阵列多参数联合估计算法及应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阵列多参数估计在通信、雷达、声纳等领域有着广泛的应用。随着阵列多参数估计从理论到实际工程的发展,人们对算法稳健性和估计精度的要求越来越高。本文以提高阵列多参数估计算法的稳健性和估计精度为目标,针对传统的标量传感器阵列、矢量传感器阵列下多信号源多参数联合估计以及双基地MIMO雷达中的多目标多参数联合估计展开了研究,取得了一些有意义的成果。论文的主要内容如下:
     研究了空间二维角度和频率估计算法,本文将平行因子理论应用到阵列信号二维角度和频率估计中,首先针对L型阵列提出了基于平行因子三线性分解的二维角度和频率估计算法,根据阵列接收天线输出构建了一个平行因子三线性模型,通过对该模型三线性分解可以得到二维角度和频率的估计。在此基础上,针对双平行线阵列/面阵结构,提出了一种基于平行因子四线性分解的二维角度和频率联合估计算法。根据阵列输出数据构建一个四线性模型,通过对此模型分解可以得到二维角度和频率估计的参数。基于平行因子技术的参数估计方法是一种迭代算法,不需要特征值分解或奇异值分解,只需要一定的迭代次数算法就能收敛。该方法的优点是无需谱峰搜索,可实现多参数的联合估计与自动配对,与现有的算法进行了比较,具有更高的参数估计精度,而且在小样本数下也能较好的工作。
     研究了任意声矢量传感器阵列下的角度和频率估计算法,相对于常规标量传感器而言,矢量传感器具备很多优势,可进行多维参数估计,得到更优越的性能。针对任意声矢量传感器阵列下的多参数估计,首先推导了阵列接收信号模型,提出了基于DOA矩阵和平行因子四线性分解的两种多参数估计算法。基于DOA矩阵法的算法具有计算复杂度低的优点,可适用于对计算复杂度有限制的声源定位场合。而基于平行因子四线性分解的方法无需谱峰搜索,可实现参数的同时估计与配对,与基于平行因子三线性分解的算法和ESPRIT算法进行了比较,具有更高的参数估计精度,为声源定位提供了一种新的选择。
     研究了双基地MIMO雷达多目标的发射角(DOD)和接收角(DOA)联合估计,提出了一种降维MUSIC算法。该算法首先将二维MUSIC算法进行降维处理变成一维MUSIC,通过谱峰搜索得到DOA,进一步得到DOD方向矢量的估计值,再利用最小二乘法得到DOD的估计。该算法的优点是与二维MUSIC算法相比,避免了二维谱峰搜索,复杂度大大降低,而参数估计精度与其非常接近;与ESPRIT算法相比,参数估计性能优于ESPRIT算法;估计过程中参数自动配对,还可将该算法扩展到非规则阵列中。
     研究了双基地MIMO雷达L型阵列和均匀圆阵列下多目标的二维DOD和二维DOA的联合估计,由于目前大部分参考文献对双基地MIMO雷达中多参数的研究都是针对均匀线阵建模,估计的是一维角度,L型阵列能估计方位角和仰角,与实际情形更为接近。均匀圆阵也是一种常用的阵列,能估计二维角度,由于其方向矢量不具备范得蒙特性,信号处理较为复杂。本文基于L型阵列和均匀圆阵列分别提出了基于平行因子技术的二维DOD和二维DOA联合估计算法。该算法利用L型阵列的结构特点和均匀圆阵本身的结构特点及最小二乘算法进行了四维角度的估计。算法的优点是参数估计精度优于ESPRIT算法,并接近克拉美罗界(CRB),且估计过程中参数自动配对,在小样本数下也能较好的工作。
     研究了L型阵列下双基地MIMO雷达的二维DOA、二维DOD及多普勒频率联合估计,提出了基于DOA矩阵的多维参数联合估计算法,该算法利用DOA矩阵法的思想构造矩阵,通过特征参数与估计参数之间关系,推导出了目标四维角度和多普勒频率联合估计公式,并得到闭式解。该算法与ESPRIT算法相比,只需一次特征值分解,计算量降低。随着信噪比的提高,估计性能越来越接近ESPRIT算法,估计过程不需要额外的配对运算就实现了参数的自动配对,并能有效克服空间色噪声的影响,仿真结果验证了算法的有效性。
Array signal parameters estimation techniques have played a fundamental role in manyapplications involving radar, sonar and communications. Howerer, with the development of arraysignal estimation algorithms in practical applications, the investigation on robust and high accuratearray signal parameter estimation algorithm have received great interest. Joint multiple parameterestimation of multiple sources for the conventional sensor array and the vector array, and thecorresponding estimation of multiple targets in bistatic MIMO-radar are investigated in thisdissertation. This research of the dissertation maily consists of the following parts:
     The two dimensional direction of arrival and frequency estimation algorithm is investigated. Inthis paper the theory of parafac factor is applied for the joint estimation of2D-DOA and frequency.First the joint2D-DOA and frequency estimation using the parafac factor algorithm for L-shapedarray is proposed. The output signal of the array antennas is analyzed and it has trilinear modelcharacteristics. The frequency and2D-DOA can be estimated from trilinear model decomposition.Then the joint2D-DOA and frequency estimation using parallel factor quadrilinear decomposition foruniform square array and double linear array is studied. The output signal of the array antennas isanalyzed and it has quadrilinear model characteristics. The frequency and2D-DOA can be estimatedfrom the matrices via low-rank decomposition which utilizing the uniqueness of the parallel factordecomposition. The method, which does not need eigvalue decomposition or singular valuedecomposition is an iterative algorithm and it can convergence over certain iterative times. Theadvantages of the method require no searching spectral peak or pairing parameters. In constrast withthe conventional methods, the algorithm has higher precision estimation of parameters and works wellunder small sizes.
