PGPR菌肥在烤烟漂浮育苗及烤烟生产中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文应用分离自烟株根际的高效抗生菌B03、固氮菌N05、解磷菌P04、解钾菌K03,进行菌种鉴定,明晰其分类地位,制成PGPR肥料,用于烤烟漂浮育苗和大田生产,减少化肥、化学农药的使用量,提高烟叶产量和质量。取得四方面成果:
     1)PGPR菌肥菌种的鉴定
     应用16S rDNA序列分析构建系统发育树,结合生理指标、生化反应结果:抗生菌B03属于芽孢杆菌属(Bacillus),可能是蜡状芽孢杆菌(Bacillus cereus)、固氮菌N05属于产碱菌属(Alcaligenes),可能是粪产碱菌(Alcaligenes faecalis)、解磷菌P04属于肠杆菌属(Enterobacter),可能是阴沟肠杆菌(Enterobacter cloacae)、解钾菌K03亦属于肠杆菌属(Enterobacter),可能是阿氏肠杆菌(Enterobacter asburiae),均非病原菌,可用于菌肥生产。
     2)PGPR混合菌肥制备
     通过拮抗实验证明,本菌肥四个菌种,除抗生菌B03对解磷菌P04有较弱的拮抗作用外,其它菌株间没有拮抗反应,可制成混合菌肥。在菌肥制备后,检测活菌数,四种菌均不低于1亿个,符合菌肥质量的国家标准。
     3)PGPR混合菌肥应用于烤烟的菌糠基质漂浮育苗
     实验用菌糠替代草炭进行试验性育苗,结果证明:双孢菇菌糠能够替代草炭进行烤烟漂浮育苗,但是在育苗前的处理和育苗条件上还需要优化;平菇菌糠能否进行漂浮育苗需要进一步验证。PGPR菌肥的加入,能够提高出苗率,提幅达3%,能够提升烟苗的农艺性状,培育壮苗。其中菌肥对烟苗根生长的促进作用非常明显,加菌肥的双孢菇菌糠处理比对照增幅达101.7%。
     4)PGPR菌肥用于烤烟大田生产
     在烤烟移栽时施用PGPR混合菌肥,同时减少N、P和K肥使用量,研究施用菌肥和减施N、P和K肥对植烟土壤和烤烟生产的影响。试验表明:施用PGPR菌肥可显著提高现蕾期烤烟根际解磷菌的数量,降低放线菌的数量,对细菌、真菌、固氮菌、解钾菌影响不大,而减施N、P和K肥对各种菌数影响均不大。PGPR菌肥能提高烤烟根际微生物生物量碳含量,在烤烟生理活性强的现蕾期,常规施肥+菌肥处理微生物生物量碳含量提高22.2%,显著高于常规施肥对照(p<0.05);减施肥料能提高烤烟根际微生物生物量碳含量。PGPR的施入能提高矿质元素有效性,常规施肥+菌肥处理除B元素略低外N、P、K、Ca、Mg、Cu、Zn、Mn、Fe的有效性均明显高于常规施肥,提高幅度在8.19%~49.33%;N、P和K肥各减20%+菌肥处理与其对照相比,N、K、Cu、Zn、B、Fe 6种元素的有效性是提高的,提高幅度在4.46%~28.87%,略低于常规施肥+菌肥处理。PGPR菌肥能降低烤烟发病率,常规施肥+菌肥烤烟亩产量比常规施肥对照提高7.59%,产值显著提高14.8%;减施N、P和K肥会降低烟草的产量、质量和产值,而PGPR菌肥的加入能弥补减肥带来的不足,使N、P和K肥各减20%+菌肥的最终产值显著高于常规施肥,比减施N、P和K肥对照提高16.44%,略低于常规施肥+菌肥。
     综上所述,在烤烟漂浮育苗和栽培中应用菌肥,可有效地提高发芽率和成苗素质,降低化学肥料的施用量,改善烤烟根际微生物区系,提高土壤矿质元素的有效性,提高烟叶的产量、产值和上等烟率,是一项投入少、效益高的可持续生产发展措施。应大力推广使用PGPR菌肥,利用神农架自然原生态环境,以彰显烟叶地方特色,达到生态烟叶生产与自然环境的和谐发展。
High-effective antibiotic bacterium B03, bacterium of nitrogen fixation N05, bacterium of dissolving phosphorite P04 and bacterium of dissolving potassium feldsper K03 were separated from the tobacco rhizosphere and mixed to PGPR fertilizer after strain identification to reduce the use of chemical fertilizer and poison, promote the output and quality of the tobacco.
