稀疏信号处理在雷达检测和成像中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀疏信号处理理论,特别是近年压缩感知理论(Compressive Sensing,CS)的建立和快速发展,为利用稀疏信号处理技术解决雷达实际信号处理问题提供了新的方向。稀疏信号处理技术给我们提供了一个利用少量回波数据精确获取雷达目标信息的框架。近年来,压缩感知的理论和算法有很大发展,国内外研究表明,稀疏信号采样和恢复技术在雷达应用上具有很大的潜力。基于CS的雷达系统可以简化雷达硬件设计,提高系统分辨率,缩短数据获取时间,减少数据存储和传输量以及重构缺损信号。本论文列举了CS理论在雷达目标检测以及成像中的若干应用。利用概念分析、理论推导和实测数据验证等手段对雷达稀疏信号处理的一些新方法进行了研究。最后研究了基于CS的雷达观测矩阵设计以及优化算法的实时处理电路设计。本文的具体工作安排如下:
     1.针对雷达稀疏信号处理实际应用,结合CS基本理论,对雷达回波信号的稀疏表示、观测矩阵设计、优化问题求解以及对杂波的处理进行了分析。
     2.提出天波超视距雷达(OTHR)缺损信号的完整多普勒频谱重构方法。OTHR雷达工作在电磁环境复杂的高频波段,外部噪声的干扰,特别是闪电和流星余迹等瞬态干扰很强,信号容易受到强瞬态干扰的影响。对强瞬态干扰的剔除将导致信号缺损。同时现代OTHR通常要求在多模式、多目标的条件下工作,这也导致对同一目标和场景的回波在时间上不能均匀连续采样,信号出现缺损。根据信号的缺损规律,构建CS信号恢复模型,通过稀疏分解对信号完整的频谱进行了重构。
     3.研究了高频(HF)雷达随机跳频信号的距离-多普勒二维高分辨处理。HF雷达所处频段拥挤不堪,很难找到连续的宽频带实现距离高分辨。结合频率监测系统,提出利用随机分布的稀疏频点实现距离-多普勒二维高分辨处理。由于频带缺损,带宽合成的效果不好,目标像出现高的旁瓣和栅瓣。针对这个问题,利用稀疏信号处理技术,构建距离-速度二维冗余时频字典矩阵,通过稀疏优化求解实现目标的二维高分辨。针对运动目标的距离-速度冗余时频字典矩阵相关性过大的问题,提出通过速度预估计的方法缩小字典速度维的尺寸,重新构造规模较小的时频字典,增强了字典的正交性。该方法提高了CS算法的恢复精度和稳健性,同时也大大提升了优化求解的计算效率。
     4.提出基于CS的动目标显示(MTI)雷达多普勒解模糊方法。该方法发射抖动脉冲重复频率(PRF)脉冲序列实现雷达回波信号的非均匀采样。利用目标多普勒的稀疏特性以及非均匀采样特性,构造多普勒频率远大于发射PRF的字典矩阵,通过求解优化问题直接恢复出不模糊的目标多普勒。针对强杂波影响信号的恢复精度问题,对多普勒解模糊方法进行了改进。首先发射一组参考等PRF的脉冲序列来得到杂波谱估计,然后把杂波抑制结合到CS优化求解中,在恢复出目标真实多普勒的同时实现了杂波抑制。
     5.提出带宽外推(BWE)结合CS的短孔径超分辨逆合成孔径雷达(ISAR)成像方法。短孔径ISAR成像可以减轻高次相位项的影响,简化了复杂运动目标的信号模型。根据CS理论,目标强散射点的恢复概率和精度与信号观测长度成正比,短孔径ISAR成像由于观测时间短,目标像方位分辨率通常较低。基于此问题,在保持信号相干性的前提下采用BWE技术对信号进行外推,增加了观测信号的维度。然后重新构造观测时间更长的CS模型,通过优化求解改善ISAR的方位分辨率。
     6.提出基于CS的雷达观测矩阵电路设计方法以及正交匹配追踪(OMP)优化算法的电路实现方法。CS理论能否成功应用在雷达实时信号处理中,随机观测矩阵的设计以及优化问题的高效求解成为关键。随机观测矩阵的设计将涉及雷达参数的改变和控制,文中提出了可编程逻辑门阵列(FPGA)+数字模拟转换器(DAC)实现雷达随机观测的设计方法,同时提出了FPGA+并串转化实现宽带稀疏信号的随机调制方法。对于稀疏信号处理的优化求解问题,基于本实验室开发的高性能FPGA信号处理平台,设计了高度并行和深度流水的计算电路。对比了基于修正Gram-Schmidt法(MGS) QR分解最小二乘和共轭梯度(CG)迭代法最小二乘的实现效率。所设计的电路可以直接应用于雷达实时稀疏信号处理。
The theory of sparse signal processing, especially the establishment and rapiddevelopment of compressive sensing (CS) in recent years, has provided a new direction forthe application of sparse signal processing technology in the solution of practical radar signalprocessing problems. Sparse signal processing technology provides us with a framework toaccurately obtain the target information of the radar with a few echo data. According to theresearch at home and abroad, sparse signal sampling and recovery technique own a greatpotential in radar application. The radar system based on CS can simplify the design of radarhardware, improve the resolution, shorten the time for obtaining data, reduce data memorycapacity and reconstruct partial signals. This dissertation enumerates some applications of CStheory in radar target detection and imaging, makes a research on some new methods of radarsparse signal processing by means of conceptual analysis, theoretical derivation, real dataverification, etc., and finally studies the design of the radar measurement matrix based on CSand the real-time processing circuit design of its optimization algorithm. The main content ofthis dissertation is summarized as follows.
     The dissertation, on the basis of the practical applications of radar sparse signalprocessing and combining the basic theory of CS, analyzes sparse expression of radar echosignals, measurement matrix design, optimization problem solution and clutter processing.
     Over-the-horizon radar(OTHR) operating in the high frequency (HF) band can providelong-range detection of targets in large surveillance areas. However, OTHR signal is usuallycontaminated by transient interference, such as lightning, meteor trail echoes and man-madeimpulse interference. To filter out these interferences is available, while it destroys theintegrity of signal in time domain. What’s more, modern OTHR system is usually required tobe multi-mode and able to detect multi-targets simultaneously under different backgrounds.To satisfy these requirements, incontinuous sampling mode is usually applied resulting inparts of signal missing. In this paper, a novel algorithm is proposed to reconstruct theintegrate spectrum of OTHR with partial signal. The spectrum reconstruction problem isshifted into a problem of a norm1constrained optimal problem. By solving this problem withgreedy algorithm efficiently, the integrate frequency spectrum of OTHR signal isreconstructed optimally.
