毒抑制率,长久也将观察到免疫功能的改善,对耐药的影响还需要进一步观察。
     第二部分血浆RNA和PBMCs DNA HIV-1耐药准种多态性和分子进化
     HIV在体内以复杂的准种形式存在,在不同种类和强度的药物选择压力下,HIV-1的耐药性随时间序贯发展、逐渐增强,病毒准种的组成和分布始终处于动态变化的过程中。耐药不是全或无的现象,优势与劣势耐药准种共存,某些劣势种群可以持续进化,最终发展成为优势种群。在HIV感染发展的过程中,病毒基因组的各种变化被持续地记录在潜伏整合的前病毒中,耐药突变持续不断地进入潜伏的病毒库。耐药毒株的进化在不同组织是独立的,有研究报道血浆与外周血单个核细胞(peripheral blood mononuclear cells,PBMCs)、淋巴及神经组织中耐药准种的分布显著不同,通常认为血浆可即时反应体内病毒的耐药进化,是世界卫生组织(World Health Organization,WHO)指定的HIV-1耐药检测和监测常规使用的样本。尽管目前对血浆中耐药毒株的分子进化已经有了比较深入的认识,但对长期治疗患者血浆中耐药病毒准种的进化特征、PBMCs中耐药病毒准种的进化特点、血浆与PBMCs中耐药病毒准种的动态进化关系还没有系统的研究。
     本研究的目的是,通过对河南省某农村长期接受抗病毒治疗艾滋病患者的系列血浆和PBMCs标本的大量克隆测序、基因型耐药和分子进化分析,阐明我国农村特殊抗病毒治疗模式下血浆和PBMCs中病毒耐药准种的分子进化规律,揭示血浆和PBMCs中病毒耐药准种的进化关系。从河南省某乡HIV耐药监测队列中选出6名长期接受抗病毒治疗的艾滋病患者,这些患者最少的随访8次、最多的随访10次,累计随访54人次、时间跨度5年。每次随访均对研究对象进行访谈,了解临床表现、抗病毒治疗方案、服药依从性及其他社会人口学特征。对血浆和PBMCs分别采用RT-PCR和直接巢式PCR方法扩增HIV-1蛋白酶和逆转录酶区2162bp基因片段,然后克隆测序。每份样品对20~30个克隆测序,共获得序列1588条,其中来自血浆样本的序列967条,来自PBMCs前病毒的序列621条,对序列进行耐药突变和进化分析,主要结果和结论如下:
     1.血浆与PBMCs中耐药准种的分布:血浆中蛋白酶抑制剂(protease Inhibitors,PIs)耐药突变、核苷类逆转录酶抑制剂(nucleoside reverse transcriptase inhibitors,NRTIs)、非核苷类逆转录酶抑制剂(non-nucleoside reverse transcriptase inhibitors,NNRTIs)的耐药突变种类比PBMCs中的突变种类多。多数患者血浆和PBMCs样本中共同出现的耐药突变也是两种样本中发生频率较高的突变,即血浆和PBMCs两种组织中占优势地位的耐药准种形式差别不大;
     2.血浆与PBMCs中耐药准种的进化:多数患者PBMCs中PIs耐药突变、NRTIs、NNRTIs耐药突变的发生晚于血浆。少数患者血浆和PBMCs两种组织呈现完全不同的耐药进化路径。6例患者血浆和(或)PBMCs中NRTIs耐药谱和NNRTIs耐药谱的进化路径均不同程度地显示出,随着接受治疗时间的延长,主要突变谱携带的突变种类增加,即突变谱的进化都有突变位点累积的趋势,并且随之产生的耐药程度也逐渐增加;
     3.血浆与PBMCs中NRTIs耐药谱的特点:6例患者几乎所有血浆和(或)PBMCs NRTIs耐药谱中都有T215Y,而且该突变在随访早期即单独或同其它突变一起出现,早期联合出现的以M41L居多,这两种突变通常稳定存在于随访的整个过程, L210W常在随访中晚期累加进NRTI突变谱,累加的其它突变还有D67N、K70R、E44D(A)等,个别患者T215Y突变模式到晚期有被T215F取代的趋势。NRTIs耐药谱的耐药程度常与其携带的突变种类有关,往往携带的突变种类越多,耐药程度也越高;
     4.血浆与PBMCs中NNRTIs耐药谱的特点:总的来讲,NNRTIs耐药谱不如NRTIs耐药谱复杂,携带的突变种类不如NRTIs耐药谱多。6例患者中,除2例患者的血浆样本之外,其他患者的样本都出现了Y181C,该位点一旦出现,就会稳定存在至随访末期;K103N是另外一个重要的NNRTIs突变,在4例患者中都有出现,值得注意的是,该位点在1例患者的血浆样本和1例患者的PBMCs样本中只是在随访早期一过性出现,在其他样本中早期出现后可持续存在至随访末期;除1例患者的血浆和PBMCs样本以及1例患者的PBMCs样本之外,其它样本中都出现了H221Y突变,不同样本中该突变出现的时间不同,有的在随访早期或中期出现,有的在随访晚期才累加入NNRTIs耐药谱,该位点也是一旦出现,就会持续存在于突变谱中。NNRTIs耐药出现得较早,耐药程度往往很高,单位点突变也可导致对NVP的高度耐药;
     5.血浆与PBMCs中多重耐药谱的特点:血浆样本中的多重耐药(multidrug resistance,MDR)谱的构成形式比PBMCs中的复杂,多重耐药谱的种类也比PBMCs样本多;NRTI+NNRTI双重耐药谱是MDR的主要构成形式,在所有样本中都有出现;其次是PI+NRTI+NNRTI三重耐药谱,6例患者的血浆样本中都有出现;MDR的耐药程度往往比较高;
     6.血浆与PBMCs中准种序列的离散率:2例患者血浆准种的离散率大于PBMCs样本中的离散率,1例患者血浆准种的离散率小于PBMCs样本中的离散率,1例患者历次血浆和PBMCs的平均离散率没有有统计学意义差异,但是这些患者血浆中耐药谱的复杂程度都高于PBMCs样本,提示基因离散率不能代表样本中耐药准种的复杂程度。
     第三部分体外无药物选择压力条件下HIV-1耐药突变的演变
     HIV-1耐药准种在体内药物选择压力下呈现复杂的动态变化和进化,在体外感染细胞的过程中,携带各种耐药突变的病毒准种在靶细胞中生长,在没有药物压力的情况下,病毒产生复杂的变化,有可能发生回复突变,也可能发生各种准种的竞争性生长,最终具有最佳复制能力和复制适应性的病毒能够有效生长,成为在体外稳定传代生长的病毒,这种变化在一定程度上反映了各种突变对病毒造成的复制适应性损失的程度。
     本部分研究通过对接受抗病毒治疗的艾滋病患者HIV-1毒株的体外传代培养,观察体外无药物压力条件下HIV-1耐药毒株的体外生长以及主要耐药突变的演化趋势,从而揭示各种耐药性基因突变对病毒复制能力和复制适应性的影响。我们采集了15例服用拉米夫定+司他夫定+萘韦拉平(3TC+D4T+NVP)的艾滋病患者的外周血单核细胞,用体外共培养的方法分离HIV-1毒株,观察这些毒株在体外无药物压力下的生长情况及耐药基因突变的演变。主要结果如下:
     1.15例患者中病毒载量>1000拷贝/毫升的有8例,均成功分离出稳定传代的原代毒株,对这些毒株的体外复制动力学进行分析,有3株病毒呈快/高型生长方式,有5株呈慢/高型生长方式。
     2.8株病毒中有2株为耐药毒株,所携带的主要耐药突变分别是K103N/K238T和M184V/K103N/Y181C/H221Y,分别对NVP和3TC/NVP高度耐药。无药物压力情况下,携带K103N突变的毒株具有较好的复制适应性,可稳定存在;携带M184V和K103N/Y181C/H221Y的毒株也能够稳定复制;K238T耐药突变稳定性差,易发生回复突变。
     第四部分H221Y突变及与其它突变联合对NVP耐药作用的研究
     H221Y突变是近年来发现的与NVP治疗相关的的NNRTI类耐药相关突变,在我国接受抗病毒治疗的艾滋病患者中广泛流行。本论文第二部分研究中6例患者均出现了该突变,并且该突变在准种中出现的频率多大于30%,到随访后期(初始治疗31个月后)出现频率多大于90%。值得注意的是,该部分研究中H221Y突变常伴随Y181C突变一起出现。此外,本论文第三部分分离出的原代耐药毒株HNNY15携带的NNRTI耐药突变组合为K103N/Y181C/H221Y,并且该突变组合在体外无药物压力下可稳定传代。目前,H221Y突变对耐药作用尚没有确定,对H221Y突变与其它突变的相互作用研究的也很少。
     本部分研究的目的是阐明H221Y突变单独及在各种NNRTI耐药突变组合中对耐药的作用。将来自患者的携带耐药突变的pol区646bp的基因片段连接至pNL4-3骨架质粒,在此基础上进行H221Y和(/或)Y181C的定点回复诱变,包装出携带各种NNRIs耐药突变组合的毒株,在TZM-bl细胞上进行NVP表型耐药检测和分析,结果和结论如下:
     1.构建和包装出20株携带不同突变组合的HIV毒株,分别是:以K101Q为基础的4株病毒,携带的突变分别是K101Q/Y181C/H221Y(1-1)、K101Q/Y181C(1-2)、K101Q/H221Y(1-3)、K101Q(1-4);以K101E为基础的4株病毒,携带的突变分别是K101E/Y181C/H221Y(2-1)、K101E/Y181C(2-2)、K101E/H221Y(2-3)、K101E(2-4);以V179E为基础的4株病毒,携带的突变分别是V179E/Y181C/H221Y(3-1)、V179E/Y181C(3-2)、V179E/H221Y(3-3)、V179E(3-4);以V179D为基础的4株病毒,携带的突变分别是V179D/Y181C/H221Y(4-1)、V179D/Y181C(4-2)、V179D/H221Y(4-3)、V179D(4-4);以K103N为基础的4株病毒,携带的突变分别是K103N/Y181C/H221Y(5-1)、K103N/Y181C(5-2)、K103N /H221Y(5-3)、K103N(5-4)。
     2.测定了12株病毒的TCID50和对NVP的IC50。毒株1-1、1-2、1-3、1-4、4-1、4-2、4-3、4-4、5-1、5-2、5-3、5-4对NVP的IC50分别是108.150±1.909μM、47.807±18.131μM、0.141±0.052μM、0.037±0.010μM、162.633±47.497μM、44.980±12.763μM、0.415±0.014μM、0.142±0.022μM、191.100±91.358μM、89.180±22.656μM、4.408±0.915μM、2.013±0.360μM、0.031±0.005μM。
     3.Y181C突变可大幅度提高毒株对NVP耐药的程度,在6种突变或突变组合(K101Q/H221Y、K101Q、V179D/H221Y、V179D、K103N/H221Y、K103N)的基础上,Y181C可使毒株对NVP的IC50分别提高759.144±41.903倍、1296.979±289.108倍、390.039±101.646倍、312.469±45.255倍、41.879±8.403倍和47.878±4.197倍。
     4.H221Y可在一定程度上增加各种NNRTIs耐药突变组合对NVP的耐药程度。在6种突变或突变组合(K101Q/Y181C、K101Q、V179D/Y181C、V179D、K103N/Y181C、K103N)的基础上,H221Y可使毒株对NVP的IC50分别提高2.237±0.910倍、3.238±0.317倍、3.644±0.469倍、2.969±0.435倍、2.080±0.496倍和2.183±0.091倍。
     5.Y181C/H221Y突变组合使携带K101Q、V179D和K103N突变毒株对NVP的IC50分别提高3444.646±834.542倍、1132.624±180.368倍和100.621±32.478倍。
Human immunodeficiency virus (HIV) is highly variable human pathogen. Under the pressure of the antiviral drugs, HIV can rapidly make drug resistance mutations, resulting in the failure of antiviral therapy (ART). Resistant HIV strains can be disseminated so that they can present in antiretroviral treatment–Na?¨ve populations and compromise initial antiretroviral therapy. Drug resistance has become a very important public health problem, and has become the mostly obstacle of AIDS (acquired immunodeficiency syndrome) prevention and cure. Finding out the molecular evolution rule of HIV drug resistance and comprehending the effect of new drug resistant mutations are bases of comprehensive study of the resistance molecular mechanism, and this can provide a scientific basis for effective prevention and restraint of HIV drug-resistant strains.