     1) Strain identification
     It can be concluded that antibiotic bacterium B03, bacterium of nitrogen fixation N05, bacterium of dissolving phosphorite P04 and bacterium of dissolving potassium feldsper K03 belong to Bacillus and maybe Bacillus cereus, Alcaligenes and Alcaligenes faecalis, Enterobacter and Enterobacter cloacae, Enterobacter and Enterobacter asburiae, respectively with phylogenetic tree based on 16S rDNA sequences and the physiological and biochemical reaction. Four bacteria are all not pathogens, can be used for the production of PGPR fertilizer.
     2) The production of PGPR mixed fertilizer
     During the antagonistic experiment, no antagonism had been found except the antibiotic bacterium B03 exerts weak antagonistic reaction on bacterium of dissolving phosphorite P04. PGPR mixed fertilizer was made and the live bacteriums was no less than 100,000,000 which fits to the national standard.
     3) The application of PGPR mixed fertilizer in tobacco floating system
     Mushroom substrate were used to floating system and revealed that Agaricus Bisporus mushroom substrate could take the place of peat in tobacco seedling production after optimize the treatment before seedling and seedling condition, but required further confirm that whether the Pleurotus ostreatus mushroom substrate also can be used. The PGPR fertilizer improved rate of emergence by 3%, the agronomic characters of tobacco seedling as well as strong seedling. The fertilizer had been promoted the root growth greatly, for example, Agaricus Bisporus mushroom substrate with PGPR fertilizer raise to 101.7%.
     4) The application of PGPR mixed fertilizer in flue-cured tobacco field
     The influence on the tobacco-planting soil and the production of flue-cured tobacco were studied employing PGPR fertilizer and reducing the use of the chemical fertilizer when flue-cured tobacco transplanted in plots. The results showed that application of PGPR fertilizer would increase the number of rhizo-bacterium of dissolving phosphorite significantly in budding period (p<0.05) and reduce amount of actinomycete during growth period and have no influence on total amount of bacteria, fungus, nitrogen-fixing bacteria and dissolving potassium bacteria. PGPR fertilizer also increased the tobacco rhizo-microbial biomass C contents, for example, 22.2% had been increased in budding period, a period of strong physiological activity. The use of PGPR fertilizer improved effectiveness of mineral element, such as N, P, K, Ca, Mg, Cu, Zn, Mn, Fe were all significantly higher than without GPGR fertilizer, range from 8.19% to 49.33%, while the effectiveness of B reduced. After PGPR fertilizer application, the disease incidence in flue-cured tobacco decreased and tobacco yield per 0.067 ha and production value increased up to 7.59% and 14.8%, respectively. It is well known that reducing N, P and K fertilizer would result for low yield, quality and production value of tobacco, but the production value of application of PGPR fertilizer while reducing N, P, K fertilizer increased up to 16.44%, it can be concluded that the use of PGPR fertilizer could make up for the decreased chemical fertilizer.
引文
[1]黄秀梨.微生物学[M].北京:高等教育出版社, 2003: 263-271.
    [2]周德庆.微生物学教程(第2版) [M].北京:高等教育出版社, 2002: 347-364.
    [3]王成树,开秀兰.数值分类法筛选球孢白僵菌中心菌株[J].森林病虫通讯, 1999, 18(2): 7-9, 19.
    [4]王庆飞,徐栋.系统化细菌鉴定方法的探索及其启示[J].医学与哲学, 2005, 26(12X): 50-51, 65.
    [5]沈萍.微生物学[M].北京:高等教育出版社, 2000.
    [6] PIRES M N, SELDIN L. Evaluation of Biolog system for identification of strains of Paenibacillus azotofixans [J]. Antonie van Leeuwenhoek, 1997, 71(3): 195-200.
    [7] STAGER C E, DAVIS J R. Automated systems for identification of microorganisms [J]. Clin Microbiol Rev, 1992, 5(3): 302-327.