     The joint angle and frequency estimation method for arbitrary acoustic vector sensor array isinvestigated. The main advantage of the vector-sensors over traditional scalar sensors is that theymake use of more available acoustic information and they can estimate multi-parameter of the soundwave. We drive the model of the received data for arbitrary acoustic vector array. Two algorithms ofmulti-parameters estimation have been proposed. DOA-matrix method has the advantage of lowcomputational complexity and can be applied in source orientation occasion which needs strictlycomplexity limit. The parallel factor quadrilinear decomposition algorithm does not require searchingspectral peak and can pair parameters automatically. Compared with the algorithm of ESPRIT and the parallel factor trilinear decomposition, The parallel factor quadrilinear decomposition algorithm hashigh precision in parameter estimation and supplys a new choice for source orientation.
     The algorithm of the direction of departure(DOD) and direction of arrival(DOA) estimation ofmulti-target for bistatic MIMO radar is studied. We propose a reduced-dimension multiple signalclassification (MUSIC) algorithm. The algorithm reduces the dimension of2D-MUSIC and the DOAcan be get from searching spectral peak of the1D-MUSIC. The DOD steering vector can be estimatedfrom the relationship of DOA and then DOD can estimated via the least square method. The proposedalgorithm can avoid the high computational cost within two-dimension MUSIC (2D-MUSIC)algorithm and has very close performance to2D-MUSIC algorithm. We illustrate that thereduced-dimension MUSIC algorithm has better performance than ESPRIT algorithm and pair theparameters automatically and can work well in the other irregular array manifolds.
     The joint estimation of2D-DOD and2D-DOA for bistatic MIMO radar with L-shaped array anduniform circular array is studied. Most of works develop models for uniform linear array which onlyidentifies one-dimensional angle. The L-shaped array can estimate two dimensional angle and is muchcloser to actual situation. Uniform circular array is a commonly array and can also estimate twodimensional angle. But the signal processing is more complicated because the direction vectors do nothave the Vandermonde characteristics. The algorithm of2D-DOA and2D-DOD for L-shaped anduniform circular array using the parallel factor analysis is presented. The proposed algorithm canestimate four-dimensional angle which uses the structure characteristics of L-shaped and circulararray and least square method. The advantages of the algorithm are that it has higher parameterestimation precision than ESPRIT algorithm and is close to Cramro-bound(CRB). The estimatedparameters pair automatically and it can works well under small sizes.
