运用MC-ICP-MS测定天然样品的锂同位素组成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界锂同位素分馏强烈,这使得它在很多方面都得到了应用,如地球化学、天体化学和核工业等。所有这些领域都要求精确地测定~6Li/~7Li的比值。但由于锂是微量元素,而且在测试过程中还存在明显的干扰,因此在进行锂同位素比值测定之前必须对样品进行前处理,将锂分离、富集、提纯。本文以锂元素标准样品和钾、钠、钙、镁元素标准样品的混合溶液为主要研究对象,采用阳离子交换树脂AG-50W-X8来分离富集锂,探索在不同淋洗介质(包括盐酸、硝酸以及与甲醇、乙醇的混合)条件下锂分离纯化的最佳介质条件。初步得出以下结论:
     1、本次研究建立了相对简单、高效的锂同位素分离方法。用单一的柱子分离、提纯样品锂;用低浓度的盐酸(0.15M HCl)直接作为淋洗介质,操作过程简单。
     2、对锂同位素比值测定产生影响的潜在因素,如基体效应、回收率、流程空白等进行了实验研究,证实这些影响因素对于本次研究所建立的方法来说都是可以忽略不计的。
     3、用MC-ICP-MS测定锂同位素组成,分析结果的准确度和精度与现阶段报道数据相同。测定海水的锂同位素组成(+31.6±1.0‰,2σ)与前人测定结果的平均值(+31.2‰)接近,与Tomoscak等(+31.8±1.99‰,2σ)的分析值相近。天然样品分析测定的误差为0.8‰(2σ),与TIMS的测定结果相似。
     4、该方法也适用于低锂含量的样品。我们分离并测定了部分海水、岩石、土壤、河水等样品的锂同位素组成,样品含量在0.064μg/g和132μg/g之间,说明该方法也同样适用于低含量地质样品的分析测定。
The relative large lithium isotopic fractionation in natural samples has useful application in the fields of geochemistry, cosmo-chemistry and nuclear chemistry. All these fields require precise measurement of the ~7Li/~6 Li ratio. There are visible interferers in the process of measurement due to trace element, so we must prepare the natural samples before determination of lithium isotopic composition, including separation, enrichment and purification. In this thesis, the solution of Chinese reference materials including lithium, potassium, calcium, sodium, magnesium, was used to evaluate analytical methods applied. Lithium was enriched in different eluents (hydrochloric acid, nitric acid and mixture with ethanol or methanol) by cation exchange resin AG 50W-X8, and the optional experimental conditions were studied. Some main conclusions are listed as follows:
    1 , Setting up a rapid and valid method which separate lithium from other elements by one column. This method only uses 0.15M HC1 as eluent, and operation is very simple.
    2, The influence of potential sources of error for acquisition of lithium isotopic data introduced during the separation, such as matrix effects and isotopic fractionation due to incomplete recovery, were examined by using artificial mixed solution. The examinations demonstrated that our protocol suffered from negligible isotopic fractionation.
    3, MC-ICP-MS was applied to lithium isotopic measurements. Based on multiple duplicate and replicate measurements, the precision of this method is conservatively estimated to be 0.8‰ (2σ), which is similar to the precision of other method by TIMS. The δ~7Li value determined for sea water is +31.8‰, which agree well with those of previously reported datum.
    4, This method can be applied to some samples having low concentration of lithium. We determined lithium isotope of some seawater, rock and soil samples in which concentration of lithium rang from 0.064μg/g to 132μg/g, so the method is fit for low lithium reservoirs.
引文
[1] 李润年,田书芳.《1-109号元素》.北京:北京师范大学出版社,1987:14-20.
    [2] 刘英俊,曹励明,李兆麟.《元素地球化学》.北京:地质出版社,1984:154-168.
    [3] www.jshlzx.net/klh/2/2005/text/zk05_187.htm 8K 1995-5-18.