    [8] GORDON N C, WAREHAM D W. Failure of the MicroScan WalkAway system to detect heteroresistance to carbapenems in a patient with Enterobacter aerogenes bacteremia [J]. J Clin Microbiol, 2009, 47(9): 3024-3025.
    [9] VITEK全自动微生物检测系统原理及其应用[Z]. 2009: 2010.
    [10] CHERIF A, BRUSETTI L, BORIN S, et al. Genetic relationship in the 'Bacillus cereus group' by rep-PCR fingerprinting and sequencing of a Bacillus anthracis-specific rep-PCR fragment [J]. J Appl Microbiol, 2003, 94(6): 1108-1119.
    [11] BROSIUS J, PALMER M L, KENNEDY P J, et al. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli [J]. Proc Natl Acad Sci U S A, 1978, 75(10): 4801-4805.
    [12] LEBLOND-BOURGET N, PHILIPPE H, MANGIN I, et al. 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter- and intraspecific Bifidobacterium phylogeny [J]. Int J Syst Bacteriol, 1996, 46(1): 102-111.
    [13] WEISBURG W G, BARNS S M, PELLETIER D A, et al. 16S ribosomal DNA amplification for phylogenetic study [J]. J Bacteriol, 1991, 173(2): 697-703.
    [14] NI Y, WAN D, HE K. 16S rDNA and 16S-23S internal transcribed spacer sequence analyses reveal inter- and intraspecific Acidithiobacillus phylogeny [J]. Microbiology, 2008, 154(Pt 8): 2397-2407.
    [15] FOX G E, WISOTZKEY J D, JURTSHUK P J. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity [J]. Int J Syst Bacteriol, 1992, 42(1): 166-170.
    [16]葛诚.微生物肥料生产应用基础[M].北京:中国农业科技出版社, 2000.
    [17] KLOEPPER J W, SCHROTH M N. Plant growth-promoting rhizobaeteria on radishies [J]. In Proc. 4th Int. Conf. Plant Pathol. Bacteria, 1978(11): 879-882.
    [18]葛诚.微生物肥料的生产应用及其发展[M].北京:中国农业科技出版社, 1996.
    [19] SUNDARA W, RACAND, SINHA M. Phosphate dissolving microorganisms in the rhizosphere and soil [J]. India J Agric Sci,1963, 33(4): 272-278.
    [20]郐士鹏.我国微生物肥料的现状及其发展趋势[J].现代化农业, 2005(11): 15-17.
    [21] KLOEPPER J W, LEONG J, TEINTZE M, et al. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria [J]. Nature,1980, 286.
    [22]唐勇,陆玲.解磷微生物及其应用的研究进展[J].天津农业科学,2001, 7(2): 1-5.
    [23]陈晓斌,张炳欣.根围促生菌对黄瓜幼苗的促生效应与防病作用[J].浙江大学学报:农业与生命科学版, 1999, 25(6): 578-582.
    [24]赵小蓉,孙焱鑫.小麦根际与非根际解磷细菌的分布[J].华北农学报, 2001, 16(1): 111-115.
    [25]黄晓东,卢林纲.植物促生菌的应用现状[J].现代化农业, 2002(9): 10-11.
    [26]孟瑶,徐凤花,孟庆有,等.中国微生物肥料研究及应用进展[J].中国农学通报, 2008, 24(6): 276-283.
    [27]陈华癸.微生物学[M].北京:高等教育出版社, 1981: 480-743.
    [28]王富民,张彦.解磷固氮菌剂的研制及其对小麦的增产效应[J].生物技术, 1994, 4(4): 15-18.
    [29] READ D J. Mycorrhizas in ecosystems [J]. Cellular and Molecular Life Sciences,1991, 47(4): 376-391.
    [30] MCCULLY M E. Niches for bacterial endophytes in crop plants:a plant biologist’s view [J]. Aust J Plant Physiol, 2001(28): 983-990.
    [31] XU H. Soil-Root Interface Water Potential in Sweet Corn as Affected by Organic Fertilizer and a Microbial Inoculant [J]. Journal of Crop Production, 2001, 3(1): 139-156.
    [32] OVREAS L, TORSVIK V V. Microbial Diversity and Community Structure in Two Different Agricultural Soil Communities [J]. Microb Ecol, 1998, 36(3): 303-315.
    [33] GRIFFITHS B S, RITA K, EBBLEWHITE N, et al. Soil microbial community structure: Effects of substrate loading rates [J]. Soil Biology and Biochemistry, 1998, 31(1): 145-153.