     The dissertation studies the range-Doppler two-dimensional (2D) high resolutionconstruction of HF radar randomly hopped frequency signals. In a congest frequency band,it’s hard for a HF radar to find continuous broadband to realize high range resolution. Thus, the dissertation proposes to use randomly-distributed sparse frequencies to realizerange-Doppler2D high resolution processing. Because of the absence of some frequencies,high sidelobes and grating lobes will arise in the target’s range profile. To solve this problem,a range-velocity redundant time-frequency dictionary matrix is built to realize thetwo-dimensional high resolution target construction through optimization solution. For theproblem of the great coherence of the dictionary matrix of the moving target, the dissertationalso suggests to reduce the size of the dictionary by speed estimation, so as to improve itsorthogonality of the dictionary’s items. This method is able to enhance the recovery accuracyand stability of CS algorithm, and meanwhile improve the calculation efficiency ofoptimization solution.
     A novel velocity ambiguity resolving method is proposed for moving target indication(MTI) radar, in which CS is applied to recover the unambiguous Doppler spectrum of targetsfrom the randomly pulse repetition frequency (PRF)-jittering pulses. Aiming at the issue thatstrong clutter affects the recovery accuracy of signals, the Doppler ambiguity resolvingmethod is improved. Firstly a group of reference pulse is transmitted to obtain clutterspectrum estimation. Then weighting in CS recovery is utilized to suppress the clutter byusing the estimated clutter spectrum.
     In this dissertation, we present an algorithm for inversed synthetic aperture radar (ISAR)imaging with super resolution by combining CS and bandwidth extrapolation (BWE)technique. For ISAR imaging, the backscattering field of target is usually contributed by afew strong scattering centers, whose number is much less than that of image pixels. Thus, CSis intuitively suitable for constructing super resolution ISAR image. According to CS theory,the number of extracted dominating scatters relies on the signal length, which indicates that ifonly limited data is available, it is difficult to generate dense ISAR image robustly by CS, andsome signal components tend to lose. To soften this constraint, BWE is combined with CSimaging to increase the degree of signal freedom while preserving its coherence. A refinedCS-based formation for ISAR image-resolution enhancement is then developed. Both real andsimulated data experiments are performed to evaluate the proposed approach, and an exampleof using this technique demonstrates the enhanced image resolution in application ofmaneuvering target imaging.
     The dissertation also studies the design method of radar measurement matrix circuitbased on CS and the circuit realizing method of Orthogonal Matching Pursuit (OMP)optimization algorithm. The design of the random measurement matrix and the highlyefficient solution of the optimization problem are crucial for the successful application of CStheory in real-time radar signal processing. The design of the random measurement matrix involves the change and control of radar parameters, in this dissertation, the design method ofusing Field Programmable Gate Array (FPGA) and digital to analog converter to realize radarrandom measurement and the method of using FPGA and parallel-to-serial converter torealize the random modulation of broadband sparse signals are proposed. To solve theoptimization problem of sparse signal processing, a high-paralleled and deep-pipelinedcalculation circuit is designed on the basis of the high-performance FPGA platform developedby the lab. It compares the efficiency of the least squares problem based on ModifiedGram-Schmidt(MGS) QR decomposition and Conjugate Gradient(CG) iterative method. Thecircuit designed in the dissertation can be directly applied in real-time radar sparse signalprocessing.
引文
[1] M. I. Skolnik.王军等译.雷达手册.北京:电子工业出版社,2003.
    [2] D. R. Wehner. High-Resolution Radar,2nd ed. Boston, MA: Artech House,1995.
    [3]保铮,邢孟道,王彤,雷达成像技术.北京:电子工业出版社,2005.
    [4]张光义,赵玉杰,相控阵雷达技术.北京:电子工业出版社,2006.
    [5] James D, Taylor. P.E. Ultra-Wideband Radar Technology. New York: CRC Press.
    [6] L.Y. Astanin, A. A. Kostylev, Ultrawideband Radar Measurements: analysis andprocessing, London: The Institution of Electrical Engineers,1997.
    [7] W. W. Camp, J. T. Mayhan, R. M. Odonnell. Wideband radar for ballistic missiledefense and range-Doppler imaging of satellites. Lincoln Laboratory Journal.2000, vol.12(2).267-279.
    [8]黄培康,殷红成,徐小剑.雷达目标特性.北京:电子工业出版社,2005.
    [9] H. L. van Tress, Detection, Estimation, and Modulation Theory(PartIII):Radar-Sonar Signal Processing and Gaussian Signals in Noise. New York: JohnWiley and Sons,2001.
    [10] G. Y. Delisle, Haiqing Wu. Moving target imaging and trajectory computation usingISAR. IEEE Trans. Aerospace and Electronic Systems,1994,37(3).887-899.
    [11] Nanzhi Jiang, Renbiao WU, Jian Li, Super resolution feature extraction of movingtargets. IEEE Trans. Aerospace and Electronic Systems,2001,37(3).781-793.
    [12]刘宏伟,杜兰,保铮等.雷达高分辨距离像目标识别研究进展.电子与信息学报.2005, vol.27(8):1328-1334.
    [13] P. K. Hughes. A high-resolution radar detection strategy. IEEE Trans. Aerosp.Electron. Syst.1983,19(5):663–667.
    [14] Ian G. Cumming,洪文等译,合成孔径雷达成像算法与实现.北京:电子工业出版社,2007.
    [15] R. J. Sullivan. Micowave Radar Imaging and Advanced Concepts. Boston: ArtechHouse,2000.
    [16] R. L. Jordan, B. L. Huneycutt, M. Werner. The SIR-C/X-SAR Synthetic ApertureRadar System. Proc. IEEE,1991,79(6):827-838.
    [17] C. Elahci, T. Bicknell, R. L. Jordan, and C. Wu. Spaceborne synthetic apertureimaging radars: application, techniques, and technology. Proc. Of IEEE.1982,70(10):1174-1209.
    [18] C. A. Wiley. Synthetic Aperture radar. IEEE Trans. Aerosp. Electron. Syst..1985,21(3):440-443.
