取代腙配体和配合物的合成结构及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
取代腙配体及配合物具有独特的结构特征和功能特性,在对映异构体选择性合成、不对称催化、多孔材料、磁性材料、非线性光学材料、探针技术以及DNA识别等领域有着潜在应用前景。因此,含取代腙的金属-有机配位化合物的设计与合成、结构及功能特性的研究与开发已经成为配位化学、生物无机化学、晶体工程学和材料科学发展的前沿领域之一。
     本论文合成了一系列取代腙化合物,包括毗啶酰腙、酚酰腙、半卡巴腙、硫酰腙、磺酰腙、双腙以及相应的配合物,其合成方法、表征手段、晶体分析等内容贯穿于全文,但各章关注的重点有所不同。第二章侧重于配体和配合物的发光性质研究;第三章探索了配合物与DNA的相互作用以及切割DNA的活性;第四章注重于配体识别锌离子的光谱分析以及铜配合物的量化计算分析;第五章主要考查了磺酰腙配合物的结构特性、分析了镍配合物的量化计算结果;第六章关注的焦点则是主体分子识别氟离子的比色分析研究。总之,本文基于化合物的合成与表征、晶体结构分析、量化计算及物质性质等四个方面展开研究工作。
     0.1化合物的合成与表征
     本文主要采用常规的溶液合成方法。以酰腙配体为例,选择肼为原料并和三氯乙酰基化合物发生取代反应生成酰肼,其中的胺基(-NH2)再和醛或酮反应形成非中心对称的取代腙配体。在一定的实验条件下,通过选择适当的端基和/或桥基取代腙配体以及金属盐,成功地合成出一系列单核、双核和多核配合物并对其进行了元素分析、核磁、红外、紫外可见、荧光及单晶X-射线衍射实验等表征。
     0.2晶体结构分析
     本文合成的36个取代腙化合物中,其中30个单晶为首次报道,晶体的共同特征是结构的多样性和稳定性。
     取代腙配体的主要特点是:(i)包含了可以自由旋转的N-N和C-C单键,可以采取顺式或反式构型同中心离子配位,对于不同的中心离子,取代腙既可以作为多齿端基配体,也可作为桥基配体。(ii)当酰腙基两端连接芳基后常常形成共平面的共轭体系,有利于π堆积;若取代基中含有强的吸电子基或氮杂原子,使芳环平面的电子密度降低,更利于π堆积。
     取代腙金属配合物的特点如下:(i)新颖的结构和成键方式。如四配位的平面四边形钴配合物、二维多聚的钾配合物等具有新颖的结构。而独特的成键方式体现在磺酰基氧原子同中心金属Ni2+形成了强的配位键,以及镉的三唑类一维多聚配合物中形成的,u3-Cl桥键。(ⅱ)非典型M-Cl…H-D氢键。在多个金属配合物中,形成了M-Cl…H-D(D=C,N,O)氢键,表明M-Cl是良好的氢键接受体。(ⅲ)新型的π堆积模式。本文合成的化合物普遍存在π堆积作用,源于配体中包含有苯环或氮杂环,其中比较新颖的是P4AE-OFF+OFF作用链、P4AE-EF作用链及其形成的面、分子间的p…π弱相互作用等。(ⅳ)形成二聚配合物的倾向。由于配体的非对称性,导致配合物具有手性且手性中心位于金属原子上(Chiral-at-Metal)。但常常形成对映异构体来提高其对称性从而增强稳定性。对映异构体是通过分子间的弱相互作用来进行识别的,弱相互作用的类型大多有π堆积作用和氢键以及不多见的d…π相互作用,其中d…π相互作用主要存在于铜的配合物中,这些作用是对映异构体识别的主要驱动力。但是,汞配合物(4)则不然,其弱相互作用类型为Hg…Hg、Hg…Cl和Cl…Cl。
     0.3基于量化计算的理论分析
     利用B3LYP/60-31++G**方法,对镍配合物(23)的二聚体结构单元进行单点能计算,结果表明,P4AE堆积中存在着OFF和EF的协同效应,除配位键外,形成晶体的主要驱动力应归于这种P4AE堆积作用。与芳基非共面的氮原子可能参与形成共轭体系,从几何学和对称性角度分析了氮原子参与的可能性。在铜配合物(19)(C=0基氧原子配位)和(21)(C=S基硫原子配位)体系中,dxy轨道的能量差异较大,可能的原因是配合物(21)中S原子不但提供电子对和Cu2+配位,也提供dxy空轨道接受Cu2+反馈的d电子而形成d-d反馈π键。
     0.4化合物性质研究
     化合物的性质研究主要包括以下四方面:(i)固态荧光性质研究。对化合物1-5固态荧光光谱研究表明,激发波长400 nm,对应的发射峰分别在490、505、555、550、535 nm。荧光强度次序为2>3>4>5≈H1,荧光增强效应是由于配体和金属离子结合后有效地增强了配合物的刚性,以及减少了无辐射衰减过程中的能量损失。在配合物3、4中,由于重原子效应明显地导致其荧光猝灭。和溶液荧光相比,固态荧光发射峰位发生显著红移,可能是由于固态中存在着强的π…π相互作用能有效地降低HOMO与LUMO之间的能隙。对几个萘取代腙化合物的固态荧光光谱研究表明,固定激发波长450 nm,化合物H229、H31、H235的发射波长分别在545、547、556nm,体现出良好的发光性能。而H13则没有荧光,可能是由于该化合物中有强的吸电子基团(-NO2)导致其荧光猝灭。(ⅱ)双核锰配合物(9)的磁性研究。在外加磁场为1KOe,温度测量范围为2~300K,磁化率(χM)和有效磁矩(μeff)随温度的变化曲线表明,在Mn3+中心之间存在反铁磁相互作用。(ⅲ)配合物与DNA作用研究。化合物6-10、12与CT-DNA及pBR322 DNA作用研究表明,配合物7(铜配合物)有较高的反应活性。可能的原因是该配合物为四配位的平面构型,有利于和DNA作用。配合物7与CT-DNA作用表现为准一级反应,表观速率常数为3.62±0.17 h-1。用凝胶电泳法研究了系列化合物对pBR322 DNA的切割作用,实验表明,在近生理条件下配合物7切割pBR322 DNA的表观速率常数为1.41±0.06 h-1,在配合物7-pBR322DNA体系引入自由基清除剂和氧化还原剂的电泳实验揭示其机理为水解切割。(ⅳ)离子识别研究。主体分子H216对锌离子有较好识别作用。在近生理条件下的条件稳定常数为1gK=12.89±0.76。Zn2+-H216体系紫外差光谱研究表明,△A353nm-△A311nn值与锌离子的量有着明显的响应关系,可以通过该值的变化来识别或检测锌离子。主体分子H230在DMSO/H2O(4:1)体系中能有效地识别氟离子,用“裸眼”可直接观察其颜色变化。氟离子在8.5×10-7~4.4x10-5M(R2=0.9946)范围内有较好的线性关系,检出限为5.8×10-7M。
The substituted hydrazones and their metal complexes have developed rapidly in recent years because of their fascinating structural and potential applications in the fields of enantioselective synthesis, asymmetric catalysis, porous materials, nonlinear optical materials, magnetic materials, probe technique, DNA recognition and so on. Therefore, the rational design, synthesis, and characterization of novel substituted hydrazones and their metal complexes are of fundamental importance for the further developments of supramolecular chemistry and coordination chemistry.