     To illustrate the HIV-1 resistance molecular evolution of plasma and peripheral blood lymphocytes (PBMCs) and clarify the contribution of new drug resistant mutations, we developed a series of study on the base of AIDS patients’cohort receiving free ART in countryside of Henan province. First of all, we investigated the development and evolvement of HIV drug resistance among the AIDS patients in countryside of Henan province, part of them instead of second-line antiretroviral regimen, then isolated primary HIV-1 strains from several patients and identified the genotype drug resistance. Afterwards on the basis of plasma and PBMCs samples from partial patients followed up long-term, we revealed the resistant evolutionary relationship of virus quasispecies between plasma and PBMCs through the large number of clone sequencing and genotype resistance analysis. Finally, aim at H221Y, which emerged frequently and had not yet definite phenotype explanation, we elucidated the contributions to drug resistance of H221Y and united with other mutations by constructing serial strains with different drug resistant mutations and phenotypic identification.
     PartⅠDrug resistance study of second-line antiretroviral regimen from AIDS patients receiving ART in countryside of Henan province
     The countryside of Henan province was one of the regions receiving free ART earliest. The patients took the same antiretroviral regimen at the same time and supervised by doctor in rural. Our lab has monitored the HIV drug resistance of this region for 7 years since September 2003. From February 2010, partial patients replaced the first-line antiretroviral regimen with second-line, according to clinical symptoms, viral loads, the numbers of CD4+T lymphocyte, and the results of HIV drug resistance survey.
     77 patients among the ART cohort followed up twice in October 2009 and June 2010, and 154 person-times were investigated and collected plasma. 43 of the 77 patients replaced the antiretroviral regimen with second-line regimen in February to March in 2010; the rest 34 patients still took first-line regimen. Questionnaires related to ART including clinical manifestations, anti-viral management, medication compliance and other socio-demographic characteristics were collected every follow-up, at the same time plasma were collected to detect VL and CD4+T lymphocyte number, in addition genotypes of drug resistance were analyzed. Main results and conclusions include:
     1. VL of regimen changed group declined remarkably (P=0.005) three months later. After replacement, the viral inhibit rate ascended to 65.80% (27/41) from 46.34% (19/41) before replacement. VL of regimen unchanged group declined remarkably too (P<0.005), and the viral inhibit rate ascended to 40.63% (13/32) of second follow-up from 21.86% (7/32) of first follow-up.
     2. The CD4+T lymphocyte number of regimen changed group altered invisibly (P=0.279). 39.53% (17/43) patients’CD4+T lymphocyte numbers exceeded 350cells/μl before regimen transformation, and 44.19% (19/43) after regimen replacement which increased appreciably compared to before regimen instead. The CD4+T lymphocyte number of regimen unchanged group changed unclearly (P=0.608) too. In the first follow-up, 82.35% (28/34) patients’CD4+T lymphocyte number exceeded 350cells/μl before regimen instead, and 70.59% (24/34) in the second follow-up.
     3. Drug resistance rate declined little in second follow-up among both regimen changed and unchanged group. After regimen replacement, drug resistance rate of changed group descended to 6/11 from 7/9 of before regimen instead. As to regimen unchanged group, during second follow-up, drug resistance rate descended to 7/14 from12/20 during first follow-up.
     PartⅡThe polymorphism and molecular evolution of HIV-1 drug resistant quasispecies in plasma RNA and PBMCs DNA
     HIV exists as complex quasispecies in the HIV infection individual. Under different types and intensities of drug selection pressures, HIV-1 drug resistance develops over time and gradually increases as well as the virus composition and distribution of quasispecies are always in the process of dynamic change. The drug resistance populations consist of major and minor resistant HIV strains, and the low-abundance HIV drug resistant variants can out-compete other virus in presence of drug pressure and become the major resistant population. In the process of HIV infection, various changes in the virus genome are continuously recorded in the latent integrate provirus. At the same time, the drug resistant viruses continuously become well established in long-term reservoirs that allow drug resistance to persist. The evolutions of resistant strains are independent in different organizations, and it has been reported that resistant quasispecies distributions are significantly different in plasma and peripheral blood lymphocytes (PBMCs), lymph and nerve tissues. Generally, plasma is considered to reflect instantly the status in vivo and is the appointed sample of drug resistance detection and supervision by World Health Organization. Although molecular evolution of resistant strains in the plasma has been studied more profoundly, evolutionary characteristics of resistant virus quasispecies in plasma and peripheral blood lymphocytes(PBMCs) of long-term treatment patients and their dynamic evolution relations has no systematic research.
     The objective of this study was to illustrate the molecular evolution rule of HIV-1 drug resistance quasispecies in plasma and peripheral blood lymphocytes (PBMCs) and to reveal the resistance evolutionary relationship between plasma and PBMCs virus quasispecies under the special rural anti-viral treatment mode through the large number of clone sequencing, genotype resistance analysis from AIDS patients receiving long-term ART in rural parts of Henan province. We investigated 6 AIDS patients from the drug resistance supervision cohort in the rural part of Henan province who had received ART for a long time. Follow-up times of these patients were at least 8 times, while the most was 10 times and cumulative follow-up was 54 times covering 5 years. Questionnaires related to ART including clinical manifestations, anti-viral management, medication compliance and other socio-demographic characteristics were collected every follow-up. 2162bp gene fragments (2147 ~ 4308) containing HIV-1 protease and reverse transcriptase regions of plasma and PBMCs were obtained by RT-PCR or direct PCR respectively, and then cloned and sequenced. 20-30 clones selected from each sample were sequenced. 1588 sequences were obtained in which 967 sequences from plasma samples and the others from PBMCs. Drug resistant mutations and evolution were analyzed. The head results and conclusions as follow:
     1. The distribution of drug resistant quasispecies in plasma and PBMCs. The varieties of PIs (protease inhibitors), NRTIs (nucleoside reverse transcriptase inhibitors) mutations and NNRTIs (non-nucleoside reverse transcriptase inhibitors) mutations in plasma are more than those in PBMCs. In most patients, drug resistant mutations coexisting in plasma and PBMCs often occur with high-frequency, which reflects that predominant drug resistant mutations of two types of tissue are similar.
     2. The evolvement of drug resistant quasispecies in plasma and PBMCs. In most patients, PI mutations, NRTI mutations and NNRTI mutations in plasma arises earlier than those in PBMCs. In few patients, HIV-1 drug resistant evolution in plasma and PBMCs are obviously differential. Evolution of HIV-1 NRTIs and NNRTIs drug resistance-associated mutations patterns of the 6 patients shows gradually accumulative process along with long-term treatment, which leads to further drug resistance.
     3. The characteristics of NRTIs drug resistant patterns in plasma and PBMCs. T215Y appears solely or with other mutations at the beginning of follow-up in all samples. The combination of T215Y and M41L occurs early and stays the whole course of supervision. L210W comes into the NRTI mutation patterns at medium or terminal follow-up. Other piled mutations include D67N, K70R and E44D (A). In very few patients, T215Y tends to be replaced by T215F. The drug resistant degree of NRTI mutation patterns relates with mutation category of the patterns, that is, patterns with more mutations always show higher drug resistance.
     4. The characteristics of NNRTIs drug resistant patterns in plasma and PBMCs. By and large, NNRTIs mutation patterns are simpler than NRTIs mutation patterns, and frequently include fewer mutations. Y181C exists in all samples except plasma of patient 2 & 4, moreover, the mutation can stay steadily the entire course once emergence. K103N, as the other important NNRTI mutation, occurs in patient 2, 4, 5 and 6, remarkably it appears transitorily in plasma of patient 4 and PBMCs of patient 5, but within other samples, the mutation can stay stably till the end of follow-up in case appearance. H221Y emerges in almost all samples except PBMCs of patient 5, however, the occurrence time of the mutation varies from sample to sample, and same to Y181C, the mutation can stay steadily the course once emergence. NNRTI mutations occur earlier and always show higher drug resistance to NVP, especially, single mutation can lead to high drug resistance to NVP.
     5. The characteristics of MDR (multidrug resistance) drug resistant patterns in plasma and PBMCs. Multi-drug resistant patterns of plasma are more complicated than those of PBMCs, the kinds of each multi-drug resistant patterns of plasma are more complex than those of PBMCs too. NRTI+NNRTI double drug resistant patterns are the most primary form, which happen in all samples. In the next place, PI+NRTI+NNRTI trinal drug resistant patterns appear in all plasma of the six patients. Multi-drug resistant patterns often show higher drug resistant degree.
     6. The mean distance of MDR (multidrug resistance) drug resistant patterns in plasma and PBMCs. Mean distance of plasma quasispecies is higher than that of PBMCs in patient 1 and 5, and it is lower in patient 3, and it is no statistical difference in patient 4. However, in these patients, drug resistant patterns of plasmas are more intricate than that of PBMCs, which indicates that mean distance can not represent the complexity degree of the drug resistance.
