水声远程通信的联合频率相位调制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在中远程海洋水声信道中,可用带宽窄、多途干扰强、信号起伏衰落严重等因素成为水声信息高速可靠传输的主要障碍,因此如何在远程水声信道中高速率准确地传输数据,成为水声通信技术一个难点。联合频率相位调制(JFPM)同时利用频率信息及相位信息,具有较高的频带利用率和功率效率。本文通过深入研究JFPM调制理论,提出了一种适用于远程水声通信的自差分联合频率相位调制(SD-JFPM)方法,并进行了湖上实验验证。结果表明该方法原理正确,有效可行,具有带宽利用率高,通信距离远,抗多径干扰强的优点,可以满足远程高速水声通信的要求。
     论文的主要工作和研究成果包括以下几个方面:
     1.在深入研究联合频率相位调制(JFPM)技术基本理论的基础上,提出了一种基于自差分的联合频率相位调制(SD-JFPM)方法。研究结果表明:在衰落信道中,SD-JFPM比JFPM方法具有更强的抗多径性能,因此更适用于远程水声通信。
     2.针对SD-JFPM调制,提出了基于频谱结构的相位信息解调方法。该方法利用信号能量进行调制相位估计,因此对同步误差、多普勒效应及多径影响并不敏感。研究结果表明:当信噪比SNR=0dB、同步误差为码元长度的1/10、多普勒因子为0.0022时,该方法仍能正确解调相位信息。
     3.针对SD-JFPM调制,提出基于相位补偿的频率解调方法。该方法首先利用调制相位估计值对各个码元进行相位补偿,然后再使用频率估计方法进行频率信息的解调。试验结果表明,在通信距离为25km时,由于使用了相位补偿措施,频率信息解调的误比特率(纠错前)可由原来的4.1%降低到0.65%以下。
     4.为了保证SD-JFPM系统有较高的同步精度,提出了一种多段组合线性调频同步头信号(MLFM)。研究结果表明:当多普勒因子δ=0.001时,线性调频信号(LFM)的同步误差为7.9毫秒,而MLFM信号的同步误差仅为3.0毫秒,同步精度提高一倍以上。
     5.利用已建立的水声通信系统,对基于自差分联合频率相位调制(SD-JFPM)方法进行了湖上实验验证。实验表明:SD-JFPM水声通信方法原理正确,性能可靠,取得了在通信距离为10km、120bit/s的通信速率,纠错前误比特率为0.9%,以及通信距离为25km、120bit/s的通信速率,纠错前误比特率为1.6%的良好结果,与相同带宽和载波数的单一频率调制的FSK方法相比,可使数据率提高50%,由
Narrow available bandwidth, strong multipath disturbance and serious fading in the long-range underwater acoustic channel are main obstacles in the high speed reliable underwater acoustic communication. So this is a difficulty in the world that how to make the communication performance well in such underwater environment. Joint frequency and phase modulation (JFPM) utilize frequency and phase information to realize higher efficiency in the frequency and power. Self-Differential JFDM modulation (SD-JFPM) applying to this channel is presented by deeply investigating in the theory of JFDM, later with the lake experiments. It is resulted the method is available and the principle is feasible since that there are many advantages in the technique of SD-JFPM such as high utilization of bandwidth, far communication distance, better resistance to multipath disturbance, which can meet well in the high speed middle and long range underwater acoustic channel. Research work and achievements that had done in the thesis are summarized as follows.
    1. A method of Self-Differential Joint Frequency and Phase Modulation is presented for the long-range underwater acoustic communication, based on the study of JFPM technique. It is showed that the method of SD-JFPM resists much more effectively than JFPM the multipath influence in a fading channel. So SD-JFPM is more suitable in application of long-range underwater acoustic communication.
    2. A phase demodulation method based on the spectrum and energy detection is put forward, which can overcome the influence of the synchronous deviation, Doppler, and multipath effect. Simulation results illustrate that the phase information can be accurately demodulated by this method when the SNR equals to OdB with the Doppler coefficient 0.0022, and the synchronous deviation is 10% of the symbol interval.