     In this thesis, a series of new substituted hydrazones and their metal complexes were synthesized. One of the important substituted hydrazones is the acyl-/aroyl-hydrazone compound. These compounds not only display interesting structures, which are assembled by such as coordination bonding, hydrogen bonding, aromaticπ…πstacking and so on, but also exhibit different coordination modes of different aromatic hydrazone ligands. In this paper, we reported the crystal structures, various spectroscopic studies, magnetism, anion or cation recognition, and DNA binding and cleavage activities of the new substituted hydrazone complexes.
     0.1 Synthesis and characterization of substituted hydrazone compounds.
     Compared with different synthetic approaches of the compounds, the general solution approach was chosen. The acyl-/aroyl-hydrazone can be seen as the result of the reaction of an aldehyde or a ketone with an acyl-/aroyl-hydrazine that has a free -NH2 group. In suitable experimental conditions using appropriate bridging ligands, we have been successful in synthesizing a series of mono-, di- and polynuclear transition metal complexes with substituted hydrazone ligands. These complexes were characterized by X-ray crystallography, IR, UV-Vis,1H-NMR spectroscopy, and elemental analyses.
     0.2 Crystal and molecular structure.
     As a terminal or bridged-ligand, the hydrazones ligands have the following features:(ⅰ) Flexibility. It contains N-N and C-C single bonds, which can freely rotate according to the demand of coordination, making the hydrazone ligand as a potential bidentate, tridentate or polydentate chelating ligand. (ⅱ) The aryl group and acyl-hydrazone (R2C=N-N-CO-R) form a co-planar delocalized molecule. It may construct new structures viaπstacking interactions. It contains aromatic nitrogen heterocycles, in principle, should be well suited forπ…πinteractions because of lowπ-electron density resulting from nitrogen heteroatoms, which serve as electron acceptors within the ring.
     The hydrazone complexes have the following features:(ⅰ) Novel structures and bonding modes. The structural studies indicate that tridentate acyl-hydrazone ligand has commonly been coordinated to metals at a 1:1 metal/ligand ratio, which allows the formation of molecular polygons, chains or layer and exhibits a rich degree of superstructural diversity. However, the substituted hydrazone ligand also occasionally exhibits as bi-dentated or penta-dentated ligand, for example in complex 3 and 5. (ⅱ) Non-classical M-Cl…H-D hydrogen bonding. The results indicated that M-Cl moieties were good anisotropic hydrogen-bond acceptors; (ⅲ) Novelπstacking modes. In this paper we surveyed and analyzed multiple edge-to-face (EF) and offset-face-to-face (OFF) interactions forms in crystal packing. The parallel fourfold aryl embrace (P4AE, comprised of one OFF and two EF) occurs for compounds 20,23,25,27,29; (iv) Trend to form dimers. Among the complexes, the dimers were formed by theπ…π, d…π, M…M, M…Cl, Cl…Cl weak interactions and hydrogen bonding. The complexes contain the asymmetrical N-heterocyclic ligands with a tendency to form chiral complexes (enantiomeric forms), in which the only asymmetric center is the metal itself (chiral-at-metal). The enantiomorph was formed by these weak interactions.
     0.3 The theoretical analysis based on calculating results of quantum chemistry.
     The geometries of the 19,23 were definited by crystal information files. The geometries of the 21 were optimized using the B3LYP/6-31++G** basis set. These geometries were used to perform single point calculations using the Gaussian03 program package. The calculating results show that complexes 23 exist synergistic effects of EF-OFF interactions, and the non-coplanar N atom with aromatic ring possibly participate in delocalizingπsystem. In the complexes 19,21, the eigenvalue of the dxy orbit has large difference, it is reasonable to conclude that not only the S atom of ligand coordinate to Cu2+, but also the unoccupied d orbit of the S atom can accept the d electron from Cu2+, to form freeback d-dπbonding in complex 21.
