列车运行综合仿真平台之车网电耦合仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车网电耦合仿真指牵引供电系统与列车运行基于牵引传动系统功率-网压特性的耦合仿真。该研究基于教育部修购项目“列车运行与传动控制综合仿真实验室建设”,是新建实验室列车运行综合仿真平台重要组成部分。该部分决定平台的核心数据生成,为列车运行综合仿真平台的其它子模块提供数据支撑。该模块能够模拟列车群运行,考虑牵引系统实际发挥功率,解算出列车网压。基于该平台既可以进行以抑制网压波动和提高列车再生制动能量利用率等为优化目标的列车自动驾驶策略研究或列车群控策略研究,也可以协助铁路设计生产工程师对系统设计方案进行分析与校验,指导实际工作。因此,研究高速铁路车网电耦合仿真对于搭建列车运行综合仿真平台和研究列车群优化控制算法均有非常重要的理论意义和实际意义。
     本文以列车运行、牵引供电系统及车网电耦合关系为研究对象,在剖析牵引供电系统和列车运行的功能及两者电耦合关系的基础上,借助Visual C++和HLA/pRTI分布式仿真软件,最终在列车运行综合仿真平台中实现车网电耦合模拟仿真。论文首先分析列车单车运行模型及控制策略,并简要阐述了多车模型;接着分析牵引供电系统功能及模型构建方法和车网电耦合关系;然后详细介绍了综合仿真平台的架构与执行流程,对列车运行与牵引供电系统仿真模块数据结构、接口、计算流程及实现思路进行重点分析与阐述。最后以某条高速铁路线路为案例进行了仿真,模拟列车群运行,实时耦合解算牵引供电系统,对比分析列车在线需求功率与固定需求功率所得网压值;对比分析列车工况与列车网压关系;模拟极端低压工况,分析了耦合特性在低压工况时网压与列车群中各列车实际发挥功率的相互作用。
     针对高速铁路车网电耦合仿真平台设计,将牵引供电系统模型和列车群模拟运行分成独立节点,应用分布式仿真技术,优化数据交互与仿真推进。大量仿真实例表明,该系统架构设计仿真同步性好,数据传输效率高,有效的加快了整体仿真进度。针对多列车牵引供电仿真,将列车的不同工况、需求功率作为影响因素,引入牵引供电潮流解算,耦合计算结果表明考虑车网电耦合特性的模型比其它模型更加准确地解算网压。列车运行综合仿真调试证明,车网电耦合模块的功能和性能达到了预期目标。
The electrical coupled simulation of the trains and network in this paper refers to the coupling simulation between traction power supply system and trains operation system based on the power of traction drive and network voltage characteristics. The subject of this paper is one of the most important parts of the new laboratory of train operation simulation platform, which is the Ministry of Education Repair Purchased Items of "Train Control and Traction Drive Integrated Simulation Platform". It generates core data in the platform that can support other sub-modules of the integrated simulation platform. The system of traction power supply can calculate train voltage considering characteristics of traction drive power and the network voltage. The platform supports the subject of train group optimization control in order to reduce train energy consumption, such as reducing the train voltage fluctuations and increasing utilization of train regenerative braking energy. It also can help engineering design or production of the railway system to design and analyze actual design work. So it is very important for us to research the topic of electrical coupled simulation between the trains and traction power supply system at the train simulation platform, in order to research the train group control optimization algorithm.
     The object in this paper contains the train operation, the traction power supply system and electrical coupled relationship. On the basis of analysis of structure and function of traction power supply system and train running, we achieve the goal by software of Visual C++and HLA/pRTI. At first the paper analyzes the train running model, control strategy and multi-train model. At the same time it analyzes the mathematical description and network electrical coupled between the traction power supply systems and trains to build the simulation model of traction power supply system. After that, it describes the platform framework of the train operation simulation, data structures, interfaces and the calculation process in train operation simulation system and traction power supply system. Finally, the simulation of the train operation in the traction power supply system shows the correspondence between the train operating conditions and the net voltage. The simulation of the extremely low pressure conditions explains the interaction of voltage and trains actual power in coupling characteristics.