     The four dimensional angle and Doppler frequency estimation for bistatic MIMO radar withL-shaped array is studied. The algorithm of multi-parameter joint estimation based on DOA-matrixmethod is proposed. The algorithm construsts the matrixs according to the DOA-matrix and derivesthe formula of joint four angle and Doppler frequency which use the relationship between theeigenvalue and corresponding eigenvector. The close-form solution can be obtained. Compared withESPRIT algorithm the proposed method only needs once eigenvalue decomposition and reduces thecomputation load. The performance of the proposed algorithm is very close to ESPRIT. It can pair theparameters automatically and eliminate the effect of the spatial colored noise. Simulation resultsverify its good performance.
引文
[1]张贤达,保铮.通信信号处理.北京:国防工业出版社,2000.
    [2]王永良,陈辉等.空间谱估计理论与算法.北京:清华大学出版社,2004.
    [3]汪晋宽,宋昕.鲁棒自适应阵列信号处理.北京:电子工业出版社,2009.
    [4]张小飞,汪飞,徐大专.阵列信号处理理论及应用.北京:国防工业出版社,2010.
    [5] Georgios B.Giannakis,Yingbo Hua, Petre Stoica etc.刘郁林等译,无线通信与移动通信中信号处理研究的新进展.北京:电子工业出版社,2004.
    [6]沈凤麟,叶中付,钱玉美.信号统计分析与处理.合肥:中国科学技术大学学出版社,2001.
    [7]何振亚.自适应信号处理.北京:科学出版社,2002.
    [8] Stoica P., Nehoria A.MUSIC, maximum likelihood and Cramer-Rao bound.IEEE Trans onAcoustics,Speech and Signal Processing,1989,37(5):720-741.
    [9] Krim H.,Viberg M.Two decades of array signal processing research.IEEE Signal processingmagazine,1996,13(4):67-94.
    [10] Burg J. P. Maximum-entropy spectral analysis.The37th Annual International Society ofExploration Geophysicists Meeting, Oct.1967.
    [11] Capon J.High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE,1969,57(8)1408-1418.
    [12] Schmidt R O. A signal subspace approach to multiple emitter location and spectral estimation,Ph.D dissertation,Stanford Univ., Stanford,CA,Nov.1981.
    [13] Ottersten B,Viberg M.,Stoica P. et al.Exact and large sample maximum likelihood techniquesfor parameter estimation and detection in array processing.Radar Array processing,Berlin,Germany.1993,99-151.
    [14] Barabell A J.Improving the resolution performance of eigenstructure-based direction findingalgorithms.IEEE International Conference on Acoustic,Speech,Signal Processing,1983,8:336-339.
    [15] CC.Yeh.Projection approach to bearing estimations.IEEE Tractions on Acoustic,Speech,SignalProcessing,1986,10(5):1347-1349.
    [16] Paulraj A., Roy R.,Kailath T.. A subspace rotation approach to signal parameter estimation,Proceedings of IEEE,1986,74(7):1044-1046.
    [17] Roy R., Paulraj A.,Kailath T..ESPRIT-A subspace rotation approach to estimation ofparameters of cisoids in noise.IEEE Transactions on Acoustics, Speech and Signal Processing,1986,34(5):1340-1342.
    [18] Roy R.,Kailath T..ESPRIT-estimation of signal parameters via rotational invariance techniques,IEEE Transactions on Acoustics,Speech and Signal Processing,1989,37(7):984-995.
    [19] Swindlehurst A L.,Ottersten B.,Roy R. et al.Multiple invariance ESPRIT.IEEE Transactionson Signal Processing.1992,40(4):867-881.