     0.4 Studies on the properties of the compounds.
     (ⅰ) Solid-state fluorescence spectral properties. Compared with the solution fluorescence spectra, the most drastic red-shift is observed in the solid-state spectra, which may be assigned to intra-ligand (π→π*) fluorescent emission stemming fromπ…πstacking and hydrogen bonding interactions. These interactions play an important role in decreasing the HOMO-LUMO gaps. (ⅱ) The experimental data of the variable-temperature (2~300 K) magnetic susceptibilities display an antiferromagnetic exchange between the bridged Mn3+ ion in complex 9. (ⅲ) Interactions of DNA and complexes. Interactions of DNA and the complexes 6-10,12 indicated that complex 7 has higher activity. The UV-Vis titrations of 7 with CT-DNA were done in Tris-HCl buffer medium, and showed significant hypochromism. The gel electrophoresis shows that complex 7 is able to perform an efficient cleavage of pBR322 DNA. When pBR322 DNA was incubated with the 7 in the presence of hydroxyl radical scavengers or reductant-oxidant, inhibition of the DNA cleavage was not observed. These observations suggested that 7-mediated cleavage reaction occurs via a hydrolytic path. (ⅳ) Studies of the ions recognization. UV-Vis spectral studies show that the host molecule H216 provides strong binding of Zn2+ in a 1:1 ratio in solution. The conditional binding constant of the complex is 1gKZn-16=12.89±0.76 in 0.05 M Tris-HCl buffer at pH 7.4. The change in theΔA353 nm-ΔA311 nm of H216 is more pronounced in the presence of Zn2+ than other metal ions. Therefore, the analysis ofΔA353 nm-ΔA311 nm, with respect to difference spectral changes at 353 and 311 nm, is possible to determine Zn2+. The H216 exhibits an enhanced fluorescence effect by the addition of Zn2+, and affords an excellent selectivity for Zn2+ under physiological conditions. In DMSO/H2O (4:1) system, the adding of F- to the solution of the host molecule H230 caused dramatic changes in color which were clearly visible to the naked eye. However, no significant changes of color were observed when H230 was exposed to Cl-, Br-, I-, OAc-, and H2PO4- respectively. The absorption spectral studies indicated that a good linear relationship between the absorbance and the F- ion concentration could be obtained from 8.5×10-/ to 4.4×10-5 M (R2=0.9946). The detection limit was measured to be 5.8×10-7 M.
引文
[1]Beraldo H, Gambino D. The Wide Pharmacological Versatility of Semicarbazones, Thiosemicarbazones and Their Metal Complexes[J]. Mini-Rev. Med. Chem.,2004,4: 31-39.
    [2]Xiong R G, Xue X, Zhao H. et al. Novel,Acentric Metal-Organic Coordination Polymers from Hydrothermal Reactions Involving In Situ Ligand Synthesis[J]. Angew. Chem. Int. Ed.,2002,41:3800-3803.
    [3](a) Chelucci G, Thummel R P. Chiral 2,2'-Bipyridines,1,10-Phenanthrolines, and 2,2':6',2"-Terpyridines:Syntheses and Applications in Asymmetric Homogeneous Catalysis[J]. Chem. Rev.,2002,102:3129-3170.(b)郭栋,李继辉,谢婧婧,段春迎,孟庆金Synthesis and Crystal Structure of Triple-Helical Di-iron(Ⅲ) Complex[J]无机化学学报2002,18:1215-1220.(c) Albrecht M. "Let's Twist Again"s Double-Stranded, Triple-Stranded, and Circular Helicates[J]. Chem. Rev.,2001,101:3457-3497. (d) Xu Z, Thompson L K, Black D A, Ralph C, Miller D O, Leech M A, Howard J A K. N-N Bridged dinuclear complexes with Mn(Ⅱ), Ni(Ⅱ), Cu(Ⅱ), Zn(Ⅱ) and Cd(Ⅱ); examples with antiferromagnetic and ferromagnetic coupling[J]. J. Chem. Soc., Dalton Trans.,2001:2042-2048. (e) Yue Y -F, Fang C-J, Gao E-Q, He C, Bai S -Q, Xu S, Yan C -H. Four thiocyanato-bridged cadmium(Ⅱ) polymeric complexes based on open chain diazine ligands[J]. J. Mol. Struct.,2008,875:80-85. (f) Yue Y -F, Gao E -Q, Fang C -J, Xu S, Yan C -H. Structures and/or magnetic properties of three 1D ladder-type manganic and cadmium compounds with open-chain diazine Schiff-base ligands[J]. J. Mol. Struct.,2007,841:67-72. (g) Xu Z, White S, Thompson L. K, Miller D O, Ohba M, Okawa H, Wilson C, Howard J A K. Extended one- and two-dimensional copper(Ⅱ) complexes with bridging (N-N) diazine ligands:structural and magnetic studies[J]. J. Chem. Soc., Dalton Trans.,2000,1751-1757. (h) Piguet C, Bernardinelli G, Hopfgartner G. Helicates as Versatile Supramolecular Complexes[J]. Chem. Rev.,1997,97:2005-2062 (i) Yue Y -F, Gao E -Q, Fang C -J, He Z, Bai S -Q, Yan C -H. Crystal structures and magnetic properties of triple helical binuclear complexes with bis(bidentate) diazine ligands[J]. Polyhedron,2006,25:2778-2784. (j) Albrecht M. Dicatechol ligands:novel building-blocks for metallo-supramolecular chemistry [J]. Chem. Soc. Rev.,1998,27:281-288. (k) Albrecht M, Janser I, Lutzen A, Hapke M, Frohlich R, Weis P.5,5'-Diamino-2,2'-bipyridine:A Versatile Building Block for the Synthesis of Bipyridine/Catechol Ligands That Form Homo- and Heteronuclear Helicates[J]. Chem. Eur. J.,2005, 11:5742-5748.