     The electrical coupled simulation platform of high-speed trains and network divides the traction power supply system model and the train group model into separate nodes. Based on distributed simulation technology, we have achieved the data exchange and logical interaction exchange. A lot of simulation results show that the system architecture has good simulation synchronization, high data transmission efficiency, which can speed up the progress of the overall simulation.
引文
[1]G.Celli, F.Pilo. Voltage Regulation on 25 kV AC Railway Systems by using Thyristor Switched Capacitor[J]. Harmonics and Quality of Power.2000(2): 633-638.
    [2]C.J.Goodman. A Review of Simulation Models for Railway Systems[C]. International Conference on Developments in Mass Transit Systems.1998(1): 20-23.
    [3]J.L.Battaglia, L.Le.Lay. Heat Flow Estimation through Inverted non Integer Identification Models [J]. International Journal of Thermal Science.2000(5): 374-389.
    [4]Shenoy, U.al. Matlat/PSB Based Modeling and Simulation of 25 KV AC Railway Traction System Particular Reference to Loading and Fault Conditions [J]. IEEE Trans Power Syst.2004(3):508-511.
    [5]H.Lee, G.Jang, S.Kwon, G Kim, S.Han. Fault Analysis of Ac Electiric Railway System using EMTDC[J]. Electrical Engineering.2006(1):700-705.
    [6]M.Axtell, EMBise. Fractional Calculus Applications in Control Systems[C]. Aerospace and Electronics Conference.1990(3):563-566.
    [7]T.Pritz. Analysis of Four-Parameter Fractional Derivative Model of Real Solid Materials [J]. Journal of Sound and Vibration.1996(5):103-115.
    [8]A.Mariscotti. Distribution of the Traction Return Current in AC and DC Electric Railway Systems[J]. IEEE Trans Power Delivery.2003(1):1422-1432.
    [9]Paul.Martin. Train Performance and Simulation[J]. Proceedings of the 1999 Winter Simulation Conference.1999(1):1287-1294.
    [10]Cai.Y, Irving.M.R, Case.S.H. Compound Matrix Partitioning and Modification for the Solution of Branched Autotransformer Traction Feeds [J]. Electric Power Systems Research.1996(2):251-257.
    [11]Tsai-Hsiang.Chen, Yen-Feng.Hsu. Systematized Short-circuit Analysis of 25kV Electric Traction Network[J].Electric Power Systems Research.1998(4):133-142.
    [12]Seung-Hyuk.Lee, Jin-O.Kim, Hyun-Soo.Jung. Analysis of Catenary Voltage of an AT Fed AC HSR System[J]. IEEE Trans, Veh, Technol.2004(1):1856-1862.
    [13]R.J.Hill, I.H.Cevik. On-line Simulation of Autotransformer-fed AC Electric Railroad Traction networks[J]. IEEE Trans, Veh, Technol.1993(1):365-372.
    [14]Pao-Hsiang.His, Shi-Li.Chen. Electric Load Estimation Techniques for High-speed Railway Traction Power Systems[J]. Vehicular Technology. 2001(5):1260-1266.
    [15]Cai.Y, M.R.lrving, S.H.Case. Modeling and Numerical Solution Multibranched DC Rail Traction Power Systems[J]. Electric Power Application.1995(1):323-328.
    [16]P-H.Hsi, S-L.Chen, R-J.Li. Simulating On-line Dynamic Voltages of Multiple Trains Under Real Operating Conditions for AC railways [J]. Power Syst. 1999(2):452-459.
    [17]HanminLee, ChangmuLee, GilsooJang. Hannonie Analysis of Korean High-Speed Railway Using the Eight-Port Representation Model[J]. IEEE Trans, power delivery.2006(4):979-986.
    [18]T.K.Ho, Y.L.Chi, J.Wang. Probabilistic Load Flow in AC Electrified railways[J]. Electric Power Application.2005(2):1003-1013.
    [19]Ho.T.K, Chi.Y.L, Wang.J. Load Flow in Electrified Railway[C]. Power Electronics, Machines and Drives.2004(2):498-503.
    [20]刘伟.城市轨道交通列车运行过程优化及牵引供电系统动态仿真[D].西南交通大学博士论文.2009.