    [34]尹瑞龄,许月蓉.解磷接种物对垃圾堆肥中难溶性磷酸盐的转化及在农业上的应用[J].应用与环境生物学报, 1995, 1(4): 371-378.
    [35] DE BRITO A M, GAGNE S, ANTOUN H. Effect of Compost on Rhizosphere Microflora of the Tomato and on the Incidence of Plant Growth-Promoting Rhizobacteria [J]. Appl Environ Microbiol, 1995, 61(1): 194-199.
    [36]连宾,傅平秋.硅酸盐细菌解钾作用机理的综合效应[J].矿物学报, 2002, 22(2): 179-183.
    [37] MALINOSKAYA I M. The role of Bacillus mucilaginosus polysaccharide in the destruction of silicate minerals [J]. Mikrobiologiya, 1990, 59(1): 70-78.
    [38] MEL'NIKOVA E O, AVAKYAN Z A, KARAVAIKO G I E A. Microbiological destruction ofsilicate minerals containing beryllium [J]. Mikrobiologiya, 1990, 59(1): 63-69.
    [39]雷丽萍.微生物在烟草生产中应用研究进展[J].中国学术期刊文摘, 2007, 13(2): 2.
    [40] NIELANDS J B. Mierobial iron compounds [J]. Ann.Rev.Biochem, 1981(50): 715-731.
    [41] GERMAN M A, BURDMAN S, OKON Y, et al. Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes [J]. Biology and Fertility of Soils, 2000, 32(3): 259-264.
    [42] COLETTE J, DOMINIQUE J, PATRICK W, et al. Initiation of root growth stimulation by Azospirillum lipoferum CRT1 during maize seed germination [J]. Canadian Journal of Microbiology, 1999, 45(4): 339-342.
    [43]方萍,贾小明.固氮螺菌(Azosprillum brasilense)NO40在红壤性水稻土上的接种效应[J].浙江大学学报:农业与生命科学版, 2001, 27(1): 33-36.
    [44]张高峡,卢振祖.作物根际联合固氮芽孢杆菌的分离鉴定及生态分布[J].氨基酸和生物资源, 1998(01): 12-15.
    [45]顾小平,吴晓丽.接种联合固氮菌对毛竹实生苗生长的影响[J].林业科学研究, 1999, 12(1): 7-12.
    [46]郑泽臣.微生物肥料菌株的选育及其生物学特性的研究[D].莱阳农学院, 2005.
    [47]张堃.禾本科牧草根际促生菌肥(PGPR菌肥)研制及其促生效应研究[D].甘肃农业大学, 2006.
    [48]林克惠,董艳.保得生物肥在烤烟上的抗病效果及抗病性机理[J].中国烟草科学, 2002, 23(1): 39-42.
    [49]高德忠,王凤成,王龙宪,等.浅谈保得生物肥对烤烟产质量影响的研究[J].辽宁烟草, 2001(5).
    [50]阎启富.共生性固氮菌在山地烤烟上的应用[J].烟草科技, 1997(4): 39-40.
    [51]罗连光,黄若玲,万强.生物活性肥对烤烟生长发育及品质的影响[J].湖南农业科学, 2007(5): 97-98, 101页.
    [52]蒋太明,秦松.生物钾肥的增钾效应及在烤烟上的应用[J].贵州农业科学, 1997, 25(5): 22-25.
    [53]何金旺.生物钾肥对烤烟产量和品质的影响[J].广西农业科学, 1994(2): 77.
    [54]方敦煌,沐应祥.拮抗细菌GP13防治烟草黑胫病的田间应用[J].云南农业大学学报, 2003, 18(1): 48-51.
    [55]郭富伟,王贵.生物磷钾肥对烤烟产质的影响[J].烟草科技, 2000(12): 40-41.
    [56]王贵,张国良.“田力宝”微生物肥对烤烟产质影响的研究[J].烟草科技, 1999(3): 43-44.
    [57]席淑雅,毕庆文,王豹祥,等. PGPR菌肥在烤烟漂浮育苗中的应用[J].中国烟草学报, 2009, 15(6): 53-57.
    [58]吴风光,王豹祥,汪建,等.抗生菌肥对植烟土壤和烤烟生产的影响[J].土壤, 2010, 42(1): 53-58.