    [4] Meier A L. Determination of lithium isotopes at natural abundance levels by atomic absorption spectrometry. Analytical Chemistry, 1982 (54):2158-2161.
    [5] 韩凤清.青藏高原盐湖锂地球化学.盐湖研究,2001(1):55-61
    [6] 李明慧,郑绵平.锂资源的分布及其开发利用.科技导报,2003(12):38-40
    [7] 张彭熹.沉默的宝藏——盐湖资源.清华大学出版社、暨南大学出版社,2000:78-98
    [8] 闫俊美,杨金贤,贾永忠.锂电池的发展与前景.盐湖研究,2001(4):58-63
    [9] 袁复怀.国际锂镁产业最新动态.盐湖研究,2001(3):61-62
    [10] Huh Y, Chan L H, Zhang L, et al. Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget. Geochimca et Cosmochimca Acta, 1998(62):2039-2051.
    [11] Hoefs J, Sywall M. Lithium isotope compositions of Quaternary and Tertiary biogene carbonates and a global lithium isotope balance. Geochimca et Cosmochimca Acta, 1997(61):2679-2690.
    [12] Johnson C M, Beard B L. Geochemistry of non-traditional stable isotopes, 2004:153-195
    [13] Michils E, De Bievre P. Absolute isotopic composition and the atomic weight of a natural sample of lithium. International Journal of Mass Spectrometry. and Ion Physics, 1983 (49):264-274.
    [14] Qi H P, Taylor P D P, Berglund M, DeBievre P. Calibrated measurements of the isotopic composition and atomic weight of the natural Li isotopic reference material IRMM-016. International journal of mass spectrometry and ion process, 1997b (171 ):263-268.
    [15] Flesch G D, Anderson A R Jr, Svec H J. A secondary isotopic standard for ~6Li/~7Li determinations. International journal of mass spectrometry and ion process, 1973 (12):265-272.
    [16] Heier K S, Billings G K. Lithium. Wedepohl K H, et al. Handbook of Geochemistry, NewYork: Springer Verlag, 1978: 3A-30.
    [17] James R H, Palmer M R. Marine geochemical cycles of the alkali elements and boron : the role of sediments. Geochimca et Cosmochimca Acta, 2000(64): 3111 -3122.
    [18] Ryan J G, Langmuir C H. The systematics of lithium abundances in young volcanic rocks, Geochimca et Cosmochimca Acta, 1987(54): 1727-1741.
    [19] Chan L H, Edmond J M, Thompson G, et al. Lithium isotope composition of submarine basalts: implications for the lithium cycle in the oceans. Earth and Planetary Science Letters, 1992 (108): 151-160.
    [20] Decitre S, Deloule E. Determination of Li contents and isotopic compositions in various oceanic basalts by ion microprobe: implication for the Li geochemical cycle. EUG-10 Jour. Conference Abstract, 1999 (1): 814.
    [21] Chan L H, Leeman W P, You C F. Lithium isotopic composition of Central American Volcanic Arc lavas: implications for modification of subarc mantle by slab2derived fluids. Chemical Geology, 1999(160): 255-280.
    [22] You C F, Chan L H. Precise determination of lithium isotopic composition in low concentration natural samples. Geochimca et Cosmochimca Acta, 1996 (60): 909-915.
    [23] Moriguti T, Nakamura E. High-yield lithium separation and the precise isotopic analysis for natural rock and aqueous samples. Chemical Geology, 1998a (145): 91-104.
    [24] Tomascak P B, Carlson R W, Shiry R W. Accurate and precise determination of Li isotope compositon by multi-collector sector ICP-MS. Chemical Geology, 1999a(158): 145-154.
    [25] Chan L H, Edmond J M. Variation of lithium isotope composition in the marine environment: A preliminary report. Geochimca et Cosmochimca Acta, 1988(52): 1711-1717.
    [26] 肖应凯,祁海平,王蕴慧等.青海柴达木卤水、沉积物和水源中锂同位素组成,地球化学, 1994(4):329-338.