    [19] V. C. Chen, L. Hao. Time-Frequency Transforms For Radar Imaging And SignalAnalysis. Artech House, Inc.,2002.
    [20] B.P. Gonzalez, D. E. De, E. Millan, B. Errasti, and I. Montiel, Stepped-frequencywaveform radar demonstrator and its jamming, Waveform Diversity and DesignConference,2009International:192-196.
    [21] R. Klemm, Interrelated problems in space-time processing for SAR and ISAR, IEERadar Sonar and Navig., Octorber1998,145(5):297–302.
    [22] Q. Wang, R. Wu, M. Xing, and Z. Bao, A new algorithm for sparse apertureinterpolation, IEEE Trans. on GRSL, July2007,4(3):480–484.
    [23] T. G. Moore, B. W. Zuerndorfer, and E. C. Burt, Enhanced imagery usingspectral-estimation-based techniques, Lincoln Laboratory Journal, march1997,10(2):171–186.
    [24] M. Martorella, J. Palmer, F. Berizzi, and E. D. Mese, Improving the total rotationvector estimation via a bistatic ISAR system, IEEE Geoscience and Remote SensingSymposium,2005. IGARSS '05.25-29, vol.2, July2005:1068–1071.
    [25] G. Wang, X. Xia, and V.C. Chen, Three-dimensional ISAR imaging of maneuveringtargets using three receivers, IEEE Trans. on IP, March2001,37(21):485–447.
    [26] Q. Zhang, T. S. Yeo, G. Du, and S Zhang, Estimation of three-dimensional motionparameters in interferometric ISAR imaging, IEEE Trans. on Geosci. Remot. Sens.,February2004,42(2):292–330.
    [27] J. T. Mayhan, M. L. Burrows, K. M. Cuomo, and J. E. Piou, High resolution3D‘Snapshot’ ISAR imaging and feature extraction, IEEE Trans. on Aerosp. Electron.Syst., April2001,37(2):630–641.
    [28] E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signalreconstruction from highly incomplete frequency information. IEEE Trans.Information Theory,2006,52(2):489–509.
    [29] D. Donoho, Compressed sensing, IEEE Trans. Information Theory,2006,52(4):5406–5425.
    [30] E.J. Cand`es and M.B. Wakin. An introduction to compressive sampling. IEEETrans. Signal Processing Magazine,2008.25(2):21–30.
    [31] E. Candès and J. Romberg, Quantitative robust uncertainty principles and optimallysparse decompositions. Foundations of Comput. Math.,2006,6(2):227-254.
    [32] E. Candès and T. Tao, Near optimal signal recovery from random projections:Universal encoding strategies? IEEE Trans. on Information Theory, December2006,52(12):5406–5425.
    [33] D. Donoho and Y. Tsaig, Extensions of compressed sensing. Signal Processing,March2006,86(3):533-548.
    [34] E. Candès, J. Romberg, and T. Tao, Stable signal recovery from incomplete andinaccurate measurements. Communications on Pure and Applied Mathematics,August2006,59(8):1207-1223.
    [35] J. Haupt and R. Nowak, Signal reconstruction from noisy random projections.IEEE Trans. on Information Theory, September2006,52(9):4036-4048.
    [36] H. Rauhut, K. Schnass, and P. Vandergheynst, Compressed sensing and redundantdictionaries. IEEE Trans. on Information Theory, May2008,54(5):2210-2219.
    [37] J. Laska, M. Davenport, and R. Baraniuk, Exact signal recovery from sparselycorrupted measurements through the pursuit of justice. Asilomar Conf. on Signals,Systems, and Computers, Pacific Grove, California, November2009.
    [38] V.N. Temlyakov and P. Zheltov, On performance of greedy algorithms. Journal ofApproximation Theory, Jan2010,163(9):1134-1145.
    [39] Sami Kirolos, Jason Laska, Michael Wakin, et al. Analog-to-InformationConversion via Random Demodulation.2006IEEE Dallas/CAS Workshop onDesign, Applications, Integration and Software:71-74.
    [40] Kirolos S., Ragheb T., Laska J., etc. Practical issues in implementinganalog-to-information converters.6TH INTERNATIONALW ORKSHOP ONSYSTEM-ON-CHIP FOR REAL-TIME APPLICATIONS, PROCEEDINGS,2006:141-146.
    [41] Ragheb T., Kirolos S., Laska J., etc. Implementation models foranalog-to-information conversion via random sampling.50th Midwest Symposiumon Circuits and Systems,2007:325-328.
    [42] Guangming Shi, Jie Lin, Xuyang Chen, etc. UWB Echo Signal Detection WithUltra-Low Rate Sampling Based on Compressed Sensing. IEEE Transactions onCircuits and Systems II: Express Briefs,2008,55(4):379-383.
    [43] I.Jouny. Compressed Sensing for UWB Radar Target SignatureReconstruction[C].Proc.of Digital Signal Processing Workshop and5th IEEE SignalProcessing Education Workshop,2009:714-719.
    [44] Mishali, M., Eldar, Y.C., Elron, A.J. Xampling: Signal Acquisition and Processingin Union of Subspaces. IEEE Transactions on Signal Processing,2011,59(10):4719-4734.
    [45] Mishali, M., Eldar, Y.C., Dounaevsky, O., Shoshan, E. Xampling: Analog todigital at sub-Nyquist rates. Circuits, Devices&Systems, IET.2011,5(1):8-20.
    [46] Mishali, M., Eldar, Y.C., Dounaevsky, O., Shoshan, E., Sub-Nyquist acquisitionhardware for wideband communication[C].2010IEEE Workshop on SignalProcessing Systems (SIPS),2010:156-161.
    [47] Michaeli, T., Eldar, Y. C. Xampling at the Rate of Innovation. IEEE Transactionson Signal Processing,2011, PP(99):1.
    [48] M. Herman, and T. Strohmer, Compressed sensing radar, in Proc. IEEE RadarConf., Rome,2008,1–6.
    [49] M. Herman, and T. Strohmer, High-Resolution Radar via Compressed Sensing,IEEE Trans. Signal Process.,2009,57(6),2275–2284.
    [50] Baraniuk R., Steeghs P.Compressive Radar Imaging.2007IEEE Radar Conference,Boston,128-133.
    [51] Varshney K.R.,Cetin M.,F isher J.W.,et al.Sparse Represent ation in S tructuredDictionaries With Application to S ynthetic Aperture Radar.IEEE Transactions onSignal Processing,2008,56(8):3548-3561.