    [59] VAN E A. Closed soilless growing systems in the Netherlands:the finishing touch [J]. Acta Hort, 1998(458): 279-291.
    [60]甄焕菊,袁志永.美国烟草大棚温室漂浮育苗技术介绍[J].烟草科技, 1999(4): 39-41.
    [61]时向东,孙军伟,谢晓波,等.烟草漂浮育苗基质研究进展[J].中国烟草科学, 2008, 29(5): 64-68.
    [62]聂新柏,胡日生,张大伟.烤烟漂浮育苗技术的研究[J].湖南烟草, 2002(6): 33-35.
    [63]田吉林,汪寅虎.设施无土栽培基质的研究现状,存在问题展望(综述) [J].上海农业学报, 2000, 16(4): 87-92.
    [64]杨慧玲,孙治强.不同基质肥料配方对黄瓜幼苗生长的影响[J].河南农业大学学报, 2002, 36(1): 70-74.
    [65] WILLION R. Root medium Physical ProPerties [J]. Hort technology, 1998, 8(4): 481-485.
    [66]刘国顺.烟草栽培学[M].北京:中国农业出版社, 2003: 124-125.
    [67]中国农业科学院烟草研究所.中国烟草栽培学[M].上海:上海科学技术出版社, 2005: 190-291.
    [68]时向东,刘国顺,陈江华.烟草漂浮育苗系统中培养基质对烟草生长发育影响的研究[J].中国烟草学报, 2001, 7(01): 18-22.
    [69]吴涛,晋艳,杨宇虹,等.烤烟漂浮育苗草炭替代基质研究[J].中国农学通报, 2007, 23(1): 194-198.
    [70]王仁卿,刘纯慧.从第五届国际湿地会议看湿地保护与研究趋势[J].生态学杂志, 1997, 16(5): 72-76.
    [71]刘振祥,谭爱华,杨辉德.食用菌栽培学[M].武汉:华中师范大学出版社, 2006: 1.
    [72] KWAK W S, JUNG S H, KIM Y I. Broiler litter supplementation improves storage and feed-nutritional value of sawdust-based spent mushroom substrate [J]. Bioresour Technol, 2008, 99(8): 2947-2955.
    [73]陈君琛,沈恒胜,汤葆莎,等.食用菌菌糠再利用技术研究[J].中国农学通报, 2006, 22(11): 410-412.
    [74]侯立娟,姚方杰,高芮,等.食用菌菌糠再利用研究概述[J].中国食用菌, 2008, 27(3): 6-8.
    [75]郑林用,黄小琴,彭卫红.食用菌菌糠的利用[J].食用菌学报, 2006, 13(1): 74-77.
    [76]阮晓东.利用菌糠生产花土[J].农业科技与信息, 2005(6): 18.
    [77]刘金海,鲁家鑫,何金牛.利用碳化麦糠作基质漂浮育苗试验研究[J].河南烟草, 2001(1): 17-18.
    [78]韦建玉,曾祥难,王军.甘蔗渣在烤烟漂浮育苗中的应用研究[J].中国烟草科学, 2006, 27(1): 42-44.
    [79]布云虹,唐兵,耿少武,等.烟草砂培漂浮育苗技术的研发与规程[J].中国烟草科学, 2008, 29(1):1-6.
    [80]吴涛,晋艳,杨宇虹,等.替代烤烟漂浮育苗基质中草炭的研究——Ⅰ褐煤、秸秆等原料完全替代草炭的研究初报[J].云南农业大学学报, 2007, 22(2): 234-240.
    [81]吴涛,晋艳,杨宇虹,等.药渣及秸秆替代基质中草炭进行烤烟漂浮育苗研究初报[J].中国农学通报, 2007, 23(1): 305-309.
    [82]王前进,焦加国,李依婷,等.秸秆气化残余物在烟草漂浮育苗系统中的应用研究[J].中国烟草学报, 2009, 15(6): 44-48.
    [83]杨秋生,周修任,等.花生壳在穴盘育苗中的应用研究[J].河南农业大学学报, 2001, 35(4): 339-342.
    [84]初茉,李华民.褐煤的加工与利用技术[J].煤炭工程, 2005(2): 47-49.
    [85]姚拓.促进植物生长菌的研究进展[J].草原与草坪, 2002(4): 1-5.
