低Hf含量地质样品中Lu-Hf同位素化学分离方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Lu-Hf同位素体系与其他常用的定年体系(如Rb-Sr, Sm-Nd等)相比具有更强的稳定性和抗热扰动性,而且Lu的半衰期介于其他短半衰期体系(U-Th-Pb)和长半衰期体系之间,因此Lu-Hf同位素体系既可以解决古老地质体的形成时间、壳幔分异和地壳增生演化等早期年代学问题,也可以研究年轻造山运动的年代学问题。然而Lu-Hf同位素体系在地质上的广泛应用主要受限于Hf同位素的质谱分析测定技术的发展。目前获得Lu-Hf同位素组成有两种方法,一是采用激光剥蚀多接收电感耦合等离子体质谱(LA-MC-ICPMS)原位分析高Hf含量的地质样品(如锆石、斜锆石等矿物)的Lu-Hf同位素,能够获得锆石内部Hf同位素的空间变化信息,但对低Hf含量的样品如幔源玄武岩、榴辉岩等,其中的锆石颗粒又少又小,该方法则无能为力;二是采用传统的化学方法,将样品溶解后通过离子色谱法等化学分离手段得到浓缩、纯净的Lu、Hf组分,用MC-ICPMS进行测定,该方法对高、低含量的样品都非常有效。已有的Hf同位素分离方法回收率均偏低,尤其Lu-Hf同位素分离方法尚未完善,特别是较低Lu、Hf含量的矿物对于Lu-Hf丰代学研究具有重要的意义,因此研究并发展一种稳定的且适用于低Hf含量地质样品中Lu-Hf化学分离技术显得非常有必要。
     目前我校大陆动力学国家重点实验室Lu-Hf同位素化学分离方法尽管速度较快,但不够稳定且回收率偏低(<60%)。因此本研究选择改进Lu-Hf同位素分离方法,旨在提高本实验室的Lu-Hf回收率,并解决低Hf含量地质样品中的Lu-Hf分离及其年代学问题。本研究对Connelly (2006)的Lu-Hf分离方法进行反复验证和改进,用酸溶法溶样,在溶样后期加入硼酸,与剩余的HF酸反应以破坏氟化物沉淀,从而避免了使用有毒性的高氯酸(HClO4)来驱赶剩余的HF酸。Lu-Hf分离用阳离子交换色谱法和提取色谱法结合。经过数次实验,Hf的回收率可以提高到90%以上,但Lu的回收率仍然不够稳定(30-60%),需要进一步研究。本研究成功开发了离子交换树脂和特效树脂相结合的两阶段高效快速分离Hf同位素的方法,并用此方法多次分离玄武岩国际标样(BHVO-2、BCR-2),回收率均在90%以上,用MC-ICPMS进行Hf同位素测定,分析结果与参考值在误差范围内吻合,对辽西北票地区义县组埃达克岩和兴隆沟组埃达克岩Hf同位素的分析研究为这两地区火山岩成因也补充了证据。分离过程中使用低浓度HNO3代替H2O2来淋洗Ti可以大大延长了离子交换树脂的使用寿命,同时采用低浓度H3BO3和过剩的HF反应,而避免了使用有剧毒的HClO4酸来驱赶HF。本研究对Lu-Hf同位素分离方法研究具有重要的意义。
The Lu-Hf isotope system is stable and robust comparing to conventional dating systems such as Rb-Sr and Sm-Nd. The half life of Lu lies between short half life systems (U-Th-Pb) and long half life systems (Rb-Sr and Sm-Nd). Therefore, the Lu-Hf isotopic system can solve not only the geologic chronology problems such as the terrain formation time, the crust-mantle differentiation and the evolution of crustal growth of ancient geologic terrain, but also the geological chronology of young orogenic movements. The development of instrument analytical technology of hafnium isotope restrains the application of the Lu-Hf isotopic system due to the chemical separation difficulty and high ionization energy of Hf. Currently, the Lu-Hf isotope data can be obtained by two methods:laser ablation multiple collector inductively coupled plasma mass spectrometry (LA-MC-ICPMS) and solution nebulization multiple collector inductively coupled plasma mass spectrometry (SN-MC-ICPMS). The LA-MC-ICPMS method can obtain in situ hafnium isotopic composition from high hafnium content samples (zircon, baddeleyite, etc.) with high spatial resolution, but it is inefficient for those samples with low Hf concentration (mantle basalt rocks, eclogite). Alternatively, the SN-MC-ICPMS method can get hafnium isotopic composition of low hafnium samples. The second method is comprised of following chemical steps:completely dissolve samples; separate concentrated pure lutetium and hafnium cuts by the chemical separation using ion chromatography; then analyze lutetium and hafnium isotopic composition using MC-ICPMS. This method is effective for both high and low hafnium content samples. The available hafnium isotope chemical separation method still need to be improved in terms of hafnium recovery, especially the Lu-Hf isotope chemical separation method. It is important to establish a stable and efficient Lu-Hf isotope chemical separation technology for samples with low Hf content.
