同步发电机非线性预测控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
改善与提高电力系统运行的稳定性对电力系统安全运行及国民经济建设有十分重要的意义。同步发电机的励磁和汽门控制是改善电力系统稳定性的有效措施,如何将不断发展的控制理论应用到发电机控制中来,是大部分学者很长一段时间来研究的主题。有关这方面的研究已经取得了丰硕的成果,但仍有许多问题有待解决。本文将预测控制理论的基本原理应用于发电机的控制设计中,提出了新的非线性预测控制设计规律。
     论文的主要研究工作和取得的成果如下:介绍了发电机励磁、汽门调速系统控制的研究成果,总结了预测控制理论的发展和现状,浅析了目前发电机控制中还存在的问题。针对这些问题,本文在模型算法控制(MAC)的基础上,分析了现在一般理论上常用的基于Taylor级数法的非线性预测控制的设计原理,并推导得到了基于Taylor级数法的非线性预测控制规律(TMAC)。在进一步研究中,本文以扩大信息量为主旨,改变预测方法,将Adams预测方法应用到预测控制中,得到了基于Adams方法的MAC非线性预测控制规律(AMAC)。针对单输入单输出的仿射非线性系统,在单机-无穷大系统环境下将上述两种控制手段应用于同步发电机励磁系统控制和凝汽式汽轮发电机汽门调速控制中。考虑到Adams方法的特点,分别选取发电机机端电压偏差? Ut、角速度偏差?ω及其导数?ω&的组合形式为输出函数,得到了Taylor级数法和Adams方法的MAC非线性预测励磁/汽门控制规律。最后将上述两种方法得出的控制规律进行对比,证明了Adams方法的MAC非线性预测控制(AMAC)比Taylor级数法的非线性预测控制(TMAC)有更好的控制效果,改善了发电机的输出特性,提高了系统的稳定性。
It is very important for the operating security of a power system and the national economics to improve and enhance the stability of the power system. The excitation control and valve control of synchronous generator are effective measures in improving stability of power system, so it has been being investigated for a long time that how to apply these developing effective control theories to generator control by many scholars. Researchers have done many works and obtained many achievements, but there still have many questions must to be done. In this paper, applying the predictive control theory to the generator control, a new nonlinear predictive control law is proposed.
     The main works and the studying achievements are follows: the research productions in the excitation control and valve control of generator are introduced; the developments and actuality are summarized; the questions of control design for the generator are analyzed. Aiming at the questions, on the basis of Model Algorithmic Control the paper presented a ecumenical common nonlinear predictive control law which is based on Taylor progression in theory, and the nonlinear predictive control law based on Taylor progression(TMAC) has acquired. In the further research, aiming at the limitation of Taylor progression and the object of enlarge information, similarly, on the basis of Model Algorithmic Control, the paper presented the nonlinear predictive control law which is base on Adams predictive (AMAC). Aiming at SISO nonlinear control system, and on the condition of Single-machine infinite-bus power system, the above-mentioned control laws are applied to design the excitation control for torque-synchronous generator and valve control for condensing turbine generator in Single-machine infinite-bus power system, similarly, considering the specialty of the Adams predictive method, terminal voltage deviation ? Ut、the linear combination of terminal voltage deviation ?ωand its differential coefficient ?ω& are selected as output functions, then nonlinear predictive excitation control and valve control laws based on Taylor progression and Adams predictive method are acquired. Finally, the laws are compared and it could be proved that the AMAC has better control effect than TMAC, the output characteristics of the generator are improved, the stability of the power system are enhanced.
引文
[1] A.Chemanoff, C. Corroyer. The Power System Failure of DEC. 19, 1978. RGE, 1980,89(4)
    [2] K. Takahashi, K. Momura. The Power System Failure on July 23, 1987. CIGRESC-37, 1987 meeting:243-247
    [3] 何大愚.对于美国西部电力系统 19%年 7 月 2 日大停电事故的初步认识.电网技术,1996, 20(9): 35-49
    [4] 卢卫星,舒印彪,史连军.美国西部电力系统 19%年 8 月 10 日大停电事故.电网技术,1996, 20(9): 40-42
    [5] 卢强,孙元章.电力系统非线性控制.北京:科学出版社,1993.1-2.