    [52] Potter Lee C., Schniter Philip, Ziniel Justin.Sparse reconstruction for radar[C].Proceedings of SPIE-Algorithms for SyntheticAperture Radar ImageryXV:697003-697015.
    [53] Patel, V.M., Easley, G.R., Healy, D.M., Chellappa, R. Compressed SyntheticAperture Radar. IEEE Journal of Selected Topics in Signal Processing,2010,4(2):244-254.
    [54] Coker, J.D., Tewfik, A.H., Compressed sensing and multistatic SAR, IEEEInternational Conference on Acoustics, Speech and Signal Processing,2009.ICASSP2009:1097-1100.
    [55] Stojanovic, I., Karl, W.C., Imaging of Moving Targets With Multi-Static SARUsing an Overcomplete Dictionary. IEEE Journal of Selected Topics in SignalProcessing,2010,4(1):164-176.
    [56] Ludger Prünte: Application of Compressed Sensing to SAR/GMTI-Data, EUSAR2010:7-10.
    [57] Yoon Yeo-Sun, Amin Moeness G. Compressed sensing technique forhigh-resolution radar imaging. Proceedings of SPIE-S IGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XVII,2008,6968:A968.
    [58] Shah, S., Yao Yu, Petropulu, A. Step-frequency radar with compressivesampling(SFR-CS).2010IEEE International Conference on Acoustics Speech andSignal Processing (ICASSP),2010:1686-1689.
    [59] Joachim H.G. Ender. On compressive sensing applied to radar. Signal Processing.2010,90(5):1402-1414.
    [60] Yao Yu, Petropulu, A.P., Poor, H.V. Compressive sensing for MIMO radar. IEEEInternational Conference on Acoustics, Speech and Signal Processing,2009.ICASSP2009:3017-3020.
    [61] Yao Yu, Petropulu, A.P., Poor, H.V. MIMO Radar Using Compressive Sampling.IEEE Journal of Selected Topics in Signal Processing.2010,4(1):146-163.
    [62] Strohmer, T., Friedlander, B. Compressed sensing for MIMO radar-algorithms andperformance.2009Conference Record of the Forty-Third Asilomar Conference onSignals, Systems and Computers.2009:464-468.
    [63] Gurbuz, A.C., McClellan, J.H., Scott, W.R. Compressive sensing for subsurfaceimaging using ground penetrating radar.Signal Proc essing,2009,89(10):1959-1972.
    [64] Gurbuz, A.C, McClellan, J. H., Scott, W. R. GPR imaging using compressedmeasurements. International Geoscience and Remote Sensing Symposium(IGARSS),2008,2(1):II-13–II-16.
    [65] Gurbuz, A.C, McClellan, J.H., Scott, W.R. A compressive sensing data acquisitionand imaging method for stepped frequency GPRs. IEEE Transactions on SignalProcessing,2009,57(7):2640-2650.
    [66]张文吉.电磁逆散射成像方法及压缩感知理论在成像中的应用.中国科学院电子学研究所博士学位论文,2010.
    [67] L.Yun,H.Wen and T.Weixian.Compressed sensing technique for circular SARimaging[C].Proc.of2009IET International Radar Conference,2009:676-679.
    [68]余慧敏,方广有.压缩感知理论在探地雷达三维成像中的应用.电子与信息学报,2010,32(1):12-16.
    [69]屈乐乐,黄琼,方广有.基于压缩感知频率步进探地雷达成像算法[J].系统工程与电子技术,2010,32(2):295-297.
    [70] Qiong Huang, Lele Qu, Guangyou Fang. UWB through-wall imaging based oncompressivesensing. IEEE Trans on Geoscience and Remote sensing.2010,48(3):1408-1415.
    [71]谢晓春,张云华.基于压缩感知的二维雷达成像算法.电子与信息学报,2010,32(5):1234-1238.
    [72] Xie Xiao-Chun,Zhang Yun-Hua.High-resolution imaging of moving train byground-based radar with compressive sensing. Electronics Letters,2010,46(7):529-531.
    [73]谢晓春.压缩感知理论在雷达成像中的应用研究.中国科学院空间科学与应用研究中心博士学位论文,2010.
    [74]刘记红,徐少坤,高勋章等.压缩感知雷达成像技术综述.信号处理,2011,27(2),251-260.
    [75]刘吉英.压缩感知理论及在成像中的应用.国防科技大学博士学位论文,2010.
    [76]贺亚鹏,庄珊娜,李洪涛,朱晓华.基于压缩感知的频率编码脉冲雷达高分辨距离成像方法.电子与信息学报,2011,33(7):1678-1683.
    [77]贺亚鹏,庄珊娜,李洪涛,朱晓华.基于感知矩阵统计相关系数最小化的压缩感知雷达波形优化设计.电子与信息学报,2011,33(9):2098-2102.
    [78] Lei Zhang, Mengdao Xing, Chengwei Qiu, Jialian Sheng, Yachao Li, and ZhengBao, Resolution Enhancement for Inverse Synthetic Aperture Radar Imaging UnderLow SNR via Improved Compressive Sensing, IEEE Trans. Geosci. Remot. Sens.,2010, Vol.48(10),3824-3838.
    [79] Lei Zhang, Mengdao Xing, Chengwei Qiu, and Zheng Bao, Achieving HigherResolution ISAR Imaging with Limited Pulses via Compressed Sampling, IEEE.Geosci. Remot. Sens.lett.2009, Vol.6(3),567-571.
    [80] Quan Yinghui, Zhang Lei, Guo Rui, Xing Mengdao, Bao Zheng, Generating Denseand Super-resolution ISAR Image by Combining Bandwidth Extrapolation andCompressive Sensing, Scientia Sinica Informations,2011,54(10):2158-2169.
    [81] Li Jun, Xing Mengdao, Wu Shunjun, Application of compressed sensing in sparseaperture imaging of radar.2nd Asian-Pacific Conference on Synthetic ApertureRadar,2009.2009:651-655.
    [82] Yabo Liu, Yinghui Quan, Jun Li, Long Zhang, Mengdao Xing, SAR imaging ofmultiple ships based on compressed sensing.2nd Asian-Pacific Conference onSynthetic Aperture Radar,2009:112-115.
    [83] Wang Hongxian, Quan Yinghui, Xing Mengdao, Zhang Shouhong. ISAR Imagingvia Sparse Probing Frequencies. IEEE Geoscience and Remote Sensing Letters,2011,8(3):451-455.