     PartⅢEvolvement of HIV-1 Drug Resistant mutations in vitro without drug pressure
     HIV-1 drug resistant quasispecies show complex dynamic transformation and evolvement in vivo under the pressure of drugs. In the process of infecting cells in vitro, virus quasispecies with various of drug resistant mutations grow in target cells, and the virus change complicatedly without the pressure of drugs, at some times they can revert to wild type or compete each other among the quasispecies, ultimately the virus with best replication capacity and fitness can vegetate richly and become exist stably, thus movement reflects the trauma degree of fitness because of different mutations.
     To reveal the impact of drug resistant mutations on virus replication capacity and fitness, we observed replication dynamics of the drug resistant HIV-1 isolates and evolvement tendency of the drug resistant mutations in vitro without drug pressure through culturing strains in vitro, which isolated from AIDS patients receiving ART. PBMCs from 15 AIDS patients receiving ART (3TC+D4T+NVP) were collected, and the primary HIV-1 stains were separated utilizing co-cultivated with PBMCs from normal people. Virus growth and the evolution of the drug resistant mutations in vitro without drug pressure were observed. Primary results include:
     1. Eight strong positive strains were isolated successfully from 8/15 AIDS patients with viral loads higher than 1000 copies/ml, and the replication dynamics were analyzed. Three strains grew rapidly/highly and the other five strains grew slowly/highly.
     2. Two of them were drug resistant strains. Drug resistant mutations of the two strains were respectively K103N/K238T and M184V/K103N/Y181C/H221Y which show high-level resistance to NVP and 3TC/NVP, respectively. Strains with K103N shows superior fitness and can exist steadily without drug pressure. Strains with M184V and K103N/Y181C/H221Y can also replicate stably in vitro without drug pressure. NNRTIs mutation K238T reproduces astatically and reverts gradually to K238.
     PartⅣThe impact of H221Y mutations and combined with other mutations on NVP drug resistance
     H221Y was found to be a NNRTIs mutation in recent years which conferring resistance to NVP, and had wild prevalence in our country. All the 6 patients occurred H221Y in partⅡof this paper, and the occurrence frequency within quasispecies always exceeded 30%, especially, at follow-up anaphase, the frequency could exceed 90%. Remarkably, H221Y often appeared together with Y181C in this part. In addition, one primary HIV-1 drug resistant stain in partⅢcarried K103N/Y181C/H221Y mutation combination, and the strain can replicate stably in vitro in absence of drugs. Now, the impact of H221Y on drug resistance is still faint, and the interaction of H221Y with other mutations is yet indistinct.
     Objective of this part is to clarify the impact of H221Y by itself and combination with other mutations on drug resistance. 646bp HIV-1 pol gene fragments were embedded pNL4-3 bone plasmid, and H221Y and (/or) Y181C were reverted to wild type by site-directed mutagenesis, then strains with various mutations were packed, in the end phenotype analysis was analyzed on TZM-bl cells. The results as follows:
     1. 20 strains with different drug resistant mutation combinations were constructed, these mutation combinations include K101Q/Y181C/H221Y (1-1), K101Q/Y181C (1-2), K101Q/H221Y (1-3), K101Q (1-4), K101E/Y181C/H221Y (2-1), K101E/Y181C (2-2), K101E/H221Y (2-3), K101E (2-4), V179E/Y181C/H221Y (3-1), V179E/Y181C (3-2), V179E/H221Y (3-3), V179E (3-4), V179D/Y181C/H221Y (4-1), V179D/Y181C (4-2), V179D/H221Y (4-3), V179D (4-4), K103N/Y181C/H221Y (5-1), K103N/Y181C (5-2), K103N /H221Y (5-3), K103N (5-4).
     2. TCID50 and IC50 to NVP of 12 strains were detected. The IC50 of strain 1-1, 1-2, 1-3, 1-4, 4-1, 4-2, 4-3, 4-4, 5-1, 5-2, 5-3 and 5-4 to NVP were separately 108.150±1.909μM, 47.807±18.131μM, 0.141±0.052μM, 0.037±0.010μM, 162.633±47.497μM, 44.980±12.763μM, 0.415±0.014μM, 0.142±0.022μM, 191.100±91.358μM, 89.180±22.656μM, 4.408±0.915μM, 2.013±0.360μM and 0.031±0.005μM.
     3. Y181C conferred extraordinary resistance to NVP. As to mutation combinations such as K101Q/H221Y, K101Q, V179D/H221Y, V179D, K103N/H221Y, K103N, the IC50 to NVP improved by Y181C were respectively 759.144±41.903, 1296.979±289.108, 390.039±101.646, 312.469±45.255, 41.879±8.403 and 47.878±4.197 times.
     4. H221Y could improve the resistance degree of all mutation combinations to NVP to a certain extent. As to mutation combinations such as K101Q/Y181C, K101Q, V179D/Y181C, V179D, K103N/Y181C, K103N, the IC50 to NVP improved by H221Y were respectively 2.237±0.910, 3.238±0.317, 3.644±0.469, 2.969±0.435, 2.080±0.496 and 2.183±0.091 times.
     5. According to K101Q, V179D and K103N, times of IC50 to NVP improved by Y181C/H221Y were respectively 3444.646±834.542, 1132.624±180.368 and 100.621±32.478.
引文
1.Hong-Tao Xu, Jorge L Martinez-Cajas, Michel L Ntemgwa, Effects of the K65R and K65R/M184V reverse transcriptase mutations in subtype C HIV on enzyme function and drug Resistance. Retrovirology 2009, 6:14:
    2.Fran(?)ois Clavel,and Allan J. Hance, HIV Drug Resistance N Engl J Med , 2004 350( 10 ) :1023-1035
    3.Daniel R. Kuritzkes HIV Resistance: Frequency, Testing, Mechanisms,International AIDS Society–USA Topics in HIV Medicine,2007,15(15):150- 154
    4.Cleo G. Anastassopoulou, Thomas J. Ketas, Per Johan Klasse,et al. Moore1Resistance to CCR5 inhibitors caused by sequence changes in the fusion peptide of HIV-1 gp41. PNAS, 2009,. 106: 135318–5323
    5.Carvajal-Rodríguez A, Crandall KA, Posada D. Recombination favors the evolution of drug resistance in HIV-1 during antiretroviral therapy. Infect Genet Evol. 2007, 7(4): 476–483.
    6.Stingele K, Haas J, Zimmermann T, et al. Independent HIV replication in paired CSF and blood viral isolates during antiretroviral therapy. Neurology. 2001, 56(3): 355-361.
    7.Le T, Chiarella J, Simen BB, et al. Low-abundance HIV drug-resistant viral variants in treatment-experienced persons correlate with historical antiretroviral use. PLoS ONE. 2009, 29; 4( 6) e6079:1-8.
    8.Johnson JA, Li JF, Wei X, et al. Minority HIV-1 drug resistance mutations are present in antiretroviral treatment-na(?)ve populations and associate with reduced treatment efficacy. PLoS Med. 2008, 5(7):e158: 1112-1122.
    9.Charpentier C, Dwyer DE, Mammano F, et al. Role of minority populations of human immunodeficiency virus type 1 in the evolution of viral resistance to protease inhibitors. J Virol. 2004, 78(8): 4234–4247.
    10.Carvajal-Rodríguez A, Crandall KA, Posada D. Recombination favors the evolution of drug resistance in HIV-1 during antiretroviral therapy. Infect Genet Evol. 2007, 7(4): 476–483.
    11.Cong ME, Heneine W, García-Lerma JG. The fitness cost of mutations associated with human immunodeficiency virus type 1 drug resistance is modulated by mutational interactions. J Virol. 2007, 81(6): 3037–3041.
    12.Dykes C, Demeter LM. Clinical significance of human immunodeficiency virus type 1 replication fitness. Clin Microbiol Rev. 2007, 20(4): 550-578.
    13.Troyer RM, Collins KR, Abraha A, et al. Changes in human immunodeficiency virus type 1 fitness and genetic diversity during disease progression. J Virol. 2005, 79(14): 9006-9018.
    14.Paintsil E, Margolis A, Collins JA, et al. The contribution of HIV fitness to the evolution pattern of reverse transcriptase inhibitor resistance. J Med Virol. 2006, 78(4): 425-430.
    15.Xu HT, Martinez-Cajas JL, Ntemgwa ML, et al. Effects of the K65R and K65R/M184V reverse transcriptase mutations in subtype C HIV on enzyme function and drug resistance. Retrovirology. 2009, 6:14.
    16.Kuritzkes DR. HIV resistance: frequency, testing, mechanisms. Top HIV Med. 2007, 15(5): 150-154.
    17.Ghosn J, Chaix ML, Delaugerre C. HIV-1 resistance to first- and second-generation non-nucleoside reverse transcriptase inhibitors. AIDS Rev. 2009, 11(3): 165-173.
    18.Henry KR, Weber J, Qui(?)ones-Mateu ME, et al. The impact of viral and host elements on HIV fitness and disease progression. Curr HIV/AIDS Rep. 2007, 4(1): 36-41.
    19.Weber J, Henry KR, Arts EJ, et al. Viral fitness: relation to drug resistance mutations and mechanisms involved: nucleoside reverse transcriptase inhibitor mutations. Curr Opin HIV AIDS. 2007, 2(2): 81-87.
    20.Sarafianos SG, Marchand B, Das K, et al. Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol. 2009, 385(3): 693-713.
    21.de Béthune MP. Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: a review of the last 20 years (1989-2009). Antiviral Res. 2010, 85(1): 75-90.
    22.Fischetti L, Danso K, Dompreh A, et al. Vertical transmission of HIV in Ghanaian women diagnosed in cord blood and post-natal samples. J Med Virol. 2005, 77(3): 351-359.
    23.Robert W. Shafer,Jonathan M. Schapiro:HIV-1 Drug Resistance Mutations: an Updated Framework for the Second Decade of HAART. AIDS Rev. 2008 ; 10(2): 67–84.
    24.Victoria A. Johnson, Fran(?)oise Brun-Vézinet, Bonaventura Clotet,et al Update of the Drug Resistance Mutations in HIV-1: International AIDS Society–USA Topics in HIV Medicine, 2007, 15 (4) 119- 125.
    25.Bennett DE, Camacho RJ, Otelea D, et al. Drug resistance mutations for surveillance of transmitted HIV-1 drug-resistance: 2009 update. PLoS One. 2009;4(3):e4724. Epub 2009 Mar 6.
    26.Shafer RW, Rhee SY, Bennett DE. Consensus drug resistance mutations for epidemiological surveillance: basic principles and potential controversies. Antivir Ther. 2008;13 Suppl 2:59-68.