    [20] Haardt M,Nosseh J.A..Unitary ESPRIT-how to obtain increased estimation accuracy with areduced computational burden.IEEE Transactions on Signal processing,1995,43(5):1232-1242
    [21] Tayem N.,Kwon H.M..Conjugate ESPRIT (C-ESPRIT). IEEE Transactions on Antennas andPropagation,2004,52(10):2618-2624.
    [22] Gao F., Gershman A. B.. A generalized ESPRIT approach to direction-of-arrivalestimation.IEEE Signal Processing Letters,2005,12(3):254-257.
    [23] Tsakalides P,Nikas C L.Maximum likelihood localization of sources in noise modeled as astable process.IEEE Transactions on Signal Processing,1995,43(11):2700-2713.
    [24] Stocia P.,Nehorai A..Performance study of conditional and unconditional direction of arrivalestimation,IEEE Transaction on Acoustics,Speech,Signal Processing,1990,38(10):1783-1795.
    [25] Viberg M.,Ottersten B..Sensor array processing based on subspace fitting..IEEE Transactionson Signal Processing,1991,39(5):1110-1121.
    [26] Viberg M.,Ottersten B., Kailath T.. Detection and estimation in sensor arrays using weightedsubspace fitting.IEEE Transactions on Signal Processing,1991,39(11):2436-2449.
    [27] Ziskind I.,Wax M..Maximum likelihood localization of multiple sources by alternatingprojection.IEEE Transactions on Acoustics Speech and Signal Processing,1988,36(10):1553-1560.
    [28] Stoica P., Sharmam K.C. Novel eigenalysis method for direction estimation. IEEEProceedings-F,1990,137(1):19-26.
    [29] Lopes A.,Bomalti I.S.,Peres P.L.D. et al.Improving the MOEDX algorithm for directionestimation.Signal Processing,2003,83(9):2047-2051.
    [30] Pan R.,Nikias C.L.Harmonic decomposition methods in cumulant domains.Proc.ICASSP’88,New York,1988,2356-2359.
    [31] Chiang H. H., Nikias C. L. The ESPRIT Algorithm with Higher Order Statistics.Proc. VailWorkshop Higher Order Spectral Anal.,Vial CO, Jun.1989,163-168.
    [32] Porat B.,Friedlander B. Direction Finding Algorithms Based on Higher-OrderStatistics.IEEE Trans. on Signal Processing,1991,39(9):2016-2024.
    [33] Forster P.,Nikias C.L..Bearing estimation in the bispectrum domain.Proc.IEEE1991,39(9):1994-2006.
    [34] Munier J., Delisle,G.Y. Spatial analysis using new properties of the cross-spectral matrix.IEEETransactions on Signal Processing,1991,39(3):746-749.
    [35]殷勤业,邹理和.一种高分辨率二维信号参量估计方法——波达方向矩阵法.通信学报,1991,12(4):1-7.
    [36]金梁,殷勤业.时空DOA矩阵法.电子学报,2000,28(6):8-12.
    [37]金梁,殷勤业.时空DOA矩阵方法的分析与推广.电子学报,2001,29(3):300-303.
    [38] Sidiropoulos N D, Bro R, Giannakis G B. Parallel factor analysis in sensor arrayprocessing.IEEE Transactions on Signal Processing,2000,48(8):2377-2388.
    [39] X. Zhang,J. Feng and D. Xu.Blind Direction of Arrival Estimation of Coherent Sources UsingMulti-invariance Property.Progress in Electromagnetics Research-Pier,2008,88:181-195.
    [40] X. Zhang,D. Wang and D. Xu.Novel blind joint direction of arrival and frequency estimation foruniform linear array.Progress in Electromagnetics Research-Pier,2008,86:199-215.
    [41] J L Liang,S Y Yang,J Y Zhang.Cumulant-based parameter estimation algorithm for near-fieldsources.Progress in Natural Science,2007,17(8):900-905.
    [42] X. Zhang,Y. Shi and D. Xu.Novel Blind Joint Direction of Arrival and Polarization Estimationfor Polarization-Sensitive Uniform Circular Array. Progress in Electromagnetics Research-Pier,2008,86:19-37.