    [86]冯欣,刁治民,曹玲珍,等. PGPR作为微生物肥料的研究进展[J].安徽农学通报, 2005, 11(6): 85-87, 77.
    [87]胡江春,薛德林,马成新,等.植物根际促生菌(PGPR)的研究与应用前景[J].应用生态学报, 2004, 15(10): 1963-1966.
    [88]吕静.微生物肥料在我国烟草生产中的应用与创新[J].中国烟草科学, 1999, 20(3): 48-50.
    [89] LUCY M, REED E, GLICK B R. Applications of free living plant growth-promoting rhizobacteria [J]. Antonie Van Leeuwenhoek, 2004, 86(1): 1-25.
    [90]吕贻忠,李保国.土壤学[M].北京:中国农业出版社, 2006: 7.
    [91]和文祥,洪坚平.环境微生物[M].北京:中国农业大学出版社, 2007: 108-109.
    [92]吴珊眉.土壤生态学及其发展近况[J].土壤, 1991, 23(4): 198-201.
    [93]吴珊眉.土壤生态学研究趋势[J].生态学杂志, 1991, 10(4): 42-47.
    [94]赵其国.《土壤生态系统》专著评述[J].土壤学报, 2006, 43(6): 1060.
    [95]刘欣,王豹祥,冯云,等.氧化胁迫与特色烤烟质量形成的关系探讨[J].中国农学通报, 2009(4): 225-230.
    [96]周冀衡,王勇,邵岩,等.产烟国部分烟区烤烟质体色素及主要挥发性香气物质含量的比较[J].湖南农业大学学报:自然科学版, 2005, 31(2): 128-132.
    [97]刘国顺.烟草栽培学[M].北京:中国农业出版社, 2003: 70.
    [98]刘国顺.国内外烟叶质量差距分析和提高烟叶质量技术途径探讨[J].中国烟草学报, 2003, 9(B11): 54-58.
    [99]邵丽,晋艳.生态条件对不同烤烟品种烟叶产质量的影响[J].烟草科技, 2002(10): 40-45.
    [100]韩锦峰,张秀英.饼肥种类及其与化肥配比对烤烟生长发育及产质的影响:Ⅰ.对烤烟生…[J].河南农业科学, 1998(2): 14-16.
    [101]韩锦峰,张秀英.饼肥种类及其与化肥配比对烤烟生长发育及产质的影响:II.对烤烟产?…[J].河南农业科学, 1998(3): 11-14.
    [102]李云华.一些中国烟草低级脂肪酸的研究[J].烟草学刊, 1990(1): 21-28.
    [103]王瑞新,洪涛.烤烟香气物质及不同施肥类型对其主要成分的影响[J].河南农业大学学报, 1990, 24(2): 159-164.
    [104]康白.微生态学[M].大连:大连出版社, 1988: 1.
    [105]沈佐锐.昆虫与植物之间的微生态关系.植物生态学研究——第一届中国植物微生态学学术讨论会文集[M].北京:北京农业大学出版社, 1991: 24.
    [106]张洪勋,庄绪亮.微生物生态学研究进展——第五届微生物生态学术研讨会论文集[M].北京:气象出版社, 2003: 172-173.
    [107]林先贵,胡君利.土壤微生物多样性的科学内涵及其生态服务功能[J].土壤学报, 2008, 45(5): 892-900.
    [108] WALTER K D, MARGARET K B, COURTNEY S C, et al. Biological properties of soil and subsurface sediments under abandoned pasture and cropland [J]. Soil Biology and Biochemistry, 1996, 28(7): 837-846.
    [109] POWLSON D S, PROOKES P C, CHRISTENSEN B T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation [J]. Soil Biology and Biochemistry, 1987, 19(2): 159-164.
    [110]任天志,Grego S持续农业中的土壤生物指标研究[J].中国农业科学, 2000, 33(1): 68-75.
    [111] JORDAN D, KREMER R J, BERGFIELD W A, et al. Evaluation of microbial methods as potential indicators of soil quality in historical agricultural fields [J]. Biology and Fertility of Soils, 1995, 19(4): 297-302.
    [112]田耀华,冯玉龙.微生物研究在土壤质量评估中的应用[J].应用与环境生物学报, 2008, 14(1): 132-137.