    27.Brehm JH, Koontz D, Meteer JD, et al: Selection of mutations in the connection and RNaseH domains of human immunodeficiency virus type 1 reverse transcriptase that increase resistance to 3′-azi-do-3′-dideoxythymidine. J Virol, 2007, 81(15):7852-7859
    28.Martin S. Hirsch, Huldrych F. Gunthard, Jonathan M. Schapiro,Antiretroviral Drug Resistance Testing in AdultHIV-1 Infection: 2008 Recommendations of an International AIDS Society–USA Panel. Clinical Infectious Diseases 2008; 47:266–85
    29.Mink M, Mosier SM, Janumpalli S, et al. Impact of human immunodeficiency virus type 1 gp41 amino acid substitutions selected during enfuvirtide treatment on gp41 binding and antiviral potency of enfuvirtide in vitro. J Virol. 2005 Oct;79(19):12447-54.
    30.Jenwitheesuk E, Samudrala R. Heptad-repeat-2 mutations enhance the stability of the enfuvirtide-resistant HIV-1 gp41 hairpin structure. Antivir Ther. 2005;10(8):893-900.
    31.Zaccarelli M, Perno CF, Forbici F, et al. Using a database of HIV patients undergoing genotypic resistance test after HAART failure to understand the dynamics of M184V mutation. Antivir Ther. 2003, 8(1): 51-56..
    32.Bakhouch K, Oulad-Lahcen A, Bensghir R, et al. The prevalence of resistance-associated mutations to protease and reverse transcriptase inhibitors in treatment-na(?)ve (HIV1)-infected individuals in Casablanca, Morocco. J Infect Dev Ctries. 2009 Jun 1;3(5):380-91.
    33.Bennett DE, Camacho RJ, Otelea D, et al. PLoS One. Drug resistance mutations for surveillance of transmitted HIV-1 drug-resistance: 2009 update. 2009;4(3):e4724. Epub 2009 Mar 6.
    34.Li J, Li L, Li HP, et al. Competitive capacity of HIV-1 strains carrying M184I or Y181I drug-resistant mutations. Chin Med J (Engl). 2009, 122(9): 1081-1086.
    35.Cai L, Jiang S. Drug-resistant viruses may repair impaired fitness by mutations outside the drug target site. Future Microbiol. 2009 Jun;4(5):507-9.
    36.Lu J, Sista P, Giguel F, et al. Relative replicative fitness of human immunodeficiency virus type 1 mutants resistant to enfuvirtide (T-20). J Virol. 2004 May;78(9):4628-37.
    37.Palmer S, Boltz V, Maldarelli F, et al. Selection and persistence of non-nucleoside reverse transcriptase inhibitor-resistant HIV-1 in patients starting and stopping non-nucleoside therapy. AIDS. 2006, Mar 20(5): 701-710.
    38.Ghosn J, Chaix ML, Delaugerre C. HIV-1 resistance to first- and second-generation non-nucleoside reverse transcriptase inhibitors. AIDS Rev. 2009 Jul-Sep;11(3):165-73.
    39.Lapadula G, Calabresi A, Castelnuovo F, et al. Prevalence and risk factors for etravirine resistance among patients failing on non-nucleoside reverse transcriptase inhibitors. Antivir Ther. 2008;13(4):601-5.
    40.Lecossier D, Shulman NS, Morand-Joubert L, et al. Detection of minority populations of HIV-1 expressing the K103N resistance mutation in patients failing nevirapine. J Acquir Immune Defic Syndr. 2005, 38(1): 37-42.
    41.Martins JZ, Chappey C, Haddad M, et al. Epidemics. Principal component analysis of general patterns of HIV-1 replicative fitness in different drug environments. 2010 Jun;2(2):85-91. Epub 2010 Mar 31.
    42.Weber J, Henry KR, Arts EJ, et al. Viral fitness: relation to drug resistance mutations and mechanisms involved: nucleoside reverse transcriptase inhibitor mutations. Curr Opin HIV AIDS. 2007 Mar;2(2):81-7.
    43.Dykes C, Wu H, Sims M, et al. Human immunodeficiency virus type 1 protease inhibitor drug-resistant mutants give discordant results when compared in single-cycle and multiple-cycle fitness assays. J Clin Microbiol. 2010 Nov;48(11):4035-43. Epub 2010 Sep 8.
    44.Shafer RW, Schapiro JM. HIV-1 drug resistance mutations: an updated framework for the second decade of HAART. AIDS Rev. 2008, 10(2): 67–84.
    45.Johnson VA, Brun-Vezinet F, Clotet B, et al. Update of the Drug Resistance Mutations in HIV-1. Top HIV Med. 2008, 16(5): 138-145.
    46.Martinez-Picado J, Martínez MA. HIV-1 reverse transcriptase inhibitor resistance mutations and fitness: a view from the clinic and ex vivo. Virus Res. 2008 Jun;134(1-2):104-23. Epub 2008 Mar 4.
    47.Johnson VA, Brun-Vezinet F, Clotet B, et al. Update of the drug resistance mutations in HIV-1: December 2009. Top HIV Med. 2009, 17(5): 138-145.
    48.Brehm JH, Koontz D, Meteer JD, et al: Selection of mutations in the connection and RNaseH domains of human immunodeficiency virus type 1 reverse transcriptase that increase resistance to 3′-azi-do-3′-dideoxythymidine. J Virol. 2007, 81(15): 7852-7859.
    49.Hirsch MS, Günthard HF, Schapiro JM, et al. Antiretroviral drug resistance testing in adult HIV-1 infection: 2008 recommendations of an International AIDS Society-USA panel. Clin Infect Dis. 2008, 47(2): 266-285.
    50.Shafer RW, Rhee SY, Pillay D, et al. HIV-1 protease and reverse transcriptase mutations for drug resistance surveillance. AIDS. 2007 Jan 11;21(2):215-23.
    51.Reuman EC, Rhee SY, Holmes SP, et al. Constrained patterns of covariation and clustering of HIV-1 non-nucleoside reverse transcriptase inhibitor resistance mutations.J Antimicrob Chemother. 2010 Jul;65(7):1477-85. Epub 2010 May 12.
    52.Llibre JM, Santos JR, Clotet B. [Etravirine: genetic barrier and resistance development]. Enferm Infecc Microbiol Clin. 2009 Dec;27 Suppl 2:32-9.
    53.Gatanaga H, Ode H, Hachiya A, et al. Combination of V106I and V179D polymorphic mutations in human immunodeficiency virus type 1 reverse transcriptase confers resistance to efavirenz and nevirapine but not etravirine. Antimicrob Agents Chemother. 2010 Apr;54(4):1596-602. Epub 2010 Feb 1.
    54.Tambuyzer L, Azijn H, Rimsky LT, et al. Compilation and prevalence of mutations associated with resistance to non-nucleoside reverse transcriptase inhibitors. Antivir Ther. 2009, 14(1): 103-109.
    55.Jordan MR, Bennett DE, Bertagnolio S, et al. World Health Organization surveys to monitor HIV drug resistance prevention and associated factors in sentinel antiretroviral treatment sites. Antivir Ther. 2008, 13(Suppl2): 15-23.
    56.Bannister WP, Ruiz L, Cozzi-Lepri A, et al. Comparison of genotypic resistance profiles and virological response between patients starting nevirapine and efavirenz in EuroSIDA. AIDS. 2008 Jan 30;22(3):367-76.
    57.Stellbrink HJ. Etravirine (TMC-125): The evidence for its place in the treatment of HIV-1 infection. Core Evid. 2010 Jun 15;4:149-58.
    58.Ghosn J, Chaix ML, Delaugerre C. HIV-1 resistance to first- and second-generation non-nucleoside reverse transcriptase inhibitors. AIDS Rev. 2009 Jul-Sep;11(3):165-73.
    59.Hinkley T, Martins J, Chappey C, et al. Epub 2011 Mar 27. A systems analysis of mutational effects in HIV-1 protease and reverse transcriptase. Nat Genet. 2011 May;43(5):487-9.
    60.Palmer S, Kearney M, Maldarelli F, et al. Multiple, linked human immunodeficiency virus type 1 drug resistance mutations in treatment- experienced patients are missed by standard genotype analysis. J Clin Microbiol. 2005, 43(1): 406-413.
    61.Quan Y, Brenner BG, Dascal A, et al. Highly diversified multiply drug-resistant HIV-1 quasispecies in PBMCs: a case report. Retrovirology. 2008, 30(5): 43-48.
    62.Riddler SA, Haubrich R, DiRienzo AG, et al. Class-sparing regimens for initial treatment of HIV-1 infection. The New England Journal of Medicine 2008;358(20):2095-106.
    63.Charpentier C, Gody JC, Mbitikon O, et al. Virological response and resistance profiles after
    18 to 30 months of first- or second/third-line antiretroviral treatment: a cross-sectional evaluation in HIV-1-infected children living in the Central African Republic. AIDS Res Hum Retroviruses. 2011 May 22. [Epub ahead of print]
    64.Gupta R, Hill A, Sawyer AW, et al. Emergence of drug resistance in HIV type 1-infected patients after receipt of first-line highly active antiretroviral therapy: a systematic review of clinical trials. Clin Infect Dis. 2008 Sep 1;47(5):712-22.
    65.Li J-y, Li H-p, Li L, et al. Prevalence and evolution of drug resistance HIV-1 variants in Henan, China. Cell Res 2005;15(11-12):843-9.
    66.Maggiolo F. Efavirenz: a decade of clinical experience in the treatment of HIV. J Antimicrob Chemother. 2009 Nov;64(5):910-28. Epub 2009 Sep 18.
    67.Cvetkovic RS, Goa KL. Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs. 2003;63(8):769-802.
    68.He M, Zheng YH, Zhou HY, et al. Prospective Observation for Seven-Year's Highly Active Antiretroviral Therapy in Chinese HIV-1 Infected Patients. Curr HIV Res. 2011 May 18. [Epub ahead of print]
    69.Soriano V, Arastéh K, Migrone H, et al. Nevirapine versus atazanavir/ritonavir, each combined with tenofovir disoproxil fumarate/emtricitabine, in antiretroviral-naive HIV-1 patients: the ARTEN Trial. Antivir Ther. 2011;16(3):339-48.
    70.Ekstrand ML, Shet A, Chandy S, et al. Suboptimal adherence associated with virological failure and resistance mutations to first-line highly active antiretroviral therapy (HAART) in Bangalore, India. Int Health. 2011 Mar 1;3(1):27-34.
    71.Li JZ, Paredes R, Ribaudo HJ, et al. Low-frequency HIV-1 drug resistance mutations and risk of NNRTI-based antiretroviral treatment failure: a systematic review and pooled analysis. JAMA. 2011 Apr 6;305(13):1327-35.
    72.Phillips AN, Pillay D, Garnett G, et al. Effect on transmission of HIV-1 resistance of timing of implementation of viral load monitoring to determine switches from first to second-line antiretroviral regimens in resource-limited settings. AIDS. 2011 Mar 27;25(6):843-50.