    [27] Bottomley D J, Katz A, Chan L H, et al. The origin and evolution of Canadian Shield brines: Evaporation or freezing of seawater? New lithium isotope and geochemical evidence from the Slave craton. Chemical Geology, 1999 (155): 295-320
    [28] Von Damn K L, Edmond J M, Measures C I, Grant B. Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geochimca et Cosmochimca Acta, 1985a(49):2221-2237.
    [29] Von Damn K L, Edmond J M, Grant B, Measures C I, Walden B, Weiss R F. Chemistry of submarine hydrothermal solutions at 21°, East Pacific Rise. Geochimca et Cosmochimca Acta, 1985b (49): 2197-2220.
    [30] Chan L H, Edmond J M, Thompson G. A lithium isotope study of hot springs and metabasalts from midocean ridge hydrothermal systems. Journal of Geophysical Research, 1993 (98): 9653-9659.
    [31] Chan L H, Gieskes J M, You C F, et al. Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California. Geochimca et Cosmochimca Acta, 1994 (58): 4443-4454.
    [32] Chan L H, Kastner M. Lithium isotopic composition of fluids and sediments at the Costa Rica subduction zone: results from ODP Sites 1039 and 1040. Transaction of American Geophysics, 1998, Union 79:F395.
    [33] James R H, Rudnicki M D, Palmer M R. The alkali element and boron geochemistry of the Escanaba Trough sediment hosted hydrothermal system. Earth and Planetary Science Letters, 1999(171): 157-169.
    [34] Tomascak P B, Tera F, Helz R T and Walker R J. The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS. Geochimca et Cosmochimca Acta, 1999b (63):907-910
    [35] Chaussidon M, Robert F. ~7Li/~6Li and ~(11)B/~(10)B variation in chondrules from the Semarkona unequilibrated chondrite. Earth and planetary science letters, 1998 (164): 577-589.
    [36] Moriguti T, Nakamura E. Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones. Earth and Planetary Science Letters, 1998b (163):167-174.
    [37] Magna T, Wiechert U H. Grove T L, Halliday A N. Lithium isotope composition of arc volcanics from the Mt. Shasta region, N California. Geochimca et Cosmochimca Acta, 2003 (67): A267
    [38] Nishio Y. Nakai S. Yamamoto J. et al. Li isotopic systematics of the mantle-derived ultramafic xenoliths: implications for EMI origin. Earth and Planetary Science Letters, 2004(217):245-261
    [39] Zindler A, Hart S R. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 1986(14):493-571
    [40] Seyfried Jr W E, Janecky D R, Mottl M. Alteration of the oceanic crust by seawater: implications for the geochemical cycles of boron and lithium. Geochimca et Cosmochimca Acta, 1984(48):557-569.
    [41] Pistiner J S, Henderson G M. Lithium isotope fractionation during continental weathering processes. Earth and Planetary Science Letters, 2003 (214):327-339.
    [42] Rudnick R L, Tomascak P B, Njo H B, et al. Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina. Chemical Geology, 2004(212):45-57
    [43] Basak Kisakiirek, Widdowson M and James R H. Behaviour of Li isotopes during continental weathering: the Bidar laterite profile, India. Chemical Geology, 2004 (212): 27-44.
    [44] Hogan J F, Blum O D. Boron and lithium isotopes as groundwater tracers : a study at the Fresh Kills Landfill, State Island, New York, USA. Applied Geochemistry, 2003 (18): 615-627.
    [45] Tomascak P B, Hemming N G, Hemming S R. The lithium isotopic composition of waters from the Mono Basin, California. Geochimca et Cosmochimca Acta, 2003 (67): 601-611.
    [46] Huh Y, Chan L H, Edmond J M. Lithium isotopes as a probe of weathering processes: Orinoco River. Earth and Planetary Science Letters, 2001(194): 189-199.