    [113] ZHANG H B, DUAN C Q, QU L H. Culture independent methods for studies on microbial ecology of soils [J]. Chinese Journal of Ecology, 2003, 22(5): 131-136.
    [114] GARLAND J L, MILLS A L. Classification and Characterization of Heterotrophic Microbial Communities on the Basis of Patterns of Community-Level Sole-Carbon-Source Utilization [J]. Appl Environ Microbiol, 1991, 57(8): 2351-2359.
    [115] ALKORTA I, AIZPURUA A, RIGA P, et al. Soil enzyme activities as biological indicators of soil health [J]. Rev Environ Health, 2003, 18(1): 65-73.
    [116] DEGENS B P, HARRIS J A. Development of a physiological approach to measuring the catabolic diversity of soil microbial communities [J]. Soil Biology and Biochemistry, 1997, 29(9-10): 1309-1320.
    [117] MUYZER G, de WAAL E C, UITTERLINDEN A G. Profiling of complex microbial populationsby denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Appl Environ Microbiol, 1993, 59(3): 695-700.
    [118]武春燕,高雪峰.土壤微生物生态学研究综述[J].内蒙古科技与经济, 2008(22): 253-254.
    [119]吴金水.土壤微生物生物量测定方法及其应用[M].北京:气象出版社, 2006: 2-54.
    [120] INSAM H, DOMSCH K H. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites [J]. Microbial Ecology, 1988, 15(2): 177-188.
    [121] DING M M, YI W M, LIAO L Y, et al. Effect of afforestation on microbial biomass and activity in soils of tropical China [J]. Soil Biology and Biochemistry, 1992, 24(9): 865-872.
    [122]俞慎,李勇.土壤微生物生物量作为红壤质量生物指标的探讨[J].土壤学报, 1999, 36(3): 413-422.
    [123]周丽霞,丁明懋.土壤微生物学特性对土壤健康的指示作用[J].生物多样性, 2007, 15(2): 162-171.
    [124]梅汝鸿,阎万英.植物微生态学发展简史.植物微生态学研究——第一届中国植物微生态学术讨论会文集[M].北京:北京农业大学出版社, 1991: 57-60.
    [125]陆雅海,张福锁.根际微生物研究进展[J].土壤, 2006, 38(2): 113-121.
    [126]刘子雄,朱天辉,张建.林木根系分泌物与根际微生物研究进展[J].世界林业研究, 2005, 18(6): 25-31.
    [127] MORGAN J A, BENDING G D, WHITE P J. Biological costs and benefits to plant-microbe interactions in the rhizosphere [J]. J Exp Bot, 2005, 56(417): 1729-1739.
    [128]王茹华,张启发,周宝利,等.浅析植物根分泌物与根际微生物的相互作用关系[J].土壤通报, 2007, 38(1): 167-172.
    [129] RUPAM K. Root exudation and its implication or Rhizosphere Mycoflora/Rupam Kapoor [J]. Advances in microbial biotechnolog, 1999: 235-362.
    [130]王瑞新,洪涛.烤烟香气物质及不同施肥类型对其主要成分的影响[J].河南农业大学学报, 1990, 24(2): 159-164.
    [131]任永浩,马常力.不同根际pH值下烤烟香气化学成分的研究[J].华南农业大学学报, 1994, 15(1): 127-132.
    [132]韩锦峰,汪耀富.干旱肋迫对烤烟化学成分和香气物质含量的影响[J].中国烟草, 1994(1): 35-38.
    [133]韦凤杰,丁红营,张东豫,等.有机肥对不同发育时期烤烟叶片类胡萝卜素含量和脂氧合酶(LOX)活性的调控效应[J].中国农学通报, 2009(14): 164-167.
    [134]吴坤,张世敏.微生物学实验技术[M].北京:气象出版社, 2004: 11-12.
    [135]云南省质量技术监督局.烟草漂浮育苗基质地方标准-云南省地方标准[S]. 2004.
    [136]国家烟草专卖局提.烟草农艺性状调查方法-中华人民共和国烟草行业标准[S]. 1998.
    [137]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社, 2002.
    [138]黄训端,潘见,余晓峰,等.草莓中蜡样芽孢杆菌的VITEK快速检测[J].微生物学杂志, 2006, 26(4): 99-102.