    73.Humphreys EH, Chang LW, Harris J. Antiretroviral regimens for patients with HIV who fail first-line antiretroviral therapy. Cochrane Database Syst Rev. 2010 Jun 16;(6):CD006517.
    74.Wallis CL, Mellors JW, Venter WD, et al. Protease Inhibitor Resistance Is Uncommon in HIV-1 Subtype C Infected Patients on Failing Second-Line Lopinavir/r-Containing Antiretroviral Therapy in South Africa. AIDS Res Treat. 2011;2011:769627. Epub 2010 Dec 2.
    75.May Myat Win, Maek-A-Nantawat W, Phonrat B, et al. 2011 Jan-Feb;10(1):57-63. Virologic and Immunologic Outcomes of the Second-Line Regimens of Antiretroviral Therapy Among HIV-Infected Patients in Thailand. J Int Assoc Physicians AIDS Care (Chic).
    76.Taylor BS, Hunt G, Abrams EJ, et al. [Epub ahead of print] Rapid Development of Antiretroviral Drug Resistance Mutations in HIV-Infected Children Less Than Two Years of Age Initiating Protease Inhibitor-Based Therapy in South Africa. AIDS Res Hum Retroviruses. 2011 Mar 23.
    77.Phillips AN, Pillay D, Garnett G, et al. Effect on transmission of HIV-1 resistance of timing of implementation of viral load monitoring to determine switches from first to second-line antiretroviral regimens in resource-limited settings. AIDS. 2011 Mar 27;25(6):843-50.
    78.Phillips AN, Pillay D, Miners AH, et al. Outcomes from monitoring of patients on antiretroviral therapy in resource-limited settings with viral load, CD4 cell count, or clinical observation alone: a computer simulation model. Lancet. 2008 Apr 26;371(9622):1443-51.
    79.Kantor R, Diero L, Delong A, et al. Misclassification of first-line antiretroviral treatment failure based on immunological monitoring of HIV infection in resource-limited settings. Clin Infect Dis. 2009 Aug 1;49(3):454-62.
    80.Riddler SA, Haubrich R, DiRienzo AG, et al. Class-sparing regimens for initial treatment of HIV-1 infection. The New England Journal of Medicine 2008;358(20):2095-106.
    81.Li J-y, Li H-p, Li L, et al. Prevalence and evolution of drug resistance HIV-1 variants in Henan, China. Cell Res 2005;15(11-12):843-9.
    82.J Acquir Immune Defic Syndr. 2010 Apr 1;53(4):480-4. Varied patterns of HIV-1 drug resistance on failing first-line antiretroviral therapy in South Africa. Wallis CL, Mellors JW, Venter WD, Sanne I, Stevens W.
    83.Marcelin AG, Delaugerre C, Wirden M, et al. Thymidine analogue reverse transcriptase inhibitors resistance mutations profiles and association to other nucleoside reverse transcriptase inhibitors resistance mutations observed in the context of virological failure. JMed Virol. 2004, 72(1): 162-165.
    84.Gupta R, Hill A, Sawyer AW, et al. Emergence of drug resistance in HIV type 1-infected patients after receipt of first-line highly active antiretroviral therapy: a systematic review of clinical trials. Clin Infect Dis. 2008 Sep 1;47(5):712-22.
    85.Kuritzkes DR, Quinn JB, Benoit SL, et al. Drug resistance and virologic response in NUCA 3001, a randomized trial of lamivudine (3TC) versus zidovudine (ZDV) versus ZDV plus 3TC in previously untreated patients. AIDS. 1996, 10(9): 975-981.
    86.de Jong MD, Veenstra J, Stilianakis NI, et al. Host-parasite dynamics and outgrowth of virus containing a single K70R amino acid change in reverse transcriptase are responsible for the loss of human immunodeficiency virus type 1 RNA load suppression by zidovudine. Proc Natl Acad Sci USA. 1996, 93(11): 5501-5506.
    87.Lataillade M, Chiarella J, Yang R, et al. Prevalence and clinical significance of HIV drug resistance mutations by ultra-deep sequencing in antiretroviral-na?ve subjects in the CASTLE study. PLoS One. 2010 Jun 3;5(6):e10952.
    88.Margeridon-Thermet S, Shafer RW. Comparison of the Mechanisms of Drug Resistance among HIV, Hepatitis B, and Hepatitis C. Viruses. 2010 Dec 1;2(12):2696-2739.
    89.Deval J, Selmi B, Boretto J, et al. The molecular mechanism of multidrug resistance by the Q151M human immunodeficiency virus type 1 reverse transcriptase and its suppression using alpha-boranophosphate nucleotide analogues. J Biol Chem. 2002, 277(44): 42097-42104.
    90.Ray AS, Basavapathruni A, Anderson KS. Mechanistic studies to understand the progressive development of resistance in human immunodeficiency virus type 1 reverse transcriptase to abacavir. J Biol Chem. 2002, 277(43): 40479-40490.
    91.Jeffrey JL, Feng JY, Qi CC, et al. Dioxolane guanosine 5'-triphosphate, an alternative substrate inhibitor of wild-type and mutant HIV-1 reverse transcriptase. Steady state and pre-steady state kinetic analyses. J Biol Chem. 2003, 278(21): 18971-18979.
    92.Zagordi O, Klein R, D?umer M, et al. Error correction of next-generation sequencing data and reliable estimation of HIV quasispecies. Nucleic Acids Res. 2010 Nov 1;38(21):7400-9. Epub 2010 Jul 29.
    93.Sluis-Cremer N, Ross, Ted .Editorial: HIV-1 Reverse Transcriptase Inhibitors: Drug Resistance and Drug Development. Current Pharmaceutical Design. 2006, 12: 1809-1810.
    94 . Basavapathruni A, Anderson KS. Developing novel nonnucleoside HIV-1 reverse transcriptase inhibitors: beyond the butterfly. Curr Pharm Des. 2006, 12: 1857-1865.
    95.Deeks SG. International perspectives on antiretroviral resistance. Nonnucleoside reverse transcriptase inhibitor resistance. J Acquir Immune Defic Syndr. 2001, 26 Suppl 1: S25-33.
    96.Delaugerre C, Rohban R, Simon A, et al. Resistance profile and cross-resistance of HIV-1 among patients failing a non-nucleoside reverse transcriptase inhibitor-containing regimen. J Med Virol. 2001, 65: 445-448.
    97.Bacheler LT, Anton ED, Kudish P, et al. Human immunodeficiency virus type 1 mutations selected in patients failing efavirenz combination therapy. Antimicrob Agents Chemother. 2000, 44: 2475-2484.
    98.Casado JL, Hertogs K, Ruiz L, et al. Non-nucleoside reverse transcriptase inhibitor resistance among patients failing a nevirapine plus protease inhibitor-containing regimen. AIDS. 2000, 14: F1-7.
    99.Borman AM, Paulous S, Clavel F. Resistance of human immunodeficiency virus type 1 toprotease inhibitors: selection of resistance mutations in the presence and absence of the drug. J Gen Virol. 1996, 77 ( Pt 3): 419-426.
    100.Gao Q, Gu ZX, Parniak MA, et al. In vitro selection of variants of human immunodeficiency virus type 1 resistant to 3'-azido-3'-deoxythymidine and 2',3'-dideoxyinosine. J Virol. 1992, 66(1): 12-19.
    101.Whitcomb JM, Parkin NT, Chappey C, et al. Broad nucleoside reverse- transcriptase inhibitor cross-resistance in human immunodeficiency virus type 1 clinical isolates. J Infect Dis. 2003, 188(7): 992-1000.
    102.Havlir DV, Eastman S, Gamst A, et al. Nevirapine-resistant human immunodeficiency virus: kinetics of replication and estimated prevalence in untreated patients. J Virol. 1996, 70(11): 7894-7899.
    103.Havlir D, McLaughlin MM, Richman DD. A pilot study to evaluate the development of resistance to nevirapine in asymptomatic human immunodeficiency virus-infected patients with CD4 cell counts of > 500/mm3: AIDS Clinical Trials Group Protocol 208. J Infect Dis. 1995, 172: 1379-1383.
    104. Brehm JH, Koontz D, Meteer JD, et al. Selection of mutations in the connection and RNase H domains of human immunodeficiency virus type 1 reverse transcriptase that increase resistance to 3’-azido-3’-dideoxythymidine. J Virol. 2007, 81: 7852–7859.
    105.Yap SH, Sheen CW, Fahey J, et al. N348I in the connection domain of HIV-1 reverse transcriptase confers zidovudine and nevirapine resistance. PLoS Med. 2007, 4(12): e335.
    106.Wei F, Wang X, Liu L, et al. Characterization of HIV Type 1 env Gene in Cerebrospinal Fluid and Blood of Infected Chinese Patients. AIDS Res Hum Retroviruses. 2011 Mar 27. [Epub ahead of print]
    107.Knapp DJ, Harrigan PR, Poon AF, et al. In vitro selection of clinically relevant bevirimat resistance mutations revealed by "deep" sequencing of serially passaged, quasispecies-containing recombinant HIV-1. J Clin Microbiol. 2011 Jan;49(1):201-8. Epub 2010 Nov 17.
    108.Edo-Matas D, van Gils MJ, Bowles EJ, et al. Genetic composition of replication competent clonal HIV-1 variants isolated from peripheral blood mononuclear cells (PBMC), HIV-1 proviral DNA from PBMC and HIV-1 RNA in serum in the course of HIV-1 infection. Virology. 2010 Sep 30;405(2):492-504. Epub 2010 Jul 17.
    109.Corvasce S, Violin M, Romano L, et al. Evidence of differential selection of HIV-1 variants carrying drug-resistant mutations in seroconverters. Antivir Ther. 2006;11(3):329-34.
    110.Polilli E, Parruti G, Cosentino L, et al. Rapid and persistent selection of the K103N mutation as a majority quasispecies in a HIV1-patient exposed to efavirenz for three weeks: a case report and review of the literature. J Med Case Reports. 2009 Sep 18;3:9132.
    111.Paquet AC, Baxter J, Weidler J, et al. Differences in reversion of resistance mutations to wild-type under structured treatment interruption and related increase in replication capacity. PLoS One. 2011 Jan 31;6(1):e14638.
    112.Edo-Matas D, van Gils MJ, Bowles EJ, et al. Epub 2010 Jul 17. Genetic composition of replication competent clonal HIV-1 variants isolated from peripheral blood mononuclear cells (PBMC), HIV-1 proviral DNA from PBMC and HIV-1 RNA in serum in the course of HIV-1 infection. Virology. 2010 Sep 30;405(2):492-504.
    113.Frost SD, Nijhuis M, Schuurman R, et al. Evolution of lamivudine resistance in humanimmunodeficiency virus type 1-infected individuals: the relative roles of drift and selection. J Virol, 2000, 74(14):6262-6268.