    [84] Wang Hongxian, Liang Yi, Xing Mengdao, Zhang Shouhong. ISAR Imaging viaSparse Frequency-Stepped Chirp Signal [J]. Scientia Sinica Informations,已录用.
    [85] Qisong Wu, Mengdao Xing, Chengwei Qiu, Baochang Liu, Zheng Bao andTat-Soon Yeo, Motion Parameter Estimation in the SAR System With Low PRFSampling. IEEE Geoscience and Remote Sensing Letters,2010,7(3):450-454.
    [86] G. Trunk and S. Brockett, Range and Velocity Ambiguity Resolution, IEEENational Radar Conference,1993:146-149.
    [87] M. A. Richards, Fundamentals of Radar Signal Processing, New York:McGraw-Hill,2005.
    [88] G. Trunk, M. W. Kim, Ambiguity Resolution of Multiple Targets UsingPulse-Doppler Waveforms, IEEE Trans. on Aerospace and Electronic Systems,1994,30(4):1130-1137.
    [89] A., Quinquis, E., Radoi, F.,C., Totir, Some radar imagery results usingsuperresolution techniques. IEEE Trans. Antennas Propag., May.2004,52(5):1-15.
    [90] A. D. Lazarov, Iterative minimum mean square error method and recurrent Kalmanprocedure for ISAR image reconstruction, IEEE Trans. Aerosp. Electron. Syst., Oct.2001.37(4):1432-1441.
    [91] Pdendaal, J.W., Barnard, E., and Pistorius, C.W.I. Two-dimensional superresolutionradar imaging using the MUSIC algorithm, IEEE Trans. Antennas Propag., Oct.1994,42(10):1386-1391.
    [92] Li, J., and Stoica, P. An adaptive filtering approach to spectral estimation and SARimaging. IEEE Trans. Signal Processing, June,1996.44(2):1469-1484.
    [93] I. J. Gupta, High-resolution radar imaging using2-D linear prediction, IEEE Trans.Antennas Propag., Jan.1994.42(1):31–37.
    [94] Thomas G. Moore, Brian W. Zuerndorfer, and Earl C. Burt, Enhanced imageryusing spectral-estimation-based techniques, Lincoln Lab. J.,1997.10(2):171–186.
    [95] H. J. Li, N. H. Farhat, and Y. S. Shen, A new iterative algorithm for extrapolation ofdata available in multiple restricted regions with applications to radar imaging, IEEETrans. Antennas Propag., May1987.35(5):581–588.
    [1] Mallat S, Zhang Z. Matching pursuit with time-frequency dictionaries. IEEE Trans.on Signal Processing,1993,41(12):3397–3415.
    [2] Chen S, Donoho L, Saunders M. Atomic decomposition by basis pursuit. SIAMReview,2001,43(1):129–159.
    [3] Donoho L, Elad M, Temlyakov N. Stable recovery of sparse overcompleterepresentations in the presence of noise. IEEE Trans. on Information Theory,2006,52(1):6–18.
    [4] Needell D, and Vershynin R. Signal recovery from incomplete and inaccuratemeasurements via regularized orthogonal matching pursuit. IEEE Journal of selectedtopics in signal processing,2010,4(2):310–316.
    [5] E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signalreconstruction from highly incomplete frequency information. IEEE Trans.Information Theory,2006,52(2):489–509.
    [6] D. Donoho, Compressed sensing, IEEE Trans. Information Theory,2006,52(4):5406–5425.
    [7] E.J. Cand`es and M.B. Wakin. An introduction to compressive sampling. IEEETrans. Signal Processing Magazine,2008.25(2):21–30.
    [8] E. Candès and T. Tao, Near optimal signal recovery from random projections:Universal encoding strategies? IEEE Trans. on Information Theory, December2006,52(12):5406–5425.
    [9] D. Donoho and Y. Tsaig, Extensions of compressed sensing. Signal Processing,March2006,86(3):533-548.
    [10] E. Candès, J. Romberg, and T. Tao, Stable signal recovery from incomplete andinaccurate measurements. Communications on Pure and Applied Mathematics,August2006,59(8):1207-1223.
    [11] Joel Tropp and Anna Gilbert, Signal recovery from random measurements viaorthogonal matching pursuit. December2007, IEEE Trans. on Information Theory,53(12):4655-4666.
    [12] Shriram Sarvotham, Dror Baron, and Richard Baraniuk, Sudocodes-Fastmeasurement and reconstruction of sparse signals. IEEE Int. Symposium onInformation Theory (ISIT), Seattle, Washington, July2006.
    [13] David Donoho and Yaakov Tsaig, Fast solution ofl1-norm minimization problemswhen the solution may be sparse.(Stanford University Department of StatisticsTechnical Report2006-18,2006).
    [14] Mário A. T. Figueiredo, Robert D. Nowak, and Stephen J. Wright, Gradientprojection for sparse reconstruction: Application to compressed sensing and otherinverse problems. IEEE Journal of Selected Topics in Signal Processing: SpecialIssue on Convex Optimization Methods for Signal Processing,2007,1(4):586-598.
    [15] Thomas Blumensath and Mike E. Davies, Gradient pursuits. IEEE Trans. on SignalProcessing, June2008,56(6):2370–2382.
    [16] E.Candes and T.Tao.Decoding by linear programming[J].IEEE Trans.onInformation Theory,2006,51(12):4203-4215.
    [17] E.Candes.The restricted isometry property and its implications for compressedsensing.C.R.Acad.Sci.Ser.I,346:589-592.
    [18] D.L. Donoho and X. Huo, Uncertainty principles and ideal atomic decomposition,IEEE Trans. Inform. Theory, Nov.2001,47(7):2845–2862.
    [19] Ioannis Sarkas, Step Frequency Radar Using Compressed Sensing.
    [20]谢晓春.压缩感知理论在雷达成像中的应用研究.中国科学院空间科学与应用研究中心博士学位论文,2010.
    [21]刘吉英.压缩感知理论及在成像中的应用.国防科技大学博士学位论文,2010.
    [22] D.L. Donoho, M.Elad and V.N.Temlyakov. Stable recovery of sparse overcompleterepresentations in the presence of noise. IEEE Trans. on InformationTheory,2006,52(1):6-18.
    [23] J.Tropp.Greed is good:Algorithmic results for sparse approximation. IEEETrans.on Information Theory,2006,50(10):2231-2342.