    3. A frequency demodulation method based on phase compensation is proposed for SD-JFPM. In this method, the estimation of modulated phase is utilized for phase compensation, and then the frequency is demodulated by frequency estimation. Experimental results make it clear that the BER of frequency demodulation is decreased from 4.1% to 0.65% by using phase compensation when the communica-
引文
[1] H. O. Berktay, "Underwater communication past, present and future", J. Sound Vib, 17(1): 62~70, 1968
    [2] L. E. Virr, "Role of electricity in subsea intervention", IEE Proc., 134(6): 547~576, 1987
    [3] Stojanovic M., "Recent advances in high-speed underwater acoustic communications", IEEE J. Oceanic. Eng., 21 (2): 125-135, 1996
    [4] Daniel B. Kilfoyle, Arthur B. Baggeroer, "The state of art in underwater acoustic telemetry", IEEE J. Oceanic. Eng., 25(1): 4~27, 2000
    [5] J. Catipovic, A. B. Baggeroer, K. Von Der Heydt, "Design and performance analysis of a digital acoustic telemetry system for the short range underwater channel," IEEE J. Oceanic Eng., vol. 9: 242-252, 1984
    [6] R.F.W. Coates, "A deep-ocean penetrator telemetry system," IEEE J. Oceanic Eng., vol. 13: 55-63, 1988
    [7] W. Hill, G. Chaplin, D. Nergaard, "Deep-ocean tests of an acoustic modem insensitive to multipath distortion," Oceans '88, Baltimore, MD, 1988
    [8] J. Catipovic, M. Deffenbaugh, "An acoustic telemetry system for deep ocean mooring data acquisition and control," Proc. OCEANS'89, 1989
    [9] L.E. Freitag, J. S. Merriam, D. E. Frye, "A long term deep water acoustic telemetry experiment," Oceans '91, Honolulu, Hawaii, 1991
    [10] L. Freitag, J. S. Merriam, "Robust 5000 bit per second underwater communication system for remote applications", Proceedings of Marine Instrumentation '90, Marine Technology Society, San Diego, CA, 1990
    [11] G. R. Mackelburg, "Acoustic data links for UUVs", Oceans '91, Honolulu, Hawaii, 1991
    [12] K. F. Scussel, J. A. Rice, S. Merriam, "A new MFSK acoustic modem for operation in adverse underwater channels," Oceans '97, Halifax, NS, Canada, 1997
    [13] A. Kaya, S. Yauchi, "An acoustic communication system for subsea robot", Proc. OCEANS'89, Seattle, WA, pp.765-770, 1989
    [14] M.Suzuki and T. Sasaki, "Digital acoustic image transmission system for deep sea research submersible,"proc. OCEANS'92, Newport, RI, pp. 567-570, 1992[15] G, Ayela, J. M. Coudeville, "TIVA: Along range, high baud rate image/data acoustic transmission system for underwater applications," Proc. Underwater Defence Technol. Conf., Paris, France, 1991
    [16] Goalic, J.Lbat, J. Trubuil, "Toward a digital acoustic underwater phone", Proc. OCEANS'94, Brest, France, pp. 489-494, 1994
    [17] J. Fischer, K. Bennett, S. Reible, "A high rate underwater acoustic data communications transceiver," Proc. OCEANS'92, Newport, RI, pp. 571-576, 1992
    [18] M. Johnson, D. Herold, J. Catipovic, "The design and performance of a compact underwater acoustic network node", Proc. OCEANS'94, Brest, France, pp.467-471, 1994
    [19] R. galvin R.F.W.Coates, "Analysis of the performance of an underwater acoustic communication, system and comparison with a stochastic model", Proc. OCEANS'94, Brest, France, pp.478-482, 1994
    [20] G. S. Howe, P. Tarbit, O. Hinton, "Sub-sea acoustic remote communication utilizing an adaptive receiving beam former for multipath suppression", Proc. OCEANS'94, Brest, France, pp.313-316, 1994
    [21] P. S. D. Tarbit, G. Howe, O. Hinton, "Development of a real-time adaptive equalizer for a high-rate underwater acoustic data communication link", Proc. OCEANS'94, Brest, France, pp.307-312, 1994
    [22] G. B. Henderson, "Investigation of adaptive beamformer performance and experimental verification of applications in high data rate digital underwater communication", Proc. OCEANS'94, Brest, France, pp.296-301, 1994