    114.G(?)tte M, Wainberg MA. Biochemical mechanisms involved in overcoming HIV resistance to nucleoside inhibitors of reverse transcriptase. Drug Resist Updat, 2000, 3(1):30-38.
    115. Knapp DJ, Harrigan PR, Poon AF, et al. In vitro selection of clinically relevant bevirimat resistance mutations revealed by "deep" sequencing of serially passaged, quasispecies-containing recombinant HIV-1. J Clin Microbiol. 2011 Jan;49(1):201-8. Epub 2010 Nov 17.
    116. Koval CE, Dykes C, Wang J, et al. Relative replication fitness of efavirenz-resistant mutants of HIV-1: correlation with frequency during clinical therapy and evidence of compensation for the reduced fitness of K103N + L100I by the nucleoside resistance mutation L74V. Virology. 2006 Sep 15;353(1):184-92. Epub 2006 Jun 21.
    117. Palmer S, Boltz V, Maldarelli F, et al. Selection and persistence of non-nucleoside reverse transcriptase inhibitor-resistant HIV-1 in patients starting and stopping non-nucleoside therapy. AIDS. 2006 Mar 21;20(5):701-10.
    118. Abbas UL, Hood G, Wetzel AW, et al. Factors Influencing the Emergence and Spread of HIV Drug Resistance Arising from Rollout of Antiretroviral Pre-Exposure Prophylaxis (PrEP). PLoS One. 2011 Apr 15;6(4):e18165.
    119.Zaccarelli M, Perno CF, Forbici F, et al. Using a database of HIV patients undergoing genotypic resistance test after HAART failure to understand the dynamics of M184V mutation. Antivir Ther, 2003, 8(1):51-56.
    120. Wang J, Bambara RA, Demeter LM, et al. Reduced fitness in cell culture of HIV-1 with nonnucleoside reverse transcriptase inhibitor-resistant mutations correlates with relative levels of reverse transcriptase content and RNase H activity in virions. J Virol. 2010 Sep;84(18):9377-89. Epub 2010 Jun 30.
    121.Li J, Li L, Li HP, et al. Competitive capacity of HIV-1 strains carrying M184I or Y181I drug-resistant mutations. Chin Med J (Engl), 2009, 122(9):1081-1086.
    122. Troyer RM, Lalonde MS, Fraundorf E, et al. A radiolabeled oligonucleotide ligation assay demonstrates the high frequency of nevirapine resistance mutations in HIV type 1 quasispecies of NVP-treated and untreated mother-infant pairs from Uganda. AIDS Res Hum Retroviruses. 2008 Feb;24(2):235-50.
    123. Wang J, Dykes C, Domaoal RA, et al. The HIV-1 reverse transcriptase mutants G190S and G190A, which confer resistance to non-nucleoside reverse transcriptase inhibitors, demonstrate reductions in RNase H activity and DNA synthesis from tRNA(Lys, 3) that correlate with reductions in replication efficiency. Virology. 2006 May 10;348(2):462-74. Epub 2006 Feb 28.
    124.Whitcomb JM, Parkin NT, Chappey C, et al. Broad nucleoside reverse-transcriptase inhibitor cross-resistance in human immunodeficiency virus type 1 clinical isolates. J Infect Dis, 2003, 188(7):992-1000.
    125.Hanna GJ, Johnson VA, Kuritzkes DR, et al. Patterns of resistance mutations selected by treatment of human immunodeficiency virus type 1 infection with zidovudine, didanosine, and nevirapine. J Infect Dis, 2000, 181(3):904-911.
    126.Xu HT, Quan Y, Schader SM, et al. The M230L nonnucleoside reverse transcriptase inhibitor resistance mutation in HIV-1 reverse transcriptase impairs enzymatic function and viralreplicative capacity. Antimicrob Agents Chemother. 2010 Jun;54(6):2401-8. Epub 2010 Mar 22.
    127.Bouzeghoub S, Jauvin V, Pinson P, et al. First observation of HIV type 1 drug resistance mutations in Algeria. AIDS Res Hum Retroviruses. 2008 Nov;24(11):1467-73.
    128.Palmer S, Boltz V, Maldarelli F, et al. Selection and persistence of non-nucleoside reverse transcriptase inhibitor-resistant HIV-1 in patients starting and stopping non-nucleoside therapy. AIDS, 2006, Mar 20(5):701-710.
    129.Lecossier D, Shulman NS, Morand-Joubert L, et al. Detection of minority populations of HIV-1 expressing the K103N resistance mutation in patients failing nevirapine. J Acquir Immune Defic Syndr, 2005, 38(1):37-42.
    130.Johnson VA, Brun-Vezinet F, Clotet B, et al. Update of the drug resistance mutations in HIV-1: December 2009. Top HIV Med. 2009 Dec;17(5):138-45.
    131.Clavel, F., A. J. Hance. 2004. HIV drug resistance. N. Engl. J. Med. 350:1023–1035.
    132.Johnson, V. A., F. Brun-Vezinet, B. Clotet, D. R. Kuritzkes, D. Pillay, J. M. Schapiro, and A. D. D. Richman. 2006. Update of the drug resistance mutations in HIV-1: fall 2006. Top. HIV Med. 14:125–130.
    133.Sarafianos SG, Marchand B, Das K et al. Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol 2009; 385: 693–713.
    134.Geitmann, M., T. Unge, and U. H. Danielson. 2006. Interaction kinetic characterization of HIV-1 reverse transcriptase non-nucleoside inhibitor resistance. J. Med. Chem. 49:2375–2387.
    135.Bannister WP, Ruiz L, Cozzi-Lepri A et al. Comparison of genotypic resistance profiles and virological response between patients starting nevirapine and efavirenz in EuroSIDA. AIDS 2008; 22: 367–76.
    136.Ceccherini-Silberstein F, Svicher V, Sing T et al. Characterization and structural analysis of novel mutations in human immunodeficiency virus type 1 reverse transcriptase involved in the regulation of resistance to nonnucleoside inhibitors. J Virol 2007; 81: 11507–19.
    137.Deforche K, Camacho RJ, Grossman Z et al. Bayesian network analyses of resistance pathways against efavirenz and nevirapine. AIDS 2008; 22: 2107–15.
    138.Ceccherini-Silberstein, F., F. Erba, F. Gago, A. Bertoli, F. Forbici, M. C. Bellocchi, C. Gori, R. D’Arrigo, L. Marcon, C. Balotta, A. Antinori, A. D’Arminio Monforte, and C. F. Perno. 2004. Identification of the minimal conserved structure of HIV-1 protease in the presence or absence of drug pressure. AIDS 18:11–19.
    139.Ceccherini-Silberstein, F., F. Gago, M. Santoro, C. Gori, V. Svicher, F. Rodr(?)′guez-Barrios, R. D’Arrigo, M. Ciccozzi, A. Bertoli, A. D’Arminio Monforte, J. Balzarini, A. Antinori, and C. F. Perno. 2005. High sequence conservation of human immunodeficiency virus type 1 reverse transcriptase under drug pressure despite the continuous appearance of mutations. J. Virol. 79:10718–10729.
    140.Rhee, S. Y., W. J. Fessel, A. R. Zolopa, L. Hurley, T. Liu, J. Taylor, D. P. Nugyen, S. Slome, D. Klein, M. Horberg, J. Flamm, S. Follansbee, J. M. Schapiro, and R. W. Shafer. 2005. HIV-1 protease and reverse-transcriptase mutations: correlations with antiretroviral therapy in subtype B isolates and implications for drug-resistance surveillance. J. Infect. Dis. 192:456–465.
    141.Saracino, A., L. Monno, L. Scudeller, D. C. Cibelli, A. Tartaglia, G. Punzi, C. Torti, S. LoCaputo, S. Mazzotta, G. Scotto, G. Carosi, and G. Angarano. 2006. Impact of unreported HIV-1 reverse transcriptase mutations on phenotypic resistance to nucleoside and non-nucleoside inhibitors. J. Med. Virol. 78:9–17.
    142.Clark, S. A., N. S. Shulman, R. J. Bosch, and J. W. Mellors. 2006. Reverse transcriptase mutations 118I, 208Y, and 215Y cause HIV-1 hypersusceptibility to non-nucleoside reverse transcriptase inhibitors. AIDS 20:981–984.
    143.Shulman, N. S., R. J. Bosch, J. W. Mellors, M. A. Albrecht, and D. A. Katzenstein. 2004. Genetic correlates of efavirenz hypersusceptibility. AIDS 18:1781–1785.
    144.Shulman, N. S., J. Delgado, R. J. Bosch, M. A. Winters, E. Johnston, R. W. Shafer, D. A. Katzenstein, and T. C. Merigan. 2005. Nonnucleoside reverse transcriptase inhibitor phenotypic hypersusceptibility can be demonstrated in different assays. J. Acquir. Immune Defic. Syndr. 39:78–81.
    145.Tozzi, V., M. Zaccarelli, P. Narciso, M. P. Trotta, F. Ceccherini-Silberstein, P. De Longis, G. D’Offizi, F. Forbici, R. D’Arrigo, E. Boumis, and C. F. Perno. 2004. Mutations in HIV-1 reverse transcriptase potentially associated with hypersusceptibility to nonnucleoside reverse-transcriptase inhibitors: effect on response to efavirenz-based therapy in an urban observational cohort. J. Infect. Dis. 189:1688–1695.
    146.Van Laethem, K., M. Witvrouw, C. Pannecouque, B. Van Remoortel, J. C. Schmit, R. Esnouf, J. P. Kleim, J. Balzarini, J. Desmyter, E. De Clercq, and A. M. Vandamme. 2001. Mutations in the non-nucleoside binding-pocket interfere with the multi-nucleoside resistance phenotype. AIDS 15:553–561.
    147.Bacheler, L. T., E. D. Anton, P. Kudish, D. Baker, J. Bunville, K. Krakowski, L. Bolling, M. Aujay, X. V. Wang, D. Ellis, M. F. Becker, A. L. Lasut, H. J. George, D. R. Spalding, G. Hollis, and K. Abremski. 2000. Human immunodeficiency virus type 1 mutations selected in patients failing efavirenz combination therapy. Antimicrob. Agents Chemother. 44:2475–2484.
    148.Azijn H, Tirry I, Vingerhoets J et al. TMC278, a next-generation nonnucleoside reverse transcriptase inhibitor (NNRTI), active against wild-type and NNRTI-resistant HIV-1. Antimicrob Agents Chemother 2010; 54: 718–27.
    149.Moyle G, Boffito M, Manhard K et al. Antiviral activity of RDEA806, a novel HIV non-nucleoside reverse transcriptase inhibitor, in treatment of na¨ive HIV patients. In: XVII International AIDS Conference, Mexico City, 2008. Abstract THAB0403. International AIDS Society, Geneva, Switzerland.