     The present hafnium isotope chemical separation method in the State Key Laboratory of Continental Dynamics is fast but low hafnium recovery (< 60%). The main aim of this work is improving the Lu-Hf isotope separation method, and increasing the lutetium and hafnium recovery for low Hf content samples. Based on Connelly's method (Connelly et al.,2006),Ⅰbuilt a new chemical separation method for low hafnium content samples using international basalt standards (BCR-2, BHVO-2 from USGS). The method developed here including:1) completely dissolve samples with acids on the hotplate,2) add boric acid to the sample solution to remove residual hydrofluoric acid, and destroy the fluoride precipitations,3) separate Lu-Hf cuts using Cation-Exchange and extraction chromatography. After fourteen months experiments, a fast two-stage Hf separation method is developed here achieving the hafnium and lutetium recovery of> 90% and 30~60%, respectively. The life of the resin is prolonged due to the replacement of H2O2 with dilute nitric acid in order to elute titanium. However, further experiments are needed to obtain stable Lu separation method with high recovery. Using the method developed in this work, we separate hafnium from USGS BCR-2 and BHVO-2, and the results agree well with references in 2σ. This work is significant for hafnium isotopic composition measurement of the low hafnium samples and Lu-Hf chemical separation researches.
引文
[1]Patchett P J, Tatsumoto M. A Routine High-precision Method for Lu-Hf Isotope Geochemistry and Chronology [J]. Macomb Mineral Petrol.,1980,75:263-267
    [2]Stevenson R K, Patchett P J. Implication for the evolution of continental crust from Hf isotope systematic of Achaean detrital zircons [J]. Geochim. Cosmochim. Acta.1990:54:1683-1697
    [3]Vervoort J D, Patchett P J, Gehrels G E et al. Constraints on the early Earth differentiation from hafnium and neodymium isotopes [J]. Nature.,1996:379:624-627
    [4]Vervoort J D, Blichert-Toft J, Patchett P J et al. Hafnium isotope composition of the crust and mantle through time:new directions with hafnium whole-rock studies. Goldschmidt Conference 7.,1997.212
    [5]Blichert-Toft J. On the Lu-Hf Isotope Geochemistry of Silicate Rocks [J].Geostand Newslett, 2001:25(1):41-56
    [6]Salters V J M, Hart S R. The Mantle Sources of Ocean Ridges, Islands and Arcs:the Hf Isotope Connection [J]. Earth Plane Sci Lett.,1991104:364-380
    [7]Corfu F, Noble S R. Genesis of Southern Abitibi Green-stone Belt, Superior Province, Canada: Evidence from Zircon-Hf Isotope Analyses using a Single Filament Technique [J]. Geochim Cosmochim Acta.,1992:56:2081-2097
    [8]Salters V J M. Hf Determination in Small Samples by a High-temperature SIMS Technique [J]. Ana/Chem.,1994:66:4186-4189
    [9]Halliday A N, lee D-C, Christeusen J N, et al. Recent Developments in Inductively Coupled Plasma Magnetic Sector Multiple Collector Mass Spectrometry [J].Mass Spectrom Ion Proc.,1995:146/147: 21-33
    [10]Yang X J, Pin C. Determination of Trace Zirconium and Hafnium in Basaltic Rocks by Inductively Coupled Plasma-Atomic Emission Spectrometry after Chemical Separation:An Evaluation of Two Methods Based on Extraction Chromatography [J]. Analyst.,2000:25:453-457
    [11]Munker C S, Weyer E, Scherer K Mezger. Separation of High Field Strength Elements (Nb, Ta, Zr, Hf) and Lu from Rock Samples for MC-ICPMS Measurements [J]. Ceochem Geophys Ceosyst., 2001:2:10.1029/2001:GC000183
    [12]Kleinhanus I, Kreissig K, Kamber B S, et al. Combined Chemical Separation of Lu, Hf, Sm, Nd and REEs from a Single Rock Digest:Precise and Accurate Isotope Determinations of Lu-Hf and Sm-Nd using Multi-collector-ICP-MS [J]. Ana/Chem.,2002,:74:67-73
    [13]Bizzarro M, Baker J A, Ulfbeck D. A New Digestion and Chemical Separation Technique for Rapid and Highly Reproducible Determination of Lu/Hf and Hf Isotope Ratios in Geological Materials by MC-1CPMS [J]. Geostand Newslett.,2003:27(2):133-145