    [4](a) Chattopadhyay D, Mazumdar S K, Banerjee T, Sheldrick W S. Structure of 1-(3,4-dichlorophenyl)-4-methylthiosemicarbazide[J]. Acta Crystallogr. Sect. C, 1989,45:314-317. (b) Brown J N, Agrawal K C.2-Formyl-5-benzylpyridine thiosemicarbazone[J]. Acta Crystallogr. Sect. B,1978,34:2038-2040. (c) Palenik G J, Rendle D F, Carter W S. The crystal and molecular structures of thiosemicarbazones; an antitumor agent 5-hydroxy-2-formylpyridine thiosemicarbazone sesquihydrate and the inactive acetone thiosemicarbazone[J]. Acta Crystallogr. Sect. B,1974,30:2390-2395. (d) Allen F H, Kennard O, Watson D G, Brammer L, Orpen A G, Taylor R. Tables of Bond Lengths determined by X-Ray and Neutron Diffraction. Part Ⅰ. Bond Lengths in Organic Compounds[J]. J. Chem. Soc. Dalton Trans. Ⅱ,1987, S1-S19. (e) Bino A, Cohen N. Several coordination modes of the pentadentate ligand 2,6-diacetylpyridinebis(thiosemicarbazone)[J]. Inorg. Chim. Acta,1993,210: 11-16. (f) Murphy T B, Rose N J, Schomaker V, et.al. Syntheses of Iron(III)Aroyl HydraZones Containing PyndoxalandSalieylaldehyde. The Crystal and Molecular Structure of Two Iron(Ⅲ)-Pyndoxal Isonieotinoyl Hydrazone ComPlexes[J]. Inorg. Chim. Acta,1985,108:183-194. (g) Salmas F, Jimene Z, Sanchez J C, et.al. Spectrophotometric detemunation of iron in wines, foods, and minerais withs 5,5-dimethyl-1,2,3-cyclohex-anetrione 1,2-dioxine-3- thiosemicarbazone[J].Anal. Chem.,1986,58(4):824-827. (h) Prakash K M, Prbhakar L D, Dvankata R. Rapid extraction spectrophotometric Detemination of platinum using anisaldehyde-4-phenyl-3- thiosemiearbazone as chromogenic Reagent[J].Anal. Lett.,1987,20(7):959-983.
    [5](a) John R P, Lee K, Lah M S. Novel 36-membered dodecanuclear manganese metalladiazamacrocycle[J]. Chem.Commun.,2004,2660-2661. (b) John R. P., Lee, K., Kim B J, Suh B J, Rhee H, Lah M S. Modulation of the Ring Size and Nuclearity of Metallamacrocycles via the Steric Effect of Ligands: Preparation and Characterization of 18-Membered Hexanuclear,24-Membered Octanuclear, and 30-Membered Decanuclear Manganese Metalladiazamacro-cycles with a-and β-Branched N-Acylsalicylhydrazides[J]. Inorg. Chem.,2005, 44:7109-7121. (c) Kwak B, Rhee H, Park S, Lah M S. Synthesis and Characterization of [MnⅢ6(N-formylsalicylhydrazidate)6(MeOH)6]:A New Type of Macrocyclic Hexanuclear Manganese Cluster[J]. Inorg. Chem.,1998,37:3599-3602. (d) Kwak B, Rhee H, Lah M S. Hexanuclear manganese metallamacrocycles with tripled hydrophobic tails[J]. Polyhedron,2000,19:1985-1994. (e) Lin S, Liu S -X, Chen Z, Lin B -Z, Gao S. Synthesis, Structure, and Magnetism of a Ferric 24-Azametallacrown-8 Complex[J]. Inorg. Chem.,2004,43: 2222-2224. (f) Lin S., Liu S.-X, Huang J-Q, Lin C.-C. Four novel nanometer-sized cobalt azametallacrown complexes[J]. J. Chem. Soc. Dalton Trans.,2002,1595-1601.
    [6](a) Cutland-Van Noord A D, Kampf J W, Pecoraro V L. Preparation of Resolved Fourfold Symmetric Amphiphilic Helices Using Chiral Metallacrown Building Blocks[J]. Angew. Chem. Int. Ed.,2002,41:4667-4670. (b) Cheng J -W, Zhang J, Zheng S -T, Zhang M -B, Yang G -Y. Lanthanide-Transition-Metal Sandwich Framework Comprising {CU3} Cluster Pillars and Layered Networks of {Er36} Wheels[J]. Angew. Chem. Int. Ed.,2006,45:73-77. (c) Pereira C L M, Pedroso E F, Stumpf H O, Novak M A, Ricard L, Ruiz-Garcia R, Riviere E, Journaux Y. A CuⅡ CoⅡ Metallacyclophane-Based Metamagnet with a Corrugated Brick-Wall Sheet Architecture[J]. Angew. Chem. Int. Ed.,2004,43: 956-958. (d) Schnebeck R -D, Freisinger E, Glahe F, Lippert B. Molecular Architecture Based on Metal Triangles Derived from 2,2'-Bipyrazine (Bpz) and EnMⅡ (M=Pt, Pd)[J]. J. Am. Chem. Soc.,2000,122:1381-1390. (e) Patel U, Singh H B, Wolmershauser G. Synthesis of a Metallophilic Metallamacrocycle:A HgⅡ-CuⅠ-HgⅡ-HgⅡ-CuⅠ-HgⅡ Interaction[J]. Angew. Chem. Int. Ed.,2005,44:1715-1717. (f) HalPer S R, Cohen S M. Self-Assembly of Two Distinct Supramolecular Motifs in a Single Crystalline Framework[J]. Angew. Chem. Int. Ed.,2004,43: 2385-2388. (g) TasioPoulos A J, Vinslava A, Wernsdorfer W, Abboud K A, Christou G. Giant Single-Molecule Magnets:A {Mn84} Torus and Its Supramolecular Nanotubes[J]. Angew. Chem. Int. Ed.,2004,43:2117-2121. (h) Galan-Mascaros J