    [43]张小飞,徐大专.均匀圆阵中盲联合角度和时延估计方法.通信学报,2006,27(12):55-60.
    [44] X. Zhang and D. Xu.Deterministic blind beamforming for electromagnetic vector sensor array.Progress in Electromagnetics Research-Pier,2008,84:363-377.
    [45] X. Zhang and D. Xu. Blind PARAFAC Signal Detection for Polarization SensitiveArray.EURASIP Journal on Advances in Signal Processing,2007,1-7.
    [46] X. Zhang, X. Huang and D. Xu. Blind PARAFAC Signal Detection for Uniform Circular Arraywith Polarization Sensitive Antennas. Transactions of Nanjing University of Aeronautics&Astronautics,2006,23(4):291-295.
    [47] Sidiropoulos N. D. and Liu X.. Identifiability Results for Blind Beamforming in IncoherentMultipath with Small Delay Spread.IEEE Transactions on Signal Processing,2001,49(1):228-238.
    [48]梁军利,王诗俊,高丽等.一种无须参数配对的近场源定位新算法.电子学报,2007,35(6):1122-1127.
    [49]梁军利,杨树元,赵峰等.一种新的基于平行因子分析的近场源定位算法.系统工程与电子技术,2007,29(1):32-36.
    [50] Bro R. and Andersson C. A..Improving the speed of multiway algorithm part II: Compression.Chemometrics and Intelligent Laboratory Systems,1998,42:105-113.
    [51] Bro R..Multi-way analysis in the food industry.1998,University of Amsterdam:Amsterdam.
    [52] Rajih M. and Comon P. Enhanced Line Search:A Novel Method To Accelerate Parafac.2005,I3S Report.1-15.
    [53] Nion D. and Lathauwer L. D.,An enhanced line search scheme for complex-valued tensordecompositions application in DS-CDMA.Signal Processing,2008,88(3):749-755.
    [54] Nion D. and Sidiropoulos N. D..Adaptive Algorithms to Track the PARAFAC Decomposition ofa Third-Order Tensor.IEEE Transactions on Signal Processing,2009,57(6):2299-2310.
    [55] Wax M,Shan T J,Kailath T.Spatial-temporal spectral analysis by eigenstructure motheds.IEEETrans. ASSP,1984,32(4):817-827.
    [56] Clark M P, Scharf L.Two-dimensional model analysis based on maximum likelihood.IEEETrans. Signal Process,1994,42(6):1443-1456.
    [57] Zoltowski M. D.,Haardt M., Mathews C. P. Closed-form2D angle estimation with rectangulararrays in element space or beamspace via unitary ESPRIT.IEEE Trans. Signal Process,1996,44(2):316-328.
    [58] Mathews C. P. and Zoltowski M. D. Eigenstructure techniques for2-D angle uniform circulararrays.IEEE Trans. Signal Process.,1994,42(9):2395-2407.
    [59] Y.Wu,G.Liao and H.C.So.A fast algorithm for2-D direction-of-arrival estimation. Signalprocess,2003,83(10):1827-1831.
    [60]任郧立,廖桂生,曾操.一种低复杂度的二维波达估计方法.电波科学学报,2005,4(20):526-530.
    [61] X. Zhang,X. Gao and W. Chen.Improved blind2D-direction of arrival estimation with L-shapedarray using shift invariance property.Journal of Electromagnetic Waves and Applications,2009,23(5):593–606.
    [62] Zhangxiaofei,Lijianfeng,Xulingyun.Novel two-dimensional DOA estimation with L-shapedarray.EURASIP Journal on advances in signal processing,2011,1-7.
    [63]刁鸣,缪善林.一种二维ESPRIT算法参数配对新方法.系统工程与电子技术,2007,29(8):1226-1229.
    [64]李南君,顾建峰,魏平.基于伪数据矩阵的二维自动配对.电波科学学报,2009,24(3):482-487.