    [24] J.A.Tropp and A.C.Gilbert.Signal recovery from random measurements viaorthogonal matching pursuit.IEEE Trans.on Information Theory,2007,53(12):4655-4666.
    [25]贺亚鹏,庄珊娜,李洪涛,朱晓华.基于压缩感知的频率编码脉冲雷达高分辨距离成像方法.电子与信息学报,2011,33(7):1678-1683.
    [26] R Baraniuk. A lecture on compressive sensing. IEEE Signal Processing Magazine,2007,24(4):118-121.
    [27] Huggins, P.S.; Zucker, S.W., Greedy Basis Pursuit. IEEE Transactions on SignalProcessing,55(7), Part:2,2007:3760–3772.
    [28] Grant Michael, Boyd Stephen. CVX:Ma tlab Software for DisciplinedConvexProgramming[EB/OL].http://cvxr.com/cvx/.
    [29] Ji S H, Xue Y,Carin L.Bayesian compressive sensing. IEEE Trans. on SignalProcessing,2008,56(6):2346-2356.
    [30] Seeger M W. Bayesian inference and optimal design for the sparse linear model.Journal of Machine Learning Reserch,2008,9:759-813.
    [31] Wipf David Paul. Bayesian methods for finding sparse representations. Universityof California, San Diego.,2006.
    [32] Mohimani G.H., B abaie-Zadeh M., Jutten C. Complex-valued sparserepresentation based on smoothedl0norm. IEEE International Conference onAcoustics,Speech and Signal Processing,:3881-3884.
    [33] Mohimani H,B abaie-Zadeh M,Jutten C.A Fast Approach fo r Overcomplete SparseDecomposition Based on Smoothedl0Norm. IEEE Trans. on Signal Processing,2009,57(1):289-301.
    [34] D.L.Donoho,Y.Tsaig,I.Drori and J.-L.Starck.Sparse solution of underdeterminedlinear equations by stagewise orthogonal matching pursuit (StOMP)[EB/OL].http://www-stat.stanford.edu/~donoho/Reports/2006.
    [35] D.Needell and R.Vershynin.Uniform uncertainty principle and signal recovery viaregularized orthogonal matching pursuit.Found.Comput.Math.,2008,9(3).
    [36] D.Needell and J.A.Tropp.CoSaMP:Iterative signal recovery from incomplete andinaccurate samples. Applied and Computational Harmonic Analysis,2009,26:301-321.
    [37] Joachim H.G. Ender. On compressive sensing applied to radar. Signal Processing.2010,90(5):1402-1414.
    [38] Christoph Studer and Richard G. Baraniuk. Stable Restoration and Separation ofApproximately Sparse Signals. Rice University, Houston, TX, USA.2011.
    [39]吴顺君,梅晓春.雷达信号处理和数据处理技术.电子工业出版社.2004.
    [40] Mark A. Davenport, Petros T. Boufounos, Michael B. Wakin, Richard G. Baraniuk,Signal Processing With Compressive Measurements. IEEE Journal of SelectedTopics in Signal Processing, APRIL2010,4(2):445-460.
    [1] James R, Barnum, Erik E. Simpson. Over-the-Horizon Radar sensitivityEnhancement by Impulsive Noise excision[A].1997IEEE National RadarConference[C], Syracuse, NY, USA,1997:252–256.
    [2] S. J. Anderson, Y. I. Abramovich. A unified approach to detection, classification, andcorrection of ionospheric distortion in HF sky wave radar systems[J]. Radio Science,1998,33(4):1055-1067.
    [3] D. L. Donoho, Compressed Sensing, IEEE Trans. on Info. Theory, April2006,52(4):1289–1306.
    [4] E. Cand`es, J. Romberg, and T. Tao, Robust Uncertainty Principles: Exact SignalReconstruction From Highly Incomplete Frequency Information, IEEE Trans. onInfo.Theory, February2006,52(2):489–509.
    [5] Herman, Matthew, Strohmer. Thomas, Compressed Sensing Radar, IEEE RadarConference,2008:1-6.
    [6] Lei Zhang, Mengdao Xing, Cheng-wei Qiu, Zheng Bao, Achieving HigherResolution ISAR Imaging with Limited Pulses via Compressed Sampling, IEEETrans. on GRSL.2009,6(3):567-571.
    [7]邢孟道,保铮,强勇.天波超视距雷达瞬态干扰抑制[J].电子学报,2002,30(6):823-826.
    [8] Quan, Y.H., Xing, M.D., Zhang, L., Bao, Z.;Transient Interference Excision andSpectrum Reconstruction for OTHR. Electronics letters.2012, Vol.48(1):42-44.
    [9] E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signalreconstruction from highly incomplete frequency information, IEEE Trans.Information Theory, Feb.2006,52(2):489–509.
    [10] E. Candès, J. Romberg, and T. Tao, Near-optimal signal recovery from randomprojections: universal encoding strategies?, IEEE Trans. Information Theory, Dec.2006.52(12):5406–5425.
    [11] M. Grant, S. Boyd, and Y. Ye, cvx: Matlab software for disciplined convexprogramming,”[online]. Available: http://www.stanford.edu/~boyd/cvx/.
    [1] Headrick, J.M., and Skolnik, M.I. Over-the-horizon radar in HF band, Proc. IEEE,1974,62(6):654–673.
    [2] Khan R H,Mitchell P K.Waveform analysis for high-frequency FMICW radar. IEEProceeding-F,1991,138(5):411-419.
    [3] Green S D,Kingsley S P. Improving the range/time sidelobes of large bandwidthdiscontinuous spectra HF radar waveforms. IEE Proceedings of the7th InternationalConference on HF Radio Systems and Techniques [C]. Nottingham,UK:ConferencePublication,1997:246-250.
    [4]位寅生,刘永坦,许荣庆.准随机跳频信号的二维处理.电子学报,2003,31(6):801-805.
    [5] G. F. Earl, B. D. Eard, The frequeney management system of Jindaieeover-the-horizon backseatter HF radar, RadioSeience,1987,22(2):275-291.
    [6]位寅生,非连续谱高频雷达信号的综合研究.哈尔滨工业大学,2002.
    [7] Axelsson, S.R.J., Analysis of Random Step Frequency Radar and Comparison WithExperiments. IEEE Transactions on Geoscience and Remote Sensing,2007,45(4):890–904.