    [21]吴羽生,李群湛,冯金博,高洁.V/X接线牵引变压器温升与寿命损失研究[J].电气化铁道.2011(1):18-23.
    [22]何俊文.牵引供电系统负荷过程仿真[D].成都:西南交通大学,2010.
    [23]李群湛.牵引负载的三相等效模型[J].电力系统自动化.1994(1):24-31.
    [24]李群湛.牵引变电所供电分析及综合补偿技术[M].北京:中国铁道出版社,2006.
    [25]李群湛.牵引供电系统分析[M].成都:西南交通大学出版社,2007.
    [26]曹建猷.电气化铁路供电系统[M].北京:中国铁道出版社,1983.
    [27]池云莉,何天健,梁嘉杰.电气化铁道系统概率潮流算法研究[J].电气化铁道.2004(3):4-8.
    [28]柳进.我国铁路计算机编图系统的组成及运作模式构想[J].铁道运输与经济.2004(3):42-45.
    [29]倪少权,杨明伦.计算机编制全路直通旅客列车运行图的研究[J].铁道运输与经济.2002(1):41-44.
    [30]金炜东,王自力,李崇维等.列车节能操纵优化方法研究[J].铁道学报.1997(1):59-63.
    [31]冯晓云,何鸿云,朱金陵.列车优化操纵原则及其优化操纵策略的数学描述[J].机车电传动.2001(5):13-16.
    [32]李平.面向对象遗传算法及其在铁路行车指挥中的应用[D].铁道部科学研究院.博士.2001.
    [33]李晓艳.基于Petri网模型的城市轨道交通列车运行调整方法研究[D].北京交通大学.博士.2009.
    [34]崔世文.列车自动驾驶模式仿真研究[D].西南交通大学.硕士.2002.
    [35]TB 10032-2007.列车牵引计算规程[S]:行业标准-铁道.2007.
    [36]张中央,孙中央.列车附加阻力计算中计入列车长度的辨析-兼对《牵规》中曲线附加阻力条文的讨论[J].铁道机车车辆.2000(2):36-39.
    [37]金建飞.列车牵引计算系统研究[D].西南交通大学.硕士.2010
    [38]程家兴.列车节能操纵中最优方案的算法[J].微机发展.1999(1):24-28.
    [39]J.Cheng, Howlett.P.G. Optimal Driving Strategies for a Train Journey with Non-zero Track Gradient and Speed Limits [J].1999(1):89-115.
    [40]程家兴,陈万里.列车控制问题的计算分析及自适应算法[J].安徽大学学报.2002(3):1-8.
    [41]李莉.基于单位移多质点模型的列车ATO调速控制研究[D].北京交通大学.硕士.2010.
    [42]黄玲珍.列车运行仿真软件的研制及其操纵优化的探讨.同济大学.硕士.2001.
    [43]冯晓云.电力牵引交流传动及其控制系统[M].成都:高等教育出版社.2009.
    [44]张曙光.CRH2动车组[M].北京:中国铁道出版社.2009.
    [45]刘贺文,赵海东.列车运行自动控制(ATO)算法的研究.中国铁道科学.2000(12):56-60.
    [46]王自力.列车操纵优化的离线研究.西南交通大学.硕士.1993.
    [47]辛成山.AT供电系统等值电路推导方法[J].电气化铁道.1999(1):17-20.
    [48]辛成山.关于省掉变电所AT的讨论[J].电气化铁道.1998(1):1-4.
    [49]吴命利.牵引供电系统电气参数与数学模型研究[D].北京交通大学.博士.2006.
    [50]吴命利.电气化铁道牵引网的统一链式电路模型[J].中国电机工程学报.2010(5):52-58.
    [51]钱能.C++程序设计教材[M].北京:清华大学出版社.1999.
    [52]Charles Pretzel著,北京博彦科技发展有限公司译.Windows程序设计[M].北京:北京大学出版社.1999.
    [53]编程高手工作室.Windows2000编程利器-Visual C++编程高手[M].北京:希望 电子出版社.2000.
    [54]侯俊杰.深入浅出MFC[M].武汉:华中科技大学出版社.2001.
    [55]Prosise Jeff. MFC Windows程序设计[M].北京:清华大学出版社.2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700