    [65]孙心宇,周建江,汪飞.一种双L型阵列DOA估计参量的精确配对方法.系统工程与电子技术,2010,32(6):1125-1130.
    [66] Jackson L. B.,Chien C. H. Frequency and bearing estimation by two dimensional linearprediction.ICASSP’79,1979:665-668.
    [67] Zoltowski M. D.,Mathews C P..Real-time frequency and2-D angle estimation with sub-nyquistspatio-temporal sampling.IEEE Trans Signal Process,1994,42(10):2781-2794.
    [68] Haardt M and Nossek J.A..3-D unitary ESPRIT for joint angle and carrierestimation.ICASSP’97,1997,255-258.
    [69] Strobach P. Total least square phased averaging and3-D ESPRIT for joint azimuthelevation-carrier estimation. IEEE Trans Signal Process,2001,49(1):54-62.
    [70] Lemma A N,Van der Veen A.–J., Deprettere E. F. Joint angle-frequency estimation usingmulti-resolution ESPRIT.ICASSP’98,1998:1957-1960.
    [71]葛利嘉,陈天麒.利用旋转不变技术实现方向/频率联合估计.电子学报,1996,24(12):32-35.
    [72]廖桂生,保铮.未知阵列流形条件下波达方向-多普勒频率盲估计方法.电子学报,1997,19(2):152-157.
    [73]廖桂生,保铮.一种新的旋转不变技术实现起伏目标的高分辨方向——多普勒频率盲估计.电子学报,1996,24(12):6-11.
    [74]吴云韬,廖桂生,田孝华.一种波达方向、频率联合估计快速算法.电波科学学报,2003,18(4):380-384.
    [75]孙晓颖,陈建,林琳.基于时空处理的频率与二维DOA联合估计算法.通信学报,2009,30(8):39-44.
    [76]易辉跃,周希朗.空-时相关高斯噪声中基于累积量的联合角度-频率估计算法.上海交通大学学报,2007,41(5):764-768.
    [77] Zhangxiaofei,Fenggaopeng,Yu JUN et al.Angle–Frequency Estimation Using TrilinearDecomposition of the Oversampled Output.Wireless personal communications2009,51(2):365-372.
    [78] Wax M.,Leshem A. Joint estimation of time delay and direction of arrival of multiple reflectionsof a known signal.IEEE Transactions on Signal Process,1997,45(10):2477-2484.
    [79] Ogawa Y.,Hamaguchi N., Ohshima K. et al.High-resolution analysis of indoor multipathpropagation structure. IEICE Transactions On Communications,1995,E78-B:1450-1457.
    [80] Wang Y.Y.,Chen J.T. and Fang W.H..TST-MUSIC for DOA-delay joint estimation.IEEETransactions on Signal Processing,2001,49(4):721-729.
    [81] A. J. Van der Veen, M. C. Vanderveen,A. Paulraj.Joint angle and delay estimation usingshift-invariance properties,IEEE Signal Processing Letters,1997,4(5):142-145.
    [82]黄晖,廖桂生,张林让.一种新的DS-CDMA系统多径角度时延联合估计方法.电子学报,2002,30(3):335-338.
    [83]张小飞,徐大专.均匀圆阵中一种盲联合角度-时延估计方法.通信学报,2006,27(12):55-60.
    [84]张小飞,徐大专.一种新的盲联合角度-时延估计方法.哈尔滨工业大学学报,2006,38(11):1893-1897.
    [85]张群飞,保铮,黄建国.一种水下多目标方位、频率、距离联合估计新方法.电子学报,2004,32(9):1409-1413.
    [86]王建英,陈天麒.用L阵实现频率、二维到达角和极化的联合估计.电波科学学报,200l,l6(1):30-33.
    [87]周浩,蒋兴周.基于矢量传感器阵列的二维波达方向估计研究.武汉理工大学学报,2007,31(2):220-223.
    [88] Sun GYang D,Zhang L.Maximum likelihood ratio detection and maximum likelihood DOAestimation based on the vector hydrophone.Acta Acustica,2003,28(1):66-72.