R, Dunbar K R. A microporous framework from a magnetic molecular square:[Co(HAT)Cl2]4(HAT=1,4,5,8,9,11-hexaazatriphenylene)[J]. Chem. Commun.,2001,217-218. (i) Lee S J, Lin W. A Chiral Molecular Square with Metallo-Corners for Enantioselective Sensing[J]. J. Am. Chem. Soc.,2002,124:4554-4555. (j) Cultland A D, Halfen J A, Kampf J W, Pecoraro V L. Chiral 15-Metallacrown-5 Complexes Differentially Bind Carboxylate Anions[J]. J. Am. Chem. Soc.,2001, 123:6211-6212. (k) Lehaire M L, Scopelliti R, Piotrowski H, Severin K. Selective Recognition of Fluoride Anion Using a Li+-Metallacrown Complex[J]. Angew. Chem. Int. Ed., 2002,41:1419-1422. (1) Mezei G, Baran P, Raptis R G. Anion Encapsulation by Neutral Supramolecular Assemblies of Cyclic CuⅡ Complexes:A Series of Five Polymerization Isomers, [{cis-CuⅡ(μ-OH)(μ-pz)}n], n=6,8,9,12, and 14[J]. Angew. Chem. Int. Ed.,2004, 43:574-577. (m) Slone R V, Benkstein K D, Belanger S, Hupp J T, Guzei I A, Rheingold A L. Luminescent transition-metal-containing cyclophanes ("molecular squares"): covalent self-assembly, host-guest studies and preliminary nanoporous materials applications[J]. Coord. Chem. Rev.,1998,171:221-243. (n) Severin K. Self-assembled organometallic receptors for small ions[J]. Coord. Chem. Rev.,2003,245:3-10. (o) Lehaire M -L, Scopelliti R, Severin K. Stabilization of Molecular LiF and LiFHF inside Metallamacrocyclic Hosts[J]. Inorg. Chem.,2002,41:5466-5474.
    [7]Ziolek M, Filipczak K, Maciejewski A. Spectroscopic and photophysical properties of salicylaldehyde azine (SAA) as a photochromic Schiff base suitable for heterogeneous studies[J]. Chem. Phys. Lett.,2008,464:181-186.
    [8]Stadler A -M, Harrowfield J. Bis-acyl-/aroyl-hydrazones as multidentate ligands[J]. Inorg. Chim. Acta,2009,362:4298-4314.
    [9](a) Ivanov S A, Kozee M A, Merrill W A, Agarwal S, Dahl L F. Cyclo-[Ni(μ2-SPh)2]9 and cyclo-[Ni(μ2-SPh)2]11:new oligomeric types of toroidal nickel(Ⅱ) thiolates containing geometrically unprecedented 9- and 11-membered ring systems[J]. J. Chem. Soc. Dalton Trans.,2002,4105-4115. (b) Hallale O, Bourne S A, Koch K R. Metallamacrocyclic complexes of Ni(Ⅱ) with 3,3,3',3'-tetraalkyl-1,1'-aroylbis(thioureas):crystal and molecular structures of a 2: 2 metallamacrocycle and a pyridine adduct of the analogous 3:3 complex[J]. CrystEngComm.,2005,7:161-166.
    [10](a) Moon M, Kim I, Lah M S. Three-Dimensional Framework Constructed Using Nanometer-Sized Metallamacrocycle as a Secondary Building Unit[J]. Inorg. Chem.,2000,39:2710-2711. (b) Moon D, Song J, Kim B J, Suh B J, Lah M S. Three-Dimensional Helical Coordination Networks of a Hexanuclear Manganese Metallamacrocycle as a Helical Tecton[J]. Inorg. Chem.,2004,43:8230-8232. (c) Moon D, Lah M. S. Size and Shape Selectivity of Host Networks Built Based on Tunable Secondary Building Units[J]. Inorg. Chem.,2005,44:1934-1940.
    [11]Bosnian A W, Brunsveld L, Folmer B J B, Sijbesma R P, Meijer E W. Supramolecular polymers:from scientific curiosity to technological reality[J]. Macromol Symp.,2003,201:143-154.
    [12](a) Fenton H J H. Oxidation of tartaric acid in presence of iron[J]. J. Chem. Soc., Trans.,1894,65 (65):899-911. (b) Goldstein S, Meyerstein D, Czapski G. The Fenton reagents[J]. Free Radical Biol. Med.,1993,15 (4):435-445.
    [13](a) Barnham K J, Masters C L, Bush A I. Neurodegenerative diseases and oxidative stress[J]. Nat. Rev. Drug Discovery,2004,3:205-214; (b) Perez C A, Tong Y, Guo M. Iron Chelators as Potential Therapeutic Agents for Parkinsons Disease[J]. Curr. Bioactive Comp.,2008,4(3):150-158.
    [14](a) Wei Y, Guo M. Hydrogen Peroxide Triggered Prochelator Activation, Subsequent Metal Chelation, and Attenuation of the Fenton Reaction[J]. Angew. Chem. Int. Ed., 2007,46:4722-4725. (b) Wei Y, Guo M. A novel H2O2-triggered anti-Fenton fluorescent pro-chelator excitable with visible light[J]. Chem. Commun.,2009,1413-1415. (c) Wei Y, Zhang Y, Liu Z, Guo M. A novel profluorescent probe for detecting oxidative stress induced by metal and H2O2 in living cells[J]. Chem. Commun., 2010,46(25):4472-4474.
    [15]Prabaharan M, Grailer J J, Pilla S, Steeber D A, Gong S. Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery[J]. Biomaterials,2009,30:6065-6075.