    [6] 周雪松,马幼捷.基于微分几何方法的非线性励磁控制规律的设计.青岛大学学报,1997,22 (6):59-64
    [7] Lu Q. Sun Y Z. Lee G K F. Nonlinear Optimal Excitation Control for Multimachine Systems. IFAC Symposium on Power Systems, Modeling and Control Application Oxford (UK).1989:43-46
    [8] Lu Q. Sun Y Z. Decentralized Nonlinear Optimal Excitation Control. IEEE Transactions on Power Systems.1996:59-65
    [9] Chapman J W. Illic M D. Stabilizing a Multimachine Power System via Decentralized Feedback Linearizing Excitation Control. IEEE Transactions on Power Systems.1993:23-27
    [10] King C A. Chapman J W. Feedback Linearizing Excitation Control on a Full-Scale Power System Model. IEEE Transactions on Power Systems.1994:54-58
    [11] 陈铁,舒乃秋. 基于直接反馈线性化的非线性励磁控制策略的研究.电力科学与工程,2005,2 (11):13-18
    [12] 周双喜,汪兴盛.基于直接反馈线性化的非线性励磁控制器.中国电机工程学报,1995, 4 (2):25-29
    [13] 郝媚美.汽轮发电机励磁与汽门综合控制的研究(硕士学位论文).福州:福州大学控制理论与控制工程.2003:2-10
    [14] Yu Daren, Mao Zhiwei. A study of fault-tolerance of nonlinear excitation control on the direct feedback linearization. Automation of Electric Power System.1997:58-61
    [15] Wang Y Y, Hill D J. Robust Nonlinear Coordinated Control of Power System’s Automatica.1996:47-52
    [16] Guo G X,Wang Y Y. Robust Nonlinear Controller for Power System Transient Stability Enhancement with Voltage Regulation. IEEE Proceeding—Generation, Transmission & Distribution.1996:89-93
    [17] Wang Y Y, Guo G X. Robust Decentralized Nonlinear Controller Design for Multimachine Power System’s Automatica.1997:55-58
    [18] Machow ski J, Bialek J W. Excitation Control System for Use with Synchronous Generator. IEE Proceeding---Generation, Transmission & Distribution.1998:212-217
    [19] Senjyu T,. Uezato K. Microprocessor Based Nonlinear Excitation Controller for Synchronous Machines Electric Machines & Power Systems.1996:74-77
    [20] Liu Guoxian, Lin Xianshu. Study of Excitation Control Under Transient Conditions for Multimachies Power Systems Based on Energy Function Preceeding of the Chinese Society of Electrical Engineering.1997:301-305
    [21] Aime Francis OKOU, Ouassima A KHRIF and Louis-A DESSAINT. eta. Nonlinear control of non-minimum phase system: Application to the voltage and speed regulation of power system. Proceeding of IEEE 1999:19-23
    [22] 唐涛南,魏守平,程时杰等.发电机非线性励磁连续变结构控制器的研究.电工技术学报,1998,8 (12):21-25
    [23] Liu Wei, Tian Shubao, Yu Yixin Et.al. A generator excitation controller based on the hybrid control scheme with feedback linearization and variable structure. Journal of Tianjin University.1998: 66-69