    [89] Nehorai A. Paldi E. Acoustic vector-sensor array processing.IEEE Trans Signal Process,1994,42(9):2481-2491.
    [90] Hawkes M., Nehorai A.. Acoustic vector-sensor beamforming and capson directionestimation.IEEE Trans Signal Process,1998,46(9):2291-2304.
    [91] Wong K. T. and Zoltowski M. D. Self-Initiating MUSIC-based direction finding in underwateracoustic particle velocity-field beamspace.IEEE J. Oceanic Eng.,2000,25(2):262–273.
    [92] Chen H.-W, Zhao J.–W. Wideband MVDR beamforming for acoustic vector sensor lineararray. IEE Proceedings Radar,Sonar&Navigat,2004,151(3):158-162.
    [93] Hochwald B,Nehorai A..Identifiability in array processing models with vector sensorapplications. IEEE Trans Signal Process,1996,44(1):83-95.
    [94] Wong K. T.&Zoltowski M. D..Closed-Form Underwater Acoustic Direction-Finding withArbitrarily Spaced Vector-Hydrophones at Unknown Locations.IEEE Journal of OceanicEngineering,1997,22(3):566-575.
    [95] Hawkes M.,A. Nehorai.Effects of sensor placement on acoustic vector-sensor arrayperformance.IEEE J. Oceanic Eng,1999,24(1):33-40.
    [96]田坦,齐娜,孙大军.矢量水听器阵波束域MVDR方法研究.哈尔滨工程大学学报,2004,25(3):295-298.
    [97]吕钱浩,杨士莪,张锦中等.矢量传感器阵列高分辨率方位估计技术研究.哈尔滨工程大学学报,2004,25(4):440-445.
    [98]徐海东,梁国龙,惠俊英.声矢量阵波束域宽带聚焦MUSIC算法.哈尔滨工程大学学报,2005,26(3):349-354.
    [99]孙国仓,惠俊英,蔡平.基于声矢量传感器阵的酉MUSIC算法.计算机工程与应用,2007,43(18):24-26.
    [100]白兴宇,杨德森,赵春晖等.一种新的声矢量阵远程ESPRIT方位估计算法.哈尔滨工程大学学报,2006,27(6):891-895.
    [101]顾陈,何劲,朱晓华等.基于传播算子的声学矢量传感器阵列扩展孔径二维DOA估计算法.电子学报,2010,38(10):2377-2382.
    [102]何希盈,程锦房,林春生.基于波达方向矩阵的矢量水听器方位频率联合估计.海军工程大学学报,2008,20(5):37-41.
    [103]李少宏,张小凤,张光斌.基于单个声矢量传感器的频率和方位联合估计.陕西师范大学学报,2005,33:24-26.
    [104] Fishler E.,Haimovich A., Blum R. S. et al.MIMO radar: An idea whose time has come.Proceedings of the IEEE Conference on Radar. Philadelphia Pennsylvania USA: IEEE Press,2004:71-78.
    [105]何子述,韩春林,刘波.MIMO雷达概念及其技术特点分析.电子学报,2005,33(12A):143-147.
    [106] Bekkerman I.,Tabrikian J.Target Detection and Localization Using M IMO Radars andSonars. IEEE Transactions on Signal Processing,2006,54(10):3873-3883.
    [107] Xu L.,Li J. Iterative Generalized Likelihood Ratio Test for MIMO Radar.IEEETransactions on Signal Processing,2007,55(6):2375-2385.
    [108] L i J,X u L,Stoica P. et al.Range Compression and Waveform Optimization for MIMORadar-a Cramer-Rao Bound Based Study.IEEE Transactions on Signal Processing,2008,56(1):218-232.
    [109] XuLu Zhou,LiJian,Stoica P.Adaptive techniques for MIMO radar.The4thIEEE WorkshopSensor Array and Multi-channel Processing,2006:258-262.