    [16](a) Stratton W J, Busch D H. The Complexes of Pyridinaldazine with Iron(Ⅱ) and Nickel(II)[J]. J. Am. Chem. Soc.,1958,80:1286-1289. (b) Stratton W J, Busch D H. The Complexes of Pyridinaldazine. Ⅲ. Infrared Spectra and Continued Synthetic Studies[J]. J. Am. Chem. Soc.,1960,82:4834-4839.
    [17](a) Ball P W, Blake A B. Magnetic properties of polynuclear complexes. Part Ⅰ. Superexchange in some binuclear nickel(II) complexes [J]. J. Chem. Soc. A,1969, 1415-1422. (b) Stratton W J. Metal Complexes with Azine Ligands. Ⅱ. Iron(Ⅱ), Cobalt(Ⅱ), and Nickel(II) Complexes with 2-Pyridyl Methyl Ketazine[J]. Inorg. Chem.,1970, 9:517-520.
    [18]Boyd P D W, Gerloch M, Sheldrick G M. Crystal structure of tris-μ-[2,5-di(2-pyridyl)-3,4-diazahexa-2,4-diene]-dicobalt(Ⅱ) di [aquotrichlorozincate(Ⅱ)] tetrachlorozincate(Ⅱ) tetrahydrate:a helical binuclear cobalt(Ⅱ) cation[J]. Dalton Trans.1974,1097-1102.
    [19](a)毕思玮,刘成卜.以N-N基团为单桥的双核Cu(Ⅱ)体系磁-结构关联的理论研究 [J].化学学报2002,60(8):1390-1395.(b) Xu Z, Thompson L K, Matthews C J, et al. Dinuclear and tetranuclear copper(II) complexes with bridging (N-N) diazine ligands:variable magnetic exchange topologies[J]. Dalton Trans.,2000,69-77. (c) Xu Z, Thompson L K, Miller D O, et al. Spiral Dinuclear Complexes of Tetradentate N4 Diazine Ligands with Mn(Ⅱ), Fe(Ⅱ), Fe(Ⅲ), Co(Ⅲ), and Ni(Ⅱ) Salts[J]. Inorg. Chem.,1998,37:3620-3627. (d) Thompson L K, Xu Z, Goeta A E, et al. Structural and Magnetic Properties of Dicopper(II) Complexes of Polydentate Diazine Ligands[J]. Inorg. Chem.,1998, 37:3217-3229. (e) Xu Z, Thompson L K, Miller D O, et al. Dicopper(Ⅱ) Complexes Bridged by Single N-N Bonds. Magnetic Exchange Dependence on the Rotation Angle between the Magnetic Planes[J]. Inorg. Chem.,1997,36:3985-3995. (f) Xu Z, Thompson L K, Milway V A, et al. Self-Assembled Dinuclear, Trinuclear, Tetranuclear, Pentanuclear, and Octanuclear Ni(Ⅱ) Complexes of a Series of Polytopic Diazine Based Ligands:Structural and Magnetic Properties[J]. Inorg. Chem.,2003,42(9):2950-2959. (g) Case F H. The preparation of 1,2,4-Triazines and 1,2,4-Triazolines from substituted carboxamide hydrazones[J]. J. Heterocycl. Chem.,1970,7(5): 1001-1005.
    [20]Gao E-Q, Yue Y-F, Bai S-Q, et al. From Achiral Ligands to Chiral Coordination Polymers:Spontaneous Resolution, Weak Ferromagnetism, and Topological Ferrimagnetism[J]. J. Am. Chem. Soc.,2004,126:1419-1429.
    [21](a)Kitajima N, Fukui H, Morooka Y, Mizutani Y, Kitagawa T. Synthetic model for dioxygen binding sites of non-heme iron proteins. X-ray structure of Fe(OBz) (MeCN)[HB(3,5-iso-Pr2pz)3] [HB(3,5-iso-Pr2pz)3=hydrotris (3,5-diisopropyl-1-pyrazolyl) borate] and resonance Raman evidence for reversible formation of a peroxo adduct[J]. J. Am. Chem. Soc.,1990,112 (17):6402-6403. (b) Kitajima N, Fujisawa K, Fujimoto C, Morooka Y, Hashimoto S, Kitagawa T, Toriumi K, Tatsumi K, Nakamura A. A new model for dioxygen binding in hemocyanin. Synthesis, characterization, and molecular structure of the μ-η2:η2 peroxo dinuclear copper(Ⅱ) complexes, [Cu(HB(3,5-R2pz)3)]2(O2) (R=isopropyl and Ph) [J]. J. Am. Chem. Soc.,1992,114 (4):1277-1291.
    [22]Singh U P, Tyagi P, Pal S. Synthesis, Structural and Luminescence Studies of some Zinc Complexes having Pyrazole and Carboxylate ligands[J]. Inorg. Chim. Acta, 2009,362:4403-4408.