    150.Vingerhoets J, Tambuyzer L, Azijn H et al. Resistance profile of etravirine: combined analysis of baseline genotypic and phenotypic data from the randomized, controlled Phase III clinical studies. AIDS 2010; 24: 503–14.
    151.Zala C, Murphy R, Zhou XJ et al. IDX899, a novel HIV-1 NNRTI with high barrier to resistance, provides suppression of HIV viral load in treatment-na(?)¨ve HIV-1-infected subjects. In: XVII International AIDS Conference, Mexico City, 2008. Abstract THAB0402. International AIDS Society, Geneva, Switzerland.
    152.Gonzales MJ, Wu TD, Taylor J, et al. Extended spectrum of HIV-1 reverse transcriptase mutations in patients receiving multiple nucleoside analog inhibitors. AIDS 2003; 17: 791Y 799.
    153.iang S, Xing H, Si X, Wang Y, Shao Y. Polymorphism of the protease and reversetranscriptase and drug resistance mutation patterns of HIV-1 subtype B prevailing in China. J Acquir Immune Defic Syndr 2006; 42(4): 512-4.
    154.Ren, J., C. Nichols, L. Bird, P. Chamberlein, K. Weaver, S. Short, D. I. Stuart, and D. K. Stammers. 2001. Structural mechanisms of drug resistance for mutations at codons 181 and
    188 in HIV-1 reverse transcriptase and the 11518 CECCHERINI-SILBERSTEIN ET AL. J. VIROL. improved resilience of second generation non-nucleoside inhibitors. J. Mol. Biol. 312:795–802.
    155.Selmi, B., J. Deval, K. Alvarez, J. Boretto, S. Sarfati, C. Guerreiro, and B. Canard. 2003. The Y181C substitution in 3 -azido-3 -deoxythymidine-resistant human immunodeficiency virus, type 1, reverse transcriptase suppresses the ATP-mediated repair of the 3 -azido-3-deoxythymidine 5 -monophosphate- terminated primer. J. Biol. Chem. 278:40464–40472.
    156.Current HIV Research, 2010, 8, 194-198 Suboptimal Etravirine Activity is Common During Failure of Nevirapine-Based Combination Antiretroviral Therapy in a Cohort Infected with Non-B Subtype HIV-1 Babafemi Taiwo*,1, Beth Chaplin2, Sudhir Penugonda1, Seema Meloni2, Sulaimon Akanmu3, Wadzani Gashau4, John Idoko5, Isaac Adewole6, Robert Murphy1 and Phyllis Kanki2
    157.J Antimicrob Chemother Received 9 February 2010 Constrained patterns of covariation and clustering of HIV-1 non-nucleoside reverse transcriptase inhibitor resistance mutations Elizabeth C. Reuman1*, Soo-Yon Rhee1, Susan P. Holmes2 and Robert W. Shafer1
    158.Sungkanuparph S, Manosuthi W, Kiertiburanakul S, Piyavong B, Chantratita W. Evaluating the role of etravirine in the second-line antiretroviral therapy after failing an initial non-nucleoside reverse transcriptase inhibitor-based regimen in a resource-limited setting. Curr HIV Res 2008; 6(5): 474-6.
    159.Genotypic correlates of phenotypic resistance to efavirenz in virus isolates from patients failing nonnucleoside reverse transcriptase inhibitor therapy J Virol. 2001 Jun;75(11):4999-5008. Bacheler L, Jeffrey S, Hanna G, D'Aquila R, Wallace L,
    160.J Clin Microbiol. 2002 Jan;40(1):31-5. Comparative analysis of two commercial phenotypic assays for drug susceptibility testing of human immunodeficiency virus type 1. Qari SH, Respess R, Weinstock H, Beltrami EM, Hertogs K, Larder BA, Petropoulos CJ, Hellmann N, Heneine W.
    161.Moore, C. B., M. John, I. R. James, F. T. Christiansen, C. S. Witt, and S. A. Mallal. 2002. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science 296:1439–1443.
    162.Vingerhoets J, Azijn H, Fransen E et al. TMC125 displays a high genetic barrier to the development of resistance: evidence from in vitro selection experiments. J Virol 2005; 79: 12773–82.
    163.Das K, Clark AD Jr, Lewi PJ et al. Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. J Med Chem 2004; 47: 2550–60.
    1.Cohen MS, Hellmann N, Levy JA, et al. The spread, treatment, and prevention of HIV-1: evolution of a global pandemic. J Clin Invest. 2008, 118(4): 1244-54.
    2.Panel on Antiretroviral Guidelines for Adult and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Departments of Health and Human Services. January 29, 2008:1-128.
    3.Hammer S, Saag M, Schechter M, et al. Treatment for adult HIV infection: 2006 recommendations of the International AIDS Society-USA panel. JAMA. 2006, 296: 827-843.
    4.Camarasa MJ, Velázquez S, San-Félix A, et al. TSAO derivatives, inhibitors of HIV-1 reverse transcriptase dimerization: recent progress. Curr Pharm Des. 2006, 12(15): 1895-1907.
    5.Bennett D, McCormick L, Kline R, et al. U.S. surveillance of HIV drug resistance at diagnosis using HIV diagnostic sera. 12th CROI, Boston,USA, 2005. [Abstract 674].
    6.Fessel W, Rhee S, Klein D, et al. Low risk of initial antiretroviral treatment failure in patients with wild-type HIV-1 by standard genotypic resistance testing. 15th CROI, Boston, USA, 2008 [abstract 892].
    7.Bennett DE, Bertagnolio S, Sutherland D, et al. The World Health Organization's globalstrategy for prevention and assessment of HIV drug resistance. Antivir Ther. 2008;13 Suppl 2:1-13.
    8.Waters JM, O'Neal W, White KL, et al. Mutations in the thumb-connection and RNase H domain of HIV type-1 reverse transcriptase of antiretroviral treatment-experienced patients. Antivir Ther. 2009;14(2):231-9.
    9.De Luca A, Di Giambenedetto S, Romano L, et al. Frequency and treatment-related predictors of thymidine-analog mutation patterns in HIV-1 isolates after unsuccessful antiretroviral therapy. J Infect Dis. 2006, 193: 1219-1222.
    10.Rhee S, Liu T, Holmes S, et al. HIV-1 subtype B protease and reverse transcriptase amino acid covariation. PLoS Comput Biol. 2007, 3:e87.
    11.Betancor G, Puertas MC, Nevot M, et al. Epub 2010 Aug 23. Mechanisms involved in the selection of HIV-1 reverse transcriptase thumb subdomain polymorphisms associated with nucleoside analogue therapy failure. Antimicrob Agents Chemother. 2010 Nov;54(11):4799-811.
    12.Matamoros T, Nevot M, Martínez MA, et al. Thymidine analogue resistance suppression by V75I of HIV-1 reverse transcriptase: effects of substituting valine 75 on stavudine excision and discrimination. J Biol Chem. 2009 Nov 20;284(47):32792-802. Epub 2009 Sep 29.
    13.Bradshaw D, Malik S, Booth C, et al. Novel drug resistance pattern associated with the mutations K70G and M184V in HIV-1 reverse transcriptase. Antimicrob Agents Chemother. 2007, 51: 4489-4491.
    14.Gupta S, Fransen S, Paxinos EE, et al. Combinations of mutations in the connection domain of human immunodeficiency virus type 1 reverse transcriptase: assessing the impact on nucleoside and nonnucleoside reverse transcriptase inhibitor resistance. Antimicrob Agents Chemother. 2010 May;54(5):1973-80. Epub 2010 Mar 1.
    15.Margeridon-Thermet S, Shafer RW. Comparison of the Mechanisms of Drug Resistance among HIV, Hepatitis B, and Hepatitis C. Viruses. 2010 Dec 1;2(12):2696-2739.
    16.Zaccarelli M, Tozzi V, Lorenzini P, et al. The V118I mutation as a marker of advanced HIV infection and disease progression. Antivir Ther. 2007, 12: 163-168.
    17.Ray AS, Basavapathruni A, Anderson KS. Mechanistic studies to understand the progressive development of resistance in human immunodeficiency virus type 1 reverse transcriptase to abacavir. J Biol Chem. 2002, 277(43): 40479-40490.
    18.Nikolenko GN, Delviks-Frankenberry KA, Pathak VK. A novel molecular mechanism of dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors. J Virol. 2010 May;84(10):5238-49. Epub 2010 Mar 10.
    19.Santos AF, Lengruber RB, Soares EA, et al. Conservation patterns of HIV-1 RT connection and RNase H domains: identification of new mutations in NRTI-treated patients. PLoS One. 2008 Mar 12;3(3):e1781.
    20.Gupta S, Fransen S, Paxinos EE, et al. Combinations of mutations in the connection domain of human immunodeficiency virus type 1 reverse transcriptase: assessing the impact on nucleoside and nonnucleoside reverse transcriptase inhibitor resistance. Antimicrob Agents Chemother. 2010 May;54(5):1973-80. Epub 2010 Mar 1.
    21.Delviks-Frankenberry KA, Nikolenko GN, Pathak VK. The "Connection" Between HIV Drug Resistance and RNase H. Viruses. 2010 Jul 1;2(7):1476-1503.
    22.Parikh UM, Bacheler L, Koontz D, et al. The K65R mutation in human immunodeficiency virus type 1 reverse transcriptase exhibits bidirectional phenotypic antagonism with thymidine analog mutations. J Virol. 2006, 80(10): 4971-4977.
    23.Llibre JM, Santos JR, Clotet B. [Etravirine: genetic barrier and resistance development]. Enferm Infecc Microbiol Clin. 2009 Dec;27 Suppl 2:32-9.
    24.Lapadula G, Calabresi A, Castelnuovo F, et al. Prevalence and risk factors for etravirine resistance among patients failing on non-nucleoside reverse transcriptase inhibitors. Antivir Ther. 2008;13(4):601-5.
    25.Hawkins C, Chaplin B, Idoko J, et al. Clinical and genotypic findings in HIV-infected patients with the K65R mutation failing stavudine, lamivudine, and nevirapine first line antiretroviral therapy. Antivir Ther. 2007,12: S78.
    26.Weber J, Henry KR, Arts EJ, et al. Viral fitness: relation to drug resistance mutations and mechanisms involved: nucleoside reverse transcriptase inhibitor mutations. Curr Opin HIV AIDS. 2007 Mar;2(2):81-7.
    27.Parikh U, Zelina S, Sluis-Cremer N, et al. Molecular mechanisms of bidirectional antagonism between K65R and thymidine analog mutations in HIV-1 reverse transcriptase. AIDS. 2007, 21: 1405-1414.
    28.Bannister WP, Ruiz L, Cozzi-Lepri A, et al. Comparison of genotypic resistance profiles and virological response between patients starting nevirapine and efavirenz in EuroSIDA. AIDS. 2008 Jan 30;22(3):367-76.