    [24] 秦翼鸿,高峰,张莉.模糊变结构控制在发电机励磁控制中的应用.重庆大学学报,1997,4 (12):11-15
    [25] 刘瑞叶,于浩,陈学允.汽轮发电机组的模糊变结构附加励磁控制.哈尔滨工业大学学报,2000,3 (7):13-17
    [26] 叶其革,王晨皓,吴捷.自适应控制及其在电力系统中的应用.电力系统自动化,1997,6 (12):42-46
    [27] 马国厚.同步发电机励磁的自适应控制.武汉水利电力大学学报,1994,2(6):24-28
    [28] 周美兰,温嘉斌,周卫东.汽轮发电机的自适应励磁控制.黑龙江自动化技术与应用,1996,3(2):32-36
    [29] 娄东刚,葛耀中.输电系统发电机励磁自适应控制的研究.中国电机工程学报,1992:27-30
    [30] 谢小荣,崔文进.一种非线性自适应最优励磁控制器的设计.电力系统自动化,2001,8(11):50-54
    [31] 余翔,毛承雄,陆继明等.基于数字信号处理的自适应励磁控制器.电力系统自动化,2005,21(22):79-83
    [32] 刘伟,余贻鑫,田树苞.同步发电机的变结构模型参考自适应励磁控制器.电网技术,1997,13(8):8-11
    [33] 陈欢,季海波,王冰等. 同步励磁发电机鲁棒自适应控制. 中国科学技术大学学报,2004,20(6):206-212
    [34] 赵辉,刘鲁源,王红君等.规则自适应模糊控制在同步发电机励磁系统中的应用.电网技术,2004,23(4):27-29
    [35] Navin,B.Bhatt.Field Experience with Momentary Fast Turbine Valving and Other Special Stability Controls Employed at AEP’s RockporPlant.IEEE Transactions on Power Systems,1996,11(1):155-161
    [36] 周肖杰,崔文进,雍太有等.双制式微机型快关汽门控制器的研究与实现.全国高校电自专业第八届学术年会论文集,南京,1992:270-274
    [37] 薛禹胜,陆宁,李娟.用 EEAC 法分析快关汽门对暂态稳定的影响.中国电机工程学会电力系统分析与控制年会论文集,1990:40-47
    [38] 刘国贤,林宪枢,杨奇逊.多机系统快速汽门非线性控制研究.电力系统自动化,1996,20(12):10-15
    [39] H.Borules,F.Colledani,M.P.Houry.Robust Continuous Speed Governor Control for Small-signal and Transient Stability.IEEE Transaction on Power Systems,1994,9(3):1218-1225
    [40] 朱发国.非线性 PID 及其在发电机组控制中应用的研究(博士学位论文).哈尔滨:哈尔滨工业大学电气工程系.1999:71-78,50-61
    [41] 鲍文,于达仁,李松晶.基于扭振分量极小化的 LQ/H∞最优汽门控制器设计.中国电机工程学报,2000,20(4):6-8
    [42] Subbarao G V,Iyer A.Nonlinear Excitation and Governor ControlUsing Variable Structures.International Journal of Control,1993,57(6):1325-1342
    [43] 王奔,毛宗源. 汽轮发电机的变结构调速控制. 电力系统自动化,1999,23(4):25-27
    [44] 刘瑞叶,于浩,陈学允.带自调整因子的模糊变结构汽门控制.电力系统自动化,1998,22(7):27-29
    [45] 刘伟,余贻鑫,袁号等.变结构模型参考自适应汽门控制.电力系统自动化,1997,21(8):28-30
    [46] 马进,席在荣,梅生伟. 基于哈密顿理论的发电机汽门鲁棒非线性控制器设计. 电力系统自动化,2001,9(3):7-11
    [47] 王宝华,杨成梧,张强.发电机的非线性自适应逆推综合控制.控制理论与应用,2006,23(1):60-64
    [48] 李文磊,井元伟,刘晓平. 汽轮发电机主汽门开度非线性鲁棒控制. 控制理论与应用,2003,20(3):387-390
    [49] 肖智宏,周晖,朱启晨. 基于非线性模型预测控制的快控汽门的研究.华北电力技术,2005,8(12):17-20
    [50] 蒋铁铮,陈陈,艾芊.汽轮发电机主汽门开度的非线性最优预测控制. 控制理论与应用,2006,23(3):458-462
    [51] 唐巍.神经网络在电力系统暂态稳定分析与控制中的应用 (博士学位论文).哈尔滨:哈尔滨工业大学电气工程系.1997,69-83
    [52] 张腾,戴先中.汽门开度的神经网络广义逆系统控制.电力系统自动化,2000,9(13):25-28
    [53] 舒迪前.预测控制系统及其应用.北京:机械工业出版社.1996:1-20,377-381
    [54] 王伟.广义预测控制理论及其应用.科学出版社.1998:1-5