    [23](a) Dong Y -B, Wang L, Ma J-P, Zhao X-X, Shen D-Z, Huang R-Q. Ag(I) Complexes Generated from Double Schiff-Base Ligand with Thiazole as the Terminal Binding Sites[J]. Cryst. Growth Des.,2006,6(11):2474-2485. (b) Dong Y -B, Smith M D, zur Loye H-C. New Inorganic/Organic Coordination Polymers Generated from Bidentate Schiff-Base Ligands[J]. Inorg. Chem.,2000, 39(21):4927-4935. (c) Dong Y -B, Smith M D, Layland R C, zur Loye H-C. A Novel Noninterpenetrating Polycyclohexane Network:A New Inorganic/Organic Coordination Polymer Structural Motif Generated by Self-Assembly of "T-Shaped" Moieties[J]. Chem, Mater.,2000,12(4):1156-1161. (d) Dong Y -B, Zhan X, Tang B, Wang H-Y, Huang R-Q, Smith M D, zur Loye H-C. Novel organic-inorganic composite coordination polymers generated from new multidentate schiff-base ligand and Ag(Ⅰ) salts[J]. Chem. Cormmun.,2004,2: 220-221. (e) Dong Y -B, Wang P, Huang R-Q, Smith M D. Syntheses and Structures of Ag(I)-Containing Coordination Polymers and Co(Ⅱ)-Containing Supramolecular Complex Based on Novel Fulvene Ligands[J]. Inorg. Chem.,2004,43(15): 4727-4739. (f) Dong Y -B, Zhang H-Q, Ma J-P, Huang R-Q. Novel One- and Two-Dimensional Ag(I) Networks Generated from Double Schiff Base Ligands with Disubstituted Quinoxaline Diazenes as the Terminal Binding Sites[J]. Cryst. Growth Des., 2005,5(5):1857-1866.
    [24]Saroja J, Manivannan V, Chakraborty P, Pal S. A Diiron(Ⅲ) Complex Containing N-N Bridges. Synthesis, Structure, and Properties[J]. Inorg. Chem.,1995,34: 3099-3101.
    [25]陈小华,刘世雄.两个含N取代水杨基Schiff碱配体的镍配合物的合成和晶体结 构[J].无机化学学报2005,21(1):15-20.
    [26](a) Doedens R J. Crystal and molecular structure of a one-dimensionally stacked binuclear rhodium(I) complex containing a tetradentate dibenzoylhydrazido ligand[J]. Inorg. Chem.,1978,17 (5):1315-1318. (b) Liu S-X, Lin S, Lin B-Z, Lin C-C, Huang J-Q. Metallacrown-10 Compounds: [Mn(C14H9N2O3)(CH3OH)]10·5CH2Cl2·16 CH3OH-H2O and [Fe(C14H9N2O3) (CH3OH)]10·3 CH2Cl2·12.5 CH3OH·5 H2O[J]. Angew. Chem. Int. Ed.,2001, 40(6):1084-1087. (c) Chen L-J, Yang M-X, Lin S. Isopropoxy [2'-(2-methoxybenzoyl)-2-oxidobenzo hydrazidato]oxovanadium(V)[J]. Acta Cryst.,2004, E60:m1881-m1882. (d) Yang M-X, Lin S. Bis(dimethylformamide-2κO)dipyridine-1 κN, 3κN-bis(μ-2'-salicylbenzohydrazidato)-1κ3O,N,O':2κ2N,O";2K2N,O":3κ3O,N,O'-trinickel(II) dimethylformamide disolvate hemihydrate[J]. Acta Cryst.,2005, E61: m1095-m1096. (e) Yu Z-X, Sun Y-X. Bis[μ-2-methoxy-N'-(2-oxidobenzoyl) benzohydrazidato(3-)] dipyridinetrizinc(II)[J]. Acta Cryst.,2006, E62:m3521-m3523. (f) Wang Z-Y, Liu S-X. [μ-1,2-Bis(salicyloyl)hydrazine(4-)]bis [(ethylenediamine) zinc(Ⅱ)] dimethylformamide disolvate dihydrate[J]. Acta Cryst.,2007, E63: m3105-m3106.
    [27](a) Chandrasekhar V, Azhakar R, Bickley J F, Steiner A. A luminescent linear trinuclear magnesium complex assembled from a phosphorus-based tris-hydrazone ligand[J]. Chem. Commun.,2005,459-461. (b) Zhao L, Niel V, Thompson L K, Xu Z, Milway V A, Harvey R G, Miller D O, Wilson C, Leech M, Howard J A K, Heath SL. Self-assembled polynuclear clusters derived from some flexible polydentate dihydrazide ligands[J]. Dolton trans.,2004,1446-1455. (c) Ianelli S, Minardi G, Pelizzi C, Pelizzi G, Reverberi L, Solinas C, Tarasconi P. Construction of a new versatile hydrazonic ligand and its chemical and structural behaviour towards metal ions[J]. J. Chem. Soc., Dalton Trans.,1991,2113-2120.
    [28](a) Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O'Keeffe M, Yaghi O M. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture[J]. Science,2008,319:939-943. (b) Banerjee R, Furukawa H, Britt D, Knobler C, O'Keeffe M, Yaghi O M. Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties[J]. J. Am. Chem. Soc., 2009,131:3875-3877. (c) Carlucci L, Ciani G, Proserpio D M. Polycatenation, polythreading and polyknotting in coordination network chemistry[J]. Coord. Chem. Rev.,2003,246, 247-289. (d) McManus G J, Perry IV J J, Perry M, Wagner B D. Zaworotko, M. J. Exciplex Fluorescence as a Diagnostic Probe of Structure in Coordination Polymers of Zn2+ and 4,4'-Bipyridine Containing Intercalated Pyrene and Enclathrated Aromatic Solvent Guests[J] J. Am. Chem. Soc.,2007,129: 9094-9101. (d) Das S, Kim H, Kim K. Metathesis in Single Crystal:Complete and Reversible Exchange of Metal Ions Constituting the Frameworks of Metal-Organic Frameworks[J]. J. Am. Chem. Soc.,2009,131:3814-3815. (e) Lloret F, Munno G D, Julve M, Cano J, Ruiz R, Caneschi A. Spin Polarization and Ferromagnetism in Two-Dimensional Sheetlike Cobalt(II) Polymers: [Co(L)2(NCS)2] (L=Pyrimidine or Pyrazine)[J]. Angew. Chem., Int. Ed. Engl., 1998,37:135-138. (f) Bodenthin Y, Schwarz G, Tomkowicz Z, Lommel M, Geue Th, Haase W, Mowald H, Pietsch U, Kurth D G. Spin-crossover phenomena in extended multi-component metallo-supramolecular assemblies[J]. Coord. Chem. Rev.,2009, 253:2414-2422. (g) Wang X -L, Qin C, Wang E.-B, Su Z -M, Li Y -G, Xu L. Self-Assembly of Nanometer-Scale [Cu24I10L12]14+ Cages and Ball-Shaped Keggin Clusters into a (4,12)-Connected 3D Framework with Photo luminescent and Electrochemical Properties [J]. Angew. Chem., Int. Ed. Engl.,2006,45,7411-7414. (h) Lin J -B, Zhang J -P, Chen X -M. Nonclassical Active Site for Enhanced Gas Sorption in Porous Coordination Polymer[J]. J. Am. Chem. Soc.,2010,132: 6654-6656.