    [8] Shah, S., Yao Yu, Petropulu, A. Step-frequency radar with compressivesampling(SFR-CS).2010IEEE International Conference on Acoustics Speech andSignal Processing (ICASSP):1686-1689.
    [9]毛二可,龙腾,韩月秋.频率步进雷达数字信号处理.航空学报,2001,22(增):17-25.
    [10] Gill G S. Step frequency waveform design and processing for detection of moving target in clutter. IEEE International Radar Conference.1996:573-578.
    [11]刘宏伟,王俊,张守宏.运动目标环境下步进频率信号的设计与处理.西安电子科技大学学报,1997,24(增):75-81.
    [12]刘峥,刘宏伟,张守宏.正负步进频率编码信号及其处理.信号处理,1999.15(增):21-25.
    [13] SHEN Yiying, LIU Yongtan. A step pulse train design for high resolution rangeimaging with Doppler resolution processing. Chinese Journal of Electronics,1999,8(2):196-199.
    [14] Y.-C. Li L. Zhang B.-C. Liu Y.-H. Quan M.-D. Xing Z. Bao, Stepped-frequencyinverse synthetic aperture radar imaging based on adjacent pulse correlationintegration and coherent processing. IET Signal Processing,2011,5(7):632-642.
    [15]贺亚鹏,庄珊娜,李洪涛,朱晓华.基于压缩感知的频率编码脉冲雷达高分辨距离成像方法.电子与信息学报,2011,33(7):1678-1683.
    [16]何劲,罗迎,张群,杨小优.随机线性调频步进雷达波形设计及成像算法研究.电子与信息学报,2011,33(9):2068-2075.
    [1] M. I. Skolnik.王军等译.雷达手册.北京:电子工业出版社,2003.
    [2] G. Trunk and S. Brockett, Range and Velocity Ambiguity Resolution [C], IEEENational Radar Conference,1993:146-149.
    [3] M. A. Richards, Fundamentals of Radar Signal Processing [M], New York:McGraw-Hill,2005.
    [4] G. Trunk, M. W. Kim, Ambiguity Resolution of Multiple Targets UsingPulse-Doppler Waveforms, IEEE Trans. on Aerospace and Electronic Systems,1994,30(4):1130-1137.
    [5] Ferrari, A., Bereguer, C., and Alengrin, G.: Doppler Ambiguity Resolution UsingMultiple PRF. IEEE Trans. Aerosp. Electron. Syst.,1997,33,(3):738-751.
    [6] Cleetus, G. M.: Properties of staggered PRF Radar Spectral Components. IEEETrans. Aerosp. Electron. Syst.,1976,12,(6):800-803.
    [7] Patel, V. M., Easley, G. R., Healy, D. M. and Chellappa, R.: Compressed syntheticApeture Radar. IEEE Journal. Selected Topics in Signal Processing,2010,4,(2):244-254.
    [8] E. Candès and T. Tao, Near optimal signal recovery from random projections:Universal encoding strategies? IEEE Trans. on Information Theory, December2006,52(12):5406–5425.
    [9] M. Elad, Optimized Projections for Compressed Sensing, IEEE Trans. on SignalProcessing,55(12),2007:5695-5702.
    [10] R. Baraniuk, A Lecture on Compressive Sensing, IEEE Signal ProcessingMagazine,2007,24(4):118-121.
    [11]吴顺君,梅晓春.雷达信号处理和数据处理技术.电子工业出版社.2004.
    [1] Li, J., and Stoica, P. Efficient mixed-spectrum estimation with applications to targetfeature extraction. IEEE Trans. Signal Processing, Feb,1996,44(2):281-295.
    [2] A., Quinquis, E., Radoi, F.,C., Totir, Some radar imagery results usingsuperresolution techniques. IEEE Trans. Antennas Propag., May.2004,52(5):1-15.
    [3] A. D. Lazarov, Iterative minimum mean square error method and recurrent Kalmanprocedure for ISAR image reconstruction, IEEE Trans. Aerosp. Electron. Syst., Oct.2001.37(4):1432-1441.
    [4] Z. S. Liu, R. Wu, J. Li: Complex ISAR imaging of maneuvering targets via theCapon estimator, IEEE Trans. Signal Processing, May1999.47(5):1262-1271.
    [5] Pdendaal, J.W., Barnard, E., and Pistorius, C.W.I. Two-dimensional superresolutionradar imaging using the MUSIC algorithm, IEEE Trans. Antennas Propag., Oct.1994.42(10):1386-1391.
    [6] Li, J., and Stoica, P. An adaptive filtering approach to spectral estimation and SARimaging. IEEE Trans. Signal Processing, June,1996.44(2):1469-1484.
    [7] I. J. Gupta, High-resolution radar imaging using2-D linear prediction, IEEE Trans.Antennas Propag., Jan.1994.42(1):31–37.
    [8] Thomas G. Moore, Brian W. Zuerndorfer, and Earl C. Burt, Enhanced imagery usingspectral-estimation-based techniques, Lincoln Lab. J.,1997.10(2):171–186.
    [9] H. J. Li, N. H. Farhat, and Y. S. Shen, A new iterative algorithm for extrapolation ofdata available in multiple restricted regions with applications to radar imaging, IEEETrans. Antennas Propag., May1987.35(5):581–588.
    [10] E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signalreconstruction from highly incomplete frequency information, IEEE Trans.Information Theory, Feb.2006,52(2):489–509.
    [11] E. Candès, J. Romberg, and T. Tao, Near-optimal signal recovery from randomprojections: universal encoding strategies?, IEEE Trans. on Information Theory,December2006,52(12):5406–5425.
    [12] D. Donoho, Compressed sensing, IEEE Trans. Information Theory, Apri.2006,52(4):5406–5425.
    [13] E.J. Cand`es and M.B. Wakin.“An introduction to compressive sampling.” IEEE,Signal Processing Magazine, March2008,25(2):21–30.
    [14] Zhang, L., Xing,M.D., Qui, C.W., Li, J., Bao, Z., Achieving higher resolution ISARimaging with limited pulses via compressed sampling, IEEE Trans. Geosci. RemoteSens. Lett., July.2009,6(3):567-571.
    [15] W.Ye, T. S. Yeo, and Z. Bao, Weighted Least-Squares estimation of phase errors forSAR/ISAR autofocus, IEEE Trans. on Geosic and Remote Sens., Sep.1999,37(5):2487-2494.