    [139] R. E.布坎南,N. E.吉本斯等.伯杰细菌鉴定手册[M].第八版.科学出版社, 1984: 1, 359, 373.
    [140]生物梅里埃中国有限公司. VITEK全自动微生物分析系统——技术资料[S]. 2008.
    [141] PEAK K K, DUNCAN K E, VEGUILLA W, et al. Bacillus acidiceler sp. nov., isolated from a forensic specimen, containing Bacillus anthracis pX02 genes [J]. Int J Syst Evol Microbiol, 2007, 57(Pt 9): 2031-2036.
    [142] LOGAN N A, LEBBE L, HOSTE B, et al. Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov [J]. Int J Syst Evol Microbiol, 2000, 50 Pt 5: 1741-1753.
    [143] LOGAN N A, LEBBE L, VERHELST A, et al. Bacillus luciferensis sp. nov., from volcanic soil on Candlemas Island, South Sandwich archipelago [J]. Int J Syst Evol Microbiol, 2002, 52(Pt 6): 1985-1989.
    [144] KIREDJIAN M, HOLMES B, KERSTERS K, et al. Alcaligenes piechaudii, a New Species from Human Clinical Specimens and the Environment [J]. INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, 1986, 36(2): 282-287.
    [145] Van TRAPPEN S, TAN T L, SAMYN E, et al. Alcaligenes aquatilis sp. nov., a novel bacterium from sediments of the Weser Estuary, Germany, and a salt marsh on Shem Creek in Charleston Harbor, USA [J]. Int J Syst Evol Microbiol, 2005, 55(Pt 6): 2571-2575.
    [146] COENYE T, VANCANNEYT M, CNOCKAERT M C, et al. Kerstersia gyiorum gen. nov., sp. nov., a novel Alcaligenes faecalis-like organism isolated from human clinical samples, and reclassification of Alcaligenes denitrificans Ruger and Tan 1983 as Achromobacter denitrificans comb. nov [J]. Int J Syst Evol Microbiol, 2003, 53(Pt 6): 1825-1831.
    [147] KAMPFER P, DENGER K, COOK A M, et al. Castellaniella gen. nov., to accommodate the phylogenetic lineage of Alcaligenes defragrans, and proposal of Castellaniella defragrans gen. nov., comb. nov. and Castellaniella denitrificans sp. nov [J]. Int J Syst Evol Microbiol, 2006, 56(Pt 4): 815-819.
    [148] STEPHAN R, Van TRAPPEN S, CLEENWERCK I, et al. Enterobacter pulveris sp. nov., isolated from fruit powder, infant formula and an infant formula production environment [J]. Int J Syst Evol Microbiol, 2008, 58(Pt 1): 237-241.
    [149] STEPHAN R, Van TRAPPEN S, CLEENWERCK I, et al. Enterobacter turicensis sp. nov. andEnterobacter helveticus sp. nov., isolated from fruit powder [J]. Int J Syst Evol Microbiol, 2007, 57(Pt 4): 820-826.
    [150] DAUGA C. Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: a model molecule for molecular systematic studies [J]. Int J Syst Evol Microbiol, 2002, 52(Pt 2): 531-547.
    [151] PAVAN M E, FRANCO R J, RODRIGUEZ J M, et al. Phylogenetic relationships of the genus Kluyvera: transfer of Enterobacter intermedius Izard et al. 1980 to the genus Kluyvera as Kluyvera intermedia comb. nov. and reclassification of Kluyvera cochleae as a later synonym of K. intermedia [J]. Int J Syst Evol Microbiol, 2005, 55(Pt 1): 437-442.
    [152] SHAHAROONA B, ARSHAD M, ZAHIR Z A Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.) [J]. Lett Appl Microbiol, 2006, 42(2): 155-159.
    [153]刘连沫,刘静,姜冬梅,等.从接触宠物感染支气管炎的痰液检出支气管炎博德特菌(B bronchiseptica) [J].中国卫生检验杂志, 2004, 14(2): 184-186.
    [154] HENDRIE M S, HOLDING A J, SHEWAN J M. Emended descriptions of the genus Alcaligenes and of Alcaligenes faecalis and proposal that the generic name Achromobacter be rejected: status of the named species of Alcaligenes and Achromobacter [J]. International Journal of Systematic Bacteriology, 1974, 24(4): 534-550.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700