    [110] Yan Hai-dong, Li Jun,and Liao Gui-sheng.Multitarget identification and localization usingbistatic MIMO radar systems.EURASIP Journal on Advances in Signal Processing,2008,8(2):1-8.
    [111] Li Ji,Conan J,and Pierre S.Joint estimation of channel parameters for MIMO communicationsystems. The2ndInternational Symposium on Wireless Communication Systems,Siena,Italy,2005:22-26.
    [112] Bencheikh M. L.,Wang Y. and He H..Polynomial root finding technique for joint DOA DODestimation in bistatic MIMO radar. Signal Processing,2010,90(9):2723-2730.
    [113] C. Duofang,C. Baixiao and Q. Guodong.Angle estimation using ESPRIT in MIMOradar.Electron. Lett.,2008,44(12):770–771.
    [114]陈金立,顾红,苏卫民.一种双基地MIMO雷达快速多目标定位方法.电子与信息学报,2009,31(7):1664-1668.
    [115]刘晓莉,廖桂生.基于MUSIC和ESPRIT的双基地MIMO雷达角度估计算法.电子与信息学报,2010,32(9):2179-2182.
    [116]刘晓莉,廖桂生.多基线数据融合的双基地MIMO雷达角度估计.电波科学学报,2010,25(6):1199-1205.
    [117] Kruskal J. B. Three-way arrays: Rank and Uniqueness of Trilinear Decompositions withApplication to Arithmetic Complexity and Statistics. Linear Algebra Applications,1977,18:95-138.
    [118] Sidiropoulos N. D.,Giannakis G. B. and Bro R..Blind PARAFAC receivers for DS-CDMAsystems.IEEE Transactions on Signal Processing,2000,48(3):810-823.
    [119] Sidiropoulos N.D., Bro R. On the uniqueness of multilinear decomposition of N way arrays.Journal of Chemometrics,2000,14(3):229-239.
    [120] Tomasi G. and Bro R. A comparison of algorithm for fitting the PARAFAC model.Computational Statistics&Data Analysis.2006,50:1700-1734.
    [121] Bro R., N.D.Sidiropoulos and G.B.Giannakis.A fast least squares algorithm for separatingtrilinear mixtures,in Proc. ICA99Int. Workshop on Independent Component Analysis for BlindSignal Separation,1999:289-294.
    [122] Zhang X,Gao X and Xu D.Novel blind carrier frequency offset estimation for OFDM Systemwith multiple antennas.IEEE Transactions on Wireless Communications,2010,9(3):881-885.
    [123]张剑云,郑志东,李小波.双基地雷达收发角及多普勒频率的联合估计算法.电子与信息学报,2010,32(8):1843-1848.
    [124]刘旭,许宗泽,雷磊.应用矩阵分解的阵列信号参数辨识.应用科学学报,2010,28(1):49-55.
    [125] Liu Xiang-qian,Sidirodpoulos N D. Cramer-Rao lower bounds for low-rank decomposition ofmultidimensional arrays.IEEE Transactions on Signal Processing,2001,49(9):2074-2086.
    [126] He J.,Jiang S.,Wang J. and Liu Z..Direction finding in spatially correlated noise fields witharbitrarily-spaced and far-separated subarrays at unknown locations.IET Radar, Sonar&Navigat.2009,3(3):278–284.
    [127] Stoica P. and Nehorai A. Performance study of conditional and unconditional direction-of-arrivalestimation.IEEE Trans. Signal Process,1990,38(10):1783–1795.
    [128] Cheng Q and Hua Y. Further study of the pencil-MUSIC algorithm.IEEE Trans. on AerospaceElectronic Systems,1996,32(1):284-299.
    [129]张永顺,牛新亮,赵国庆等.MIMO双基地雷达多目标角度-多普勒频率联合估计.西安电子科技大学学报,2011,38(1):16-21.
    [130]符谓波,苏涛,赵永波等.空间色噪声环境双基地MIMO雷达角度和多普勒频率联合估计方法.电子与信息学报,2011,33(12):2858-2862.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700