    [23] M. Stojanovic,. J.A.Catipovic and J.G.Proakis, "Phase coherent digital communication for underwater acoustic channels," IEEE J. Oceanic Eng., vol. 19, pp. 100-111, 1994
    [24] 尤立夫,桑恩方,“高速率远程水声通信技术产业化极待解决的几个问题”,海洋技术,14(4):112~114,1995
    [25] 张玉良,高路等,“高速数字水声通信系统的研制”,声学与电子工程,第4期,pp6~12,2002
    [26] 王海斌,吴立新,“混沌跳频M-ary方式在远程水声通信中的应用”,声学学报,29(2):161~166,2004
    [27] 许可平,许天增等,“基于水声的水下无线通信研究",厦门大学学报,40(2):311~319,2001
    [28] 周伊凡,屈万里,“浅水信道简单水下移动通信方案的研究”,电信快报,第3期,pp.24~26,2002[29] 程恩,“水声数据传输的多频移键控研究”,厦门大学学报,35(3):369~373,1996
    [30] 程恩,许俊等,“水声数据通信系统的研究”,海洋技术,26(1):1~3,2002
    [31] 李启虎,“水声信号处理领域若干专题研究进展”,应用声学,20(1):1~5,2001
    [32] 李启虎,“水声学研究进展”,声学学报,26(4):295~301,2001
    [33] 刘伯胜,水声学原理,哈尔滨:哈尔滨船舶工程学院出版社,1989
    [34] 惠俊英,水下声信道,北京:国防工业出版社,1991
    [35] 许天增,数字时间相关积累(Ⅲ)—抗多途分析,声学学报,15(5):389~397,1990
    [36] S. Reed, R. A. Scholtz, "N-orthogonal phase -modulated codes," IEEE Trans. Inform. Theory, vol. IT-l2, pp.388-395, 1966
    [37] J. Viterbi, J. J. Stiffer, "Performance of N-orthogonal codes," IEEE Trans. Inform. Theory, vol. IT- 13, pp.521-522, 1967
    [38] S. Golomb, "Digital Communications with Space Applications", Englewood Cliffs, N. J.; Prentice Hall, 1964
    [39] W. Lindesy and M. Simon, "L-orthogonal signal transmission and detection," IEEE Trans. Communi., vol. 20, pp. 953-960, 1972
    [40] Ibrahim Ghareeb, "Bit Error Rate Performance and Power Spectral Density of a Noncoherent Hybrid Frequency-Phase Modulation System", IEEE Journal on Selected Areas in Communication, vol. 13, No, 2, 1995
    [41] A. H. Nuttall, "Error probabilities for equicorrelated M-ary signals under phase-coherent and phase-incoherent reception", IRE Trans. Inform. Theory, vol. IT-8, pp.305-314, July 1962.
    [42] R. F. Pawula, S. O... Rice, and J. H. Roberts, "Distribution of the phase angle between two vectors perturbed by Gaussian noise", IEEE Trans. Commun., vol. COM-30, pp. 1828-1841, Aug. 1982.
    [43] R. Padovani and J. K.Wolf, "Coded phase/frequency modulation", IEEE Trans. Commun., vol. COM-34, pp. 446-453, May 1986.
    [44] D. Saha, "Channel coding with quadrature-quadrature phaseshift-keying (Q PSK) signals", IEEE Trans. Commun., vol. 38, pp.409-417, Apr. 1990
    [45] S. S. Periyalwar and S. M. Fleisher, "Multiple trellis coded frequencyand phase modulation", IEEE Trans. Commun., vol. 40, pp. 1038-1046, Jun. 1992.
    [46] S. M. Fleisher and S. Qu, "Multifrequency minimum shift keying", IEEE J. Select. Areas Commun., vol. 10, pp. 1243-1253, Oct. 1992
    [47] I. Ghareeb, "Bit error rate performance and power spectral density of??anoncoherent hybrid frequency-phase modulation system", IEEE J. Select. Areas Commun., vol. 13, pp. 276-284, Feb. 1995
    [48] L. Wei, I. Kom, "Combined frequency and differential phase shiftkeying with noncoherent detection in a satellite mobile channel", 1EEE Trans. Veh. Technol., vol. 44, pp. 603-612, Aug. 1995
    [49] Char-Dir Chung, "Noncoherent Maximum-Likelihood Block Detection of Orthogonal NFSK-LDPSK Signals", IEEE Trans. Veh. Technol., vol. 51, pp. 283~292, Mar. 2002
    [50] 马雯,黄建国,“基于互谱分析的2DPSK解调方法及性能”,海洋技术,23(3):30~33,2004
    [51] 齐国清,贾欣乐,“插值FFT估计正弦信号频率的精度分析”,电子学报,32(4):625~629,2004
    [52] 何伟,唐斌,“六点拟合的正弦信号的插值多项式测频”,信号处理,19(5):483~485,2003
    [53] Johnson M, Freitag L, Stojanovic M, "Underwater Acoustic Improved Doppler Tracking and Correction for Communications", Proc. ICASSP'97, Munich, Germany, pp. 575-578, 1997
    [54] Sharif, Neasham, Hinton, "A Computationally Efficient Doppler Compensation System for Underwater Acoustic Communications", IEEE Journal of Oceanic Engineering, 25(1): 52-60, 2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700