    [14]Le Fevre B, Pin C. An Extraction Chromatography Method for Hf Separation prior to Isotopic Analysis using Multiple Collection ICP-Mass Spectrometry [J]. Anal Chem.,2001:73,24:53-2460
    [15]Ulfbeck D, Baker J A, Weight T, et al. Rapid Sample Digestion by Fusion and Chemical Separation of Hf for Isotopic Analysis by MC-ICPMS [J]. Talanta.,2003:59:365-373
    [16]Patchett, P.J. Vervoort, J.D. Lu-Hf and Sm-Nd isotopic systematics in chondrites and their constraints on the Lu-Hf properties of the Earth [J]. Earth and Planetary Science Letters.,2004:222:29-41
    [17]Le Fevre B, Pin C. A Straightforward Separation Scheme for Concomitant Lu, Hf and Sm, Nd Isotope Ratio and Isotope Dilution Analysis [J]. Analytical Chimica Acta.,2005:543:209-221
    [18]Horwitz, E.P., McAlister, D.R., Bond, A.H., Barrans Jr., R.E. Novel extraction chromatographic resins based on tetraalkyldigly-colamides:characterization and potential. applications. Solvent Extraction and Ion Exchange.,2005:23:319-344
    [19]Connelly J.N. et al. A method for purifying Lu and Hf for analyses by MC-ICPMS using TODGA resin [J]. Chemical Geology.,2006:233:126-136
    [20]Nebel C, Munker. Hf-Nd-Pb isotope evidence from Permian arc rocks for the long-term presence of the Indian-Pacific mantle boundary in the SW Pacific [J]. Earth and Planetary Science Letters.,2007: 254:377-392
    [21]Markus Lagos, Erik E. High precision Lu-Hf geochronology of Eocene eclogite-facies [J]. Chemical Geology.,2007:243:16-35
    [22]P.J. Patchett and S.D. Samson. Ages and Growth of the Continental Crust from Radiogenic Isotopes [J]. Treatise on Geochemistry.,2007:3:321-348
    [23]Audrey Bouvier. The Lu-Hf and Sm-Nd isotopic composition of CHUR:Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets [J]. Earth and Planetary Science Letters.,2008:273:48-57
    [24]T. Schulz, C. Munker. Hf-W chronometry of the IAB iron meteorite parent body [J]. Earth and Planetary Science Letters.,2009:280:185-193
    [25]Yuan Honglin, Gao Shan, et al. Tracking the Continental Foundering Process:Evidence from
    Hafnium Isotopic Compositions by Multiple Collector Inductively Coupled Plasmas Mass Spectrometry.全国岩石学与地球动力学研讨会论文集[C],2004:344
    [26]Gao S, Rudnick RL, Yang, HI et al. Recycling lower continental crust in the North China Craton [J].Nature.,2004:432:892-897
    [27]韩吟文,马振东.地球化学[M].北京:地质出版社,2003:221
    [28]凌文黎,程建萍.精度Lu-Hf同位素测定的新技术与新方法[J].地质科技情报,1988:17:85-90
    [29]张磊等.锆石Hf同位素分离与测试[D].北京:北京大学硕士学位论文,2005
    [30]李献华,祁昌实,刘颖等.岩石样品快速Hf分离与MC-ICPMS同位素分析:一个改进的单柱提取色谱方法[J].地球化学,2005,34:109-114
    [31]张磊,韩宝福等.锆石Hf同位素:MC-ICPMS与LA-MS-ICPMS分析结果的比较[J].岩石学报,2006:1000-0569/2007/023(02)-0510-12
    [32]韩宝福,张磊等.岩石样品Hf化学分离及MC-ICPMS同位素分析:离子交换色谱法的应用.2006:1000-0569/2007/023(02)-0513-16
    [33]杨岳衡等.地质样品中镥-铪同位素体系的化学分离与质谱测试新进展[J].岩矿测试,2006:25:151-158
    [34]李献华,刘颖等.同一岩石试样的Lu-Hf和Sm-Nd快速分离及国家岩石标准物质的同位素比值精确测定[J].岩石学报,,2007:1000-0569/2007/023(02)-0221-26
    [35]吴福元等.Lu-Hf同位素体系及其应用[J].岩石学报,2007:1000-0569/2007/023(02)-0185-20
    [36]袁洪林,高山等.Lu-Hf年代学研究以大别榴辉岩为例[J].岩石学报,2007:1000-0569/2007/023(02)0233-39
    [37]陈道公,倪涛等.大别地体超高压变质岩石锆石同位素研究[J].岩石学报,2007:1000-0569/2007/023(02)-0331-42
    [38]郑永飞,陈仁旭等.大别山超高压榴辉岩和花岗片麻岩中锆石同位素研究[J].岩石学报,2007,1000-0569/2007/023(02)-0317-30
    [39]周春山等.化学分离富集方法及应用[M].长沙:中南工业大学出版社.2001:295
    [40]储亮侪.《离子交换色谱在岩矿分析中的应用》[M].北京:地质出版社.1983:80-87/179-188
    [41]邵济安,路凤香.再论兴隆沟组火山岩成因[J].岩石学报,2008:1000-0569/2008/024(06)-1313-12
    [42]李伍平.辽西北票早侏罗世兴隆沟组英安岩的地球化学特征[J].岩石学报,2006:22(6):1608-1616.
    [43]邵济安,路凤香,李伍平.辽西中生代陆内底侵作用背景下形成的安山岩[J].岩石学报,2007:23(4):701-708.
    [44]邵济安,杨蔚.关于辽西北票兴隆沟组火山岩时代的再认识[J].地质通报,2008:27(6)
    [45]王晓蕊,高山等.辽西四合屯早白垩世义县组高镁安山岩的地球化学:对下地壳拆沉作用和Sr/Y变化的指示[J].地球科学,2005:35(8):700-709
    [46]王晓蕊等.辽西早白垩世四合屯火山岩地球化学研究[D].西安:西北大学硕士学位论文,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700