    [47] Vigier N, Burton K W, Gislason S R, et al. Constraints on basalt erosion from Li isotopes and U-series nuclides measured in Iceland rivers. Geochimca et Cosmochimca Acta, 2002 (66): A806
    [48] Sahoo S K, Masuda A. Precise determination of lithium isotopic composition by thermal ionization mass spectrometry in natural samples such as seawater. Analytica Chimica Acta, 1998(370):215-220.
    [49] Chan L H, Starinsky A, Katz A. The behavior of lithium and its isotopes in oilfield brines: Evidence from the Heletz-Kokhav field, Israel. Geochimca er Cosmochimca Acta, 2002d (66):615-623.
    [50] Bensimon M, Bourquin J, Parriaux A. Determination of ultra-trace elements in snow samples by inductively-coupled plasma source sector field mass spectrometry using ultrasonic nebulization. Journal of Analytical Atomic Spectrometry, 2000(15):731-734.
    [51] Ikegawa M, Kimura M, Honda K, et al. Geographical variations of major and trace elements in East Antarctica. Atmospheric Environment, 1999(33):1457-1467.
    [52] Falkner K K, Church M, Measures CI, et al. Minor and trace element chemistry of Lake Baikal, its tributaries, and surrounding hot springs. Limnology and Oceanography, 1997(42):329-345.
    [53] Bottomley D J, Chan L H, Katz A, et al. Lithium isotope geochemistry and origin of Canadian Shield brines. Groundwater, 2003(41):847-856.
    [54] Sturchio N C, Chan L H. Lithium isotope geochemistry of the Yellowstone hydrothermal system. Special Publication-Society of Economic Geologists, 2003(10):171-180.
    [55] Davidson C I, Jaffrezo J L, Small M J, et al.Trajectory analysis of source regions influencing the south Greenland Ice Sheet during the Dye 3 Gas and Aerosol Sampling Program. Atmospheric Environment, 1993(27): 2739-2749.
    [56] Vengosh A and Rosenthal E. Saline groundwater in Israel: its bearing on the water crisis in the country. Journal of Hydrology, 1994(156): 389-430.
    [57] Bullen T D, Senior L A. Lithogenic Sr and anthropogenic Li in an urbanized stream basin: isotopic tracers of surface water-groundwater interaction. EOS Trans, Am Geophys Union, 1992(73):F130.
    [58] Gellenbeck D J, Bullen T D. Isotopic characterization of strontium and lithium in potential sources of ground-water contamination in central Arizona. EOS Trans, Am Geophys Union, 1991 (72): 178.
    [59] Bullen TD, McMahon PE Evolution of ~(87)Sr/~(86)Sr and δ~7Li in groundwaters from the Black Creek Aquifer: confirmation of a model for the origin of Na~+-HCO_3~- waters in clastic aquifers. EOS Trans, Am Geophys Union, 1992(73): 1719
    [60] Tomascak P B, Krogstad E J, Prestegaard K L, et al. Li isotope variability in groundwaters from Maryland. EOS Trans, Am Geophys Union, 1995a (76):S122
    [61] Tomascak P B, Krogstad E J, Prestegaard K L, et al. Li isotope geochemistry of stormwater from Maryland. EOS Trans, Am Geophys Union, 1995b (76):F207
    [62] Gabler H E and Bahr A. Boron isotope ratio measurements with a double-focusing magnetic sector ICP mass spectrometer for tracing anthropogenic input into surface and ground water. Chemical Geology[J], 1999,156:323-330.
    [63] Taylor T I and Urey H C. Fractionation of the lithium and potassium isotopes by chemical exchange with zeolites. The Journal of Chemical Physics, 1938 (6):429-438.
    [64] Aston F W. The isotopic constitution and atomic weights of cesium, strontium, lithium, rubidium, barium, scandium and thallium. Proceedings of the Royal Society of London, 1932 (134): 571.
    [65] Meier A L. Determination of lithium isotopes at natural abundance levels by atomic absorption spectrometry. Analytical Chemistry, 1982 (54):2158-2161.