    [16] T. Thayaparan, L. Stankovic, C. Wernik, and M. Dakovic, Real-Time MotionCompensation, Image Formation and Image Enhancement of Moving Targets inISAR and SAR Using S-method Based Approach, IET Signal Processing,2008,2(3):247-264.
    [17] Y. Wang, H. Ling, V. C. Chen: ISAR motion compensation via adaptive jointtime-frequency techniques, IEEE Trans. Aerosp. Electron. Syst., April1998,34(2):670-677.
    [18] J. Wang and D. Kasilingam, Global range alignment for ISAR, IEEE Trans. Aerosp.Electron. Syst., Jan.2003,39(1):351–357.
    [19] M. Xing, R. Wu, J. Lan, and Z. Bao, High resolution ISAR imaging of high speedmoving targets, IEE Proc.-Radar Sonar Navig., April2005,152(2):58-67.
    [20] E. Candès, J. Romberg, and T. Tao, Stable signal recovery from incomplete andinaccurate measurements. Communications on Pure and Applied Mathematics,August2006,59(8):1207-1223.
    [21] Marco Martorella, Nicola Acito, and Fabrizio Berizzi, Statistical CLEAN techniquefor ISAR Imaging, IEEE Trans. Geosic. Remote Sens., Nov.,2007,45(11):3552-3560.
    [22] S. L. Marple, Jr., Digital Spectral Analysis with Applicarions. Englewood Cliffs, NJ:Prentice-Hall,1987.
    [1] J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements viaorthogonal matching pursuit[J]. IEEE Transactions on Information Theory,2007,53(12):4655-4666.
    [2] D. Needell and J. A. Tropp. CoSaMP:Iterative signal recovery from incomplete andinaccurate samples. Applied and Computational Harmonic Analysis,2009,26:301-321.
    [3] A. Borghi, J. Darbon, and S. Peyronnet, et al. A simple compressive sensingalgorithm for parallel many-core architectures. Department of Mathematics, UCLA,CAM Report08-64, September,2008.
    [4] M. Andrecut. Fast GPU implementation of sparse signal recovery from randomprojections [J]. Engineering Letters,2009,17(3):151-158.
    [5] Sangkyun Lee S. W. Implementing algorithms for signal and image reconstructionon graphical processing units. Computer Sciences Department, University ofWisconsin-Madison, Tech. Rep., November,2008.
    [6] Sami Kirolos,Jason Laska,Michael Wakin,et al.Analog-to-Information Conversionvia Random Demodulation[C].2006IEEE Dallas/CAS Workshop onDesign,Applications, Integration and Software:71-74.
    [7] I.Jouny. Compressed Sensing for UWB Radar Target SignatureReconstruction[C].Proc.of Digital Signal Processing Workshop and5th IEEESignal Processing Education Workshop,2009:714-719.
    [8] Jason Laska, Sami Kirolos, Yehia Massoud, Richard Baraniuk, Anna Gilbert, MarkIwen, Martin Strauss. Random Sampling for Analog-to-Information Conversion ofWideband Signals.2006IEEE Dallas/CAS Workshop on Design, Applications,Integration and Software,2006:119-122.
    [9] M. Elad. Sparse and Redundant Representations: From Theory to Applications inSignal and Image Processing. New York: Springer Science,2010:17-166.
    [10]Sami Kirolos, Jason Laska, Michael Wakin, et al. Analog-to-InformationConversion via Random Demodulation.2006IEEE Dallas/CAS Workshop onDesign, Applications, Integration and Software:71-74.
    [11]Ragheb T., Kirolos S., Laska J., etc. Implementation models foranalog-to-information conversion via random sampling.50th Midwest Symposiumon Circuits and Systems,2007:325-328.
    [12]谢晓春.压缩感知理论在雷达成像中的应用研究.中国科学院空间科学与应用研究中心博士学位论文,2010.
    [13]X. Chen, Y. Zhang, and X. Zhang. FPGA BASED REALIZATION OF AIC FORAPPLYING CS TO RADAR, Progress In Electromagnetics Research C,2011,19:207-222.
    [14]M. Mishali, Y.C. Eldar. Dounaevsky, O., Shoshan, E. Xampling: Analog to digitalat sub-Nyquist rates. Circuits, Devices&Systems, IET.2011,5(1):8-20.
    [15]Septimus, A., Steinberg, R., Compressive Sampling Hardware Reconstruction.Proceedings of2010IEEE International Symposium on Circuits and Systems(ISCAS),2010:3316-3319.
    [16]Yan Wang, Bermak, A., Boussaid, F., FPGA implementation of compressivesampling for sensor network applications.2nd Asia Symposium on QualityElectronic Design (ASQED),2010:5-8.
    [17]张贤达,矩阵分析与应用.北京:清华大学出版社,2004.
    [18]Luethi, P., Studer, C., Duetsch, S., Zgraggen, E., Kaeslin, H., Felber, N., Fichtner,W., Gram-Schmidt-based QR decomposition for MIMO detection: VLSIimplementation and comparison. IEEE Asia Pacific Conference on Circuits andSystems, APCCAS2008:830-833.
    [19]Chitranjan K. Singh, Sushma Honnavara Prasad, Poras T. Balsara, VLSIArchitecture for Matrix Inversion using Modified Gram-Schmidt based QRDecomposition.20th International Conference on VLSI Design. Held jointly with6th International Conference on Embedded Systems.2007, Page(s):836-841.
    [20]D. DuBois, DuBois, A., Boorman, T., Connor, C., Poole, S., An Implementationof the Conjugate Gradient Algorithm on FPGAs.16th International Symposium onField-Programmable Custom Computing Machines,2008. FCCM '08.2008:296-297.
    [21]S.D. Gray. Conjugate gradient techniques. IEEE Journal on Selected Areas inCommunications,10(8),1992:1300-1305.
    [22]O. Tatebe, Y. Oyanagi. Efficient implementation of the multigrid preconditionedconjugate gradient method on distributed memory machines.Supercomputing '94, Proceedings1994:194-203.
    [23]L. Landau, R.C. de Lamare. L. Wang, M. Haardt. Low-complexity robustbeamforming based onconjugate gradient techniques. International ITG Workshopon Smart Antennas (WSA),2011:1-5.
    [24]M. Grant, S. Boyd, and Y. Ye.“cvx: Matlab software for disciplined convexprogramming,”[online]. Available: http://www.stanford.edu/~boyd/cvx/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700