    [55] Edoardo Mosca, Jingxin Zhang. Robust adaptive predictive control with self-excitation(EEE PES. Proceeding of the 32nd Conference on Decision and Control. Dencember 1993:589-594
    [56] Rajkumar V, Mohle R R. Nonliear Predictive Control for the Damping of Multi-Machine Power System Transients Using FACTS Devices. In: Proceedings of 33rd IEEEE Conference on Decision and Control. Florida(USA),1994:158-163
    [57] Rajkumar V, Mohle R R. Nonliear Control Methods for Power Systems: A Comparison. IEEEE Transactions on Control Systems Technology,1995:78-81
    [58] Lei Qingsheng, Li Guangxi, Chen yongping. Real-time Prediction and Control for Transient Stability of Multi-machine Power System. IEEE PES. Conference Proceedings on 1998 Power Engineering Society Summer Meeting.1998:196-202
    [59] G.Ramakrishna, O.P.Malik. Adaptive control of power systems using radial basis function network identification and predictive control calculation. IEEE PES. Conference Proceedings on 1999Power Engineering Society Winner Meeting.1999:218-223
    [60] Molina A,Gabaldon.J. A,Fuentes. Fco. J. Canovas. Approach to multivariable predictive control applications in residential HVAC direct load control. IEEE PES. Conference Proceeding on 2000 Power Engineering Society Summer Meeting.2000:185-191
    [61] Tae kyoo Oh, Zhi Zhong Mao. Improved model algorithmic control schemefor thyristor-controiled series capacitor. IEEE PES. Conference Proceedings on 2002Power Engineering Society Summer Meeting.2002:251-258
    [62] 李少远,曹保定.水轮发电机组调速器的广义预测控制.信息与控制,1994,20(32):43-47
    [63] 陈增强,孙明玮,袁著祉.线性直流无刷电机的多步预测控制.自动化与仪器仪表,1997,14(23):22-26
    [64] 萧志云,凌呼君.太型单元机组实现协调预测控制的研究.基础自动化,2001,8(16):58-61
    [65] 睢刚,陈绍炳,徐治皋.火电机组锅炉过热汽门的约束模型预测控制研究.热能动力,2001,16(20):21-26
    [66] 薛美胜,孙德敏,吴刚.火电厂锅炉主蒸汽压力的阶梯式广义预测控制.中国科技大学学报,2002,12(23):34-38
    [60] 梁志珊,张化光,王红月.同步发电机励磁非线性预测控制.中国电机工程学报,2000,12(20):52-56
    [61] 蒋铁铮,陈陈,曹国云.TCSC 非线性最优预测控制器的研究.继电器,2005,20(33):40-43
    [62] 蒋铁铮,陈陈,曹国云.同步发电机励磁非线性预测控制技术.控制与决策,2005,3(11):46-50
    [63] 蒋铁铮,陈陈,艾芊.汽轮发电机汽门开度的分散非线性预测控制.中国电机工程学报,2006,20(26):22-26
    [64] 刘辉,李啸骢,韦化等.发电机非线性预测综合控制设计.电工技术学报,2006,2(21):97-102
    [65] 刘辉.发电机非线性预测控制研究(硕士学位论文).广西:广西大学电力系统及其自动化.2005:30-34
    [66] 牛方方.电力系统非线性励磁预测控制(硕士学位论文).广西:广西大学电力系统及其自动化.2007:2-7
    [67] 李啸骢.一种基于极点配置的多指标非线性控制设计方法及其在电力系统中的应用(博士学位论文).武汉:华中科技大学.2004:101-105
    [68] 陈渝,周璐,钱方等译.数值方法.北京:电子工业出版社.2002:335-337,353-355
    [69] 曾喆昭,文卉.数值计算.北京:清华大学出版社.2005:142-145,149-153

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700