    [66] Magnin J L, Decosterd L A, Centeno C, et al. Determination of trace lithium in biological fluids using graphite furnace atomic absorption spectrophotometry: Variability of urine matrices circumvented by cation exchange solid phase extraction. Pharmaceutica Acta Helvetiae, 1996 (4):237-246.
    [67] Kaplan L, Wilzbach W E. Lithium isotope determination by neutron activation. Analytical Chemistry, 1954 (26): 1797.
    [68] Sun X F, Ting B T G, Zeisel S H, et al. Accurate measurement of stable isotopes of lithium by inductively coupled plasma mass spectrometry. Analyst, 1987 (112):1223-1228
    [69] Gregoire D C, Acheson B M, Taylor R P. Measurement of lithium isotope ratio by inductively coupled plasma mass spectrometry: application to geological materials. Journal of Analytical Atomic Spectrometry, 1996 (11): 765-772.
    [70] Suryana M V, Sankari M, Gangadharan S. Determination of Li isotope ratio using two photon resonance three photon resonance ionization mass spectrometry. International journal of mass spectrometry and ion processes, 1998 (173):177-189.
    [71] Xiao Y K, Beary E S. High-precision isotopic measurement of lithium by thermal ionzation mass spectrometry. International journal of mass spectrometry and ion process, 1989 (94):101-114.
    [72] 肖应凯,祁海平,王蕴慧,金琳.热电离质谱法测定锂同位素中各种涂样形式的比较.科学通报,1991(18):29-31.
    [73] Chan L H. Lithium isotope analysis by thermal ionization mass spectrometry of lithium tetraborate. Analytical Chemistry, 1987 (59):2662-2665.
    [74] Xiao Y K, Qi H P, Wang Y H and Jin L. The comparison of loading forms in isotopic measurement of lithium by thermal ionization mass spectrometry. Chinese Science bulletin, 1991 (37): 469-472.
    [75] Svec H J, Anderson A R. The absolute abundances of the lithium isotopes in natural sources. Geochimca et Cosmochimca Acta, 1965 (29):633-641.
    [76] Lamberty A and Bievre P. An enriched ~6Li isotopic reference material. CBNM Mass Spectrometry: CBNM-MS-R-45-86, 1986.
    [77] Green L W, Leppinen J J, Elliot N L. Isotopic analysis of lithium as thermal dilithium fluoride ions. Analytical Chemistry, 1988 (60): 34-37.
    [78] Shima M, Masatake M. Honda. Isotopic abundance of meteoritic lithium. Journal of Geophysical Research, 1963(68): 2849-2854.
    [79] Balsiger H, Geiss J, Groegler N. Distribution and isotopic abundance of lithium in stone meteorite. Earth and Planetary Science Letters, 1968(5): 17-22.
    [80] Teng F Z, Mcdonough W F, Rudnick R L, et al. Lithium isotopic composition and concentration of the upper continental crust. Geochimca et Coschimca Acta, 2004(68): 4167-4178.
    [81] Vesely V and Pekarek V. Synthetic inorganic ion-exchangers—Ⅰ: Hydrous oxides and acidic salts of multivalent metals. Talanta, 1972(19): 219-262
    [82] Abe M, Ichsan E A A, and Hayashi K. Ion—exchanger separation of lithium from large amounts of sodium, calcium, and other elements by a double column of dower 50w-x8 and crystalline antimonic (V) acid. Analytical Chemistry, 1980 (52):524-527.
    [83] http://chem.xmu.edu.cn/teach/fxhx/netedu/public_html/7/fenli4.html.
    [84] http://www.foodmate.net/jianyan/lihua/yiqi/11755.html
    [85] 武汉大学主编,分析化学(第四版),高等教育出版社,2000.
    [86] Nishio Y and Nakai S. Accurate and precise lithium isotopic determinations of igneous roc samples using multi-collector inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 2002 (2):271-281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700