    29.Martins JZ, Chappey C, Haddad M, et al. Epidemics. Principal component analysis of general patterns of HIV-1 replicative fitness in different drug environments. 2010 Jun;2(2):85-91. Epub 2010 Mar 31.
    30.Sturmer M, Staszewski S, Doerr H. Quadruple nucleoside therapy with zidovudine, lamivudine, abacavir and tenofovir in the treatment of HIV. Antivir Ther. 2007, 12: 695-703.
    31.Menéndez-Arias L, Matamoros T, Cases-González CE. Insertions and Deletions in HIV-1 Reverse Transcriptase: Consequences for Drug Resistance and Viral Fitness. Current Pharmaceutical Design, 2006, 12: 1811-1825.
    32.Sato H, Tomita Y, Ebisawa K, et al. Augmentation of human immunodeficiency virus type 1 subtype E (CRF01_AE) multiple-drug resistance by insertion of a foreign 11-amino-acid fragment into the reverse transcriptase. J Virol. 2001, 75: 5604-5613.
    33.Van der Hoek L, Back N, Jebbink MF, et al. Increase multinucleoside drug resistance and decreased replicative capacity of a human immunodeficiency virus type 1 variant with an
    8-amino-acid insert in the reverse transcriptase. J Virol. 2005, 79: 3536-3543.
    34.Bulgheroni E, Croce F, Citterio P, et al. Unusual codon 69 insertions: influence on human immunodeficiency virus type 1 reverse transcriptase drug susceptibility. J Clin Virol. 2004, 29: 27-32.
    35 . Basavapathruni A, Anderson KS. Developing Novel Nonnucleoside HIV-1 Reverse Transcriptase Inhibitors: Beyond the Butterfly. Current Pharmaceutical Design. 2006, 12: 1857-1865.
    36.Rhee S, Taylor J, Wadhera G, et al. Genotypic predictors of HIV-1 drug resistance. Proc Natl Acad Sci USA, 2006, 103:17355-60.
    37.Vingerhoets J, Azijn H, Fransen E, et al. TMC125 displays a high genetic barrier to the development of resistance: evidence from in vitro selection experiments. J Virol. 2005, 79:12773-12782.
    38.Parkin N, Gupta S, Chappey C, et al. The K101P and K103R/V179D mutations in HIV-1 reverse transcriptase confer resistance to NNRTI. Antimicrob Agents Chemother. 2006, 50: 351-354.
    39.Winters B, Montaner J, Harrigan P, et al. Determination of clinically relevant cutoffs for HIV-1 phenotypic resistance estimates through a combined analysis of clinical trial and cohort data. J Acquir Immune Defic Syndr. 2008, 48: 26-34.
    40.Vermeiren H, Van Craenenbroeck E, Alen P, et al. Prediction of HIV-1 drug susceptibility phenotype from the viral genotype using linear regression modeling. J Virol Methodse. 2007, 145: 47-55.
    41.Winters B, Montaner J, Harrigan R, et al. Development of VircoTYPE HIV-1 resistance analysis including clinical cut-offs for ritonavir-boosted atazanavir and fosamprenavir. Antivir Ther. 2007, 12: S170 [abstract 155].
    42.Marcelin A, Flandre P, de Mendoza C, et al. Clinical validation of saquinavir/ritonavir genotypic resistance score in PI-experienced patients. Antivir Ther. 2007, 12: 247.
    43.Masquelier B, Assoumou K, Descamps D, et al. Clinically validated mutation scores for HIV-1 resistance to fosamprenavir/ritonavir. J Antimicrob Chemother. 2008, 61: 1362-1368.
    44.Dandache S, Sevigny G, Yelle J, et al. In vitro antiviral activity and crossresistance profile of PL-100, a novel PI of HIV-1. Antimicrob Agents Chemother. 2007, 51: 4036-4043.
    45.Baxter J, Schapiro J, Boucher CA, et al. Genotypic changes in HIV-1 protease associated with reduced susceptibility and virologic response to the PI tipranavir. J Virol. 2006, 80: 10794-10801.
    46.Braun P, Walter H, Hoffman D, et al. Clinically relevant resensitization of PI saquinavir and atazanavir by L76V in multidrug-resistant HIV-1-infected patients. Antivir Ther. 2007, 12: S142 [abstract 129].
    47.Braun P, Walter H, Hoffman D, et al. Clinically relevant resensitization of PI saquinavir and atazanavir by L76V in multidrug-resistant HIV-1-infected patients. Antivir Ther. 2007, 12: S142 [abstract 129].
    48.Shimura K, Kodama E, Sakagami Y, et al. Broad antiretroviral activity and resistance profile of a novel HIV integrase inhibitor, elvitegravir (JTK303/GS-9137). J Virol. 2008, 82: 764-774.
    49.Ceccherini-Silberstein F, Malet I, Fabeni L, et al. Specific mutations related to resistance to HIV-1 integrase inhibitors are associated with reverse transcriptase mutations in HAART-treated patients. Antivir Ther. 2007, 12: S6 [abstract 4].
    50.Hazuda D, Miller M, Nguyen B, et al. Resistance to the HIV integrase inhibitor raltegravir: analysis of protocol 005, a phase II study in patients with triple-class resistant HIV-1. Antivir Ther. 2007, 12 [abstract 8].
    51.Ghosn J, Chaix ML, Delaugerre C. HIV-1 resistance to first- and second-generation non-nucleoside reverse transcriptase inhibitors. AIDS Rev. 2009 Jul-Sep;11(3):165-73.
    52.Westby M, Smith-Burchnell C, Mori J, et al. Reduced maximal inhibition in phenotypic susceptibility assays indicates that viral strains resistant to the CCR5 antagonist maraviroc utilize inhibitor-bound receptor for entry. J Virol. 2007, 81: 2359-2371.
    53.Marozsan A, Kuhmann S, Morgan T, et al. Generation and properties of a HIV-1 isolate resistant to the small molecule CCR5 inhibitor, SCH417690 (SCH-D). Virology. 2005, 338:182-199.
    54.Ogert R, Wojcik L, Buontempo C, et al. Mapping resistance to the CCR5 co-receptor antagonist vicriviroc using heterologous chimeric HIV-1 envelope genes reveals key determinants in the C2-V5 domain of gp120. Virology. 2008, 373: 387-399.
    55.Mori J, Mosley M, Lewis M, et al. Characterization of maraviroc resistance in patients failing treatment with CCR5-tropic virus in MOTIVATE 1 and 2. Antivir Ther. 2007, 12: S12 [abstract 10].
    56.Su C, Melby T, DeMasi R, et al. Genotypic changes in HIV-1 envelope glycoproteins on treatment with the fusion inhibitor enfuvirtide and their influence on changes in drug susceptibility in vitro. J Clin Virol. 2006, 36: 249-257.
    57.Aquaro S, D’Arrigo R, Svicher V, et al. Specific mutations in HIV-1 gp41 are associated with immunologic success in HIV-1-infected patients receiving enfuvirtide treatment. J Antimicrob Chemother. 2006, 58: 714-722.
    58.Huigen MC, van Ham PM, de Graaf L, et al. Identification of a novel resistance (E40F) and compensatory (K43E) substitution in HIV-1 reverse transcriptase.Retrovirology. 2008, 13; 5:20.
    59.Svicher V, Sing T, Santoro MM, et al. Involvement of novel human immunodeficiency virus type 1 reverse transcriptase mutations in the regulation of resistance to nucleoside inhibitors. J Virol. 2006, 80(14):7186-7198.
    60.Saracino A, Monno L, Scudeller L,et al. Impact of unreported HIV-1 reverse transcriptase mutations on phenotypic resistance to nucleoside and non-nucleoside inhibitors. J Med Virol. 2006, 78(1): 9-17.
    61. Gallego O, Corral A, de Mendoza C, et al. Prevalence of G333D/E in naive and pretreated HIV-infected patients. AIDS Res Hum Retroviruses. 2002, 18: 857–860.
    62.Harrigan PR, Salim M, Stammers DK, et al. A mutation in the 39 region of the human immunodeficiency virus type 1 reverse transcriptase (Y318F) associated with nonnucleoside reverse transcriptase inhibitor resistance. J Virol. 2002, 76: 6836–6840.
    63.Nikolenko GN, Delviks-Frankenberry KA, Palmer S, et al. Mutations in the connection domain of HIV-1 reverse transcriptase increase 39-azido-39- deoxythymidine resistance. Proc Natl Acad Sci U S A. 2007, 104: 317–322.
    64.Nikolenko GN, Palmer S, Maldarelli F, et al. Mechanism for nucleoside analog-mediated abrogation of HIV-1 replication:balance between RNase H activity and nucleotide excision. Proc Natl Acad Sci U S A. 2005, 102: 2093–2098.
    65.Brehm JH, Koontz D, Meteer JD, et al. Selection of mutations in the connection and RNase H domains of human immunodeficiency virus type 1 reverse transcriptase that increase resistance to 39-azido-39-dideoxythymidine. J Virol. 2007, 81: 7852–7859.
    66.Yap SH, Sheen CW, Fahey J, et al. N348I in the connection domain of HIV-1 reverse transcriptase confers zidovudine and nevirapine resistance. PLoS Med. 2007, e335.
    67.World Health Organization, Joint United Nations Program on HIV/AIDS, UNICEF. Towards universal access: scaling up priority HIV/AIDS interventions in the health sector. Progress Report. 2007, ISBN 978 92 4 159539 1:1-88.
    69.Joint United Nations Programme on HIV/AIDS. Financial resources required to achieve universal access to HIV prevention, treatment, care and support. September 2007. (Accessed 3 April 2008.) Available from http://data. Unaids.org/ pub/Report/2007/20070925_advocacy_grne2_en.pdf.
    70.World Health Organization. Working together for health. The World Health Report 2006. ISBN 978 92 4 156317 8. Available from http://www/who.int/whr/ 2006/whr06_en.pdf.
    71.Hammer SM, Saag MS, Schechter M, eet al. Treatment for adult HIV infection: 2006 recommendations of the International AIDS Society-USA Panel. JAMA, 2006, 296:827-843.
    72.Lee PK, Kieffer TL, Silicianoa RF, et al. HIV-1 Viral load blips are of limited clinical significance. J Antimicrob Ther. 2006, 57:803-805.
    73.DHHS Panel on antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1 infected adults and adolescents. (Accessed 10 October 2007.) Available from http://aidsinfo.nih.gov/ContentFiles/ AdultandAdolescentGL.pdf.
    74.Cozzi-Lepri A, Phillips AN, Ruiz L, et al. Evolution of drug resistance in HIV-infected patients remaining on a virologically failing combination antiretroviral therapy regimen. AIDS. 2007, 21:721-732.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700