    [29](a) Robson R. A net-based approach to coordination polymers [J]. J. Chem. Soc., Dalton Trans.,2000,3735-3744. (b) Braga D, Brammer L, Champness N R. New trends in crystal engineering[J]. CrystEngComm.,2005,7:1-19. (c) Brammer L. Developments in inorganic crystal engineering[J]. Chem. Soc. Rev., 2004,33:476-489. (d) Batten S R, Robson R. Interpenetrating Nets:Ordered, Periodic Entanglement [J]. Angew. Chem. Int. Engl.,1998,37:1460-1494. (e) Desiraju G R. Crystal Engineering:A Holistic View[J]. Angew. Chem. Int. Engl. 2007,46,8342-8356. (f) Robin A Y, Fromm K M. Coordination polymer networks with O-and N-donors: What they are, why and how they are made[J]. Coord. Chem. Rev.,2006,250: 2127-2157. (g) Ockwig N W, Delgado-Friedrichs O, O'keeffe M Yaghi O M. Reticular Chemistry:Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks[J]. Acc. Chem. Res.2005,38:176-182. (h) Moulton B, Zaworotko M J. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids[J]. Chem. Rev., 2001,101:1629-1658. (i) Zaworotko M J. Superstructural diversity in two dimensions:crystal engineering of laminated solids[J]. Chem. Commun.2001,1-9. (j) Janiak C. Engineering coordination polymers towards applications[J]. J. Chem. Soc., Dalton Trans.2003,2781-2804. (k) Liu T -F, Lu J, Cao R. Coordination polymers based on flexible ditopic carboxylate or nitrogen-donor ligands[J]. CrystEngComm.,2010,12:660-670. (1) Falvello L R, Ferrer D, Piedrafita M, Soler T, Tomas M. Using the crystal to engineer the molecule:cis-trans-isomer selection in anionic bis(orotate) complexes[J]. CrystEngComm,2007,9:852-855. (m) Braga D, Desiraju G R, Miller J S, Orpen A G, Price S L. Innovation in crystal engineering[J]. CrystEngComm.,2002,4:500-509. (n) Braga D. Inorganic crystal engineering:a personal perspective[J]. J. Chem. Soc., Dalton Trans.,2000,3705-3713. (o) Braga D, Grepioni F, Desiraju G R. Crystal Engineering and Organometallic Architecture[J]. Chem. Rev.,1998,98:1375-1406. (p) Barbazan P, Carballo R, Vazquez-Lopez E M. Synthesis and structure of 2-acetylpyridine-salicyloylhydrazone and its copper(Ⅱ) and zinc(Ⅱ) complexes. The effect of the metal coordination on the weak intermolecular interactions [J]. CrystEngComm,2007,9:668-675.
    [30](a) Desiraju G R. Supramolecular Synthons in Crystal Engineering-A New Organic Synthesis[J]. Angew. Chem. Int. Engl.,1995,34:2311-2327. (b) Desiraju G R. Designer crystals:intermolecular interactions, network structures and supramolecular synthons[J]. Chem. Commun.,1997,1475-1482. (c) Desiraju G R. Hydrogen bonds and other intermolecular interactions in organometallic crystals[J]. J. Chem. Soc., Dalton Trans.,2000,3745-3751. (d) Casas J M, Diosdado B E, Falvello L R, Fornies J, Martin A, Rueda A J. Hydrogen-bond mediation of supramolecular aggregation in neutral bis-(C6F5)Pt complexes with aromatic H-bond donating ligands. A synthetic and structural study [J]. Dalton Trans.,2004,2733-2740. (e) Reger D L, Sirianni E, Horger J J, Smith M D. Supramolecular Architectures of Metal Complexes Controlled by a Strong π…π Stacking,1,8-Naphthalimide Functionalized Third Generation Tris(pyrazolyl)methane Ligand[J]. Cryst.Growth Des.,2010,10:386-393.
    [31](a) Das S, Incarvito C D, Crabtree R H, Brudvig G W. Molecular Recognition in the Selective Oxygenation of Saturated C-H Bonds by a Dimanganese Catalyst[J]. Science,2006,312:1941-1943. (b) Meyer E A, Castellano R K, Diederich F. Interactions with Aromatic Rings in Chemical and Biological Recognition[J]. Angew. Chem. Int. Ed.,2003,42: 1210-1250. (c) Amabilino D B, Stoddart J F. Interlocked and Intertwined Structures and Superstructures[J]. Chem. Rev.,1995,95:2725-2828. (d) Guckia K M, Schweitzer B A, Ren R X-F, Sheils C J, Tahmassebi D C, Kool E T. Factors Contributing to Aromatic Stacking in Water:Evaluation in the Context of DNA[J]. J. Am. Chem. Soc.,2000,122,2213-2222. (e) Hunter C A, Sarson L D. Self-Assembly of a Dimeric Porphyrin Host[J]. Angew. Chem., Int. Ed. Engl.,1994,33,2313-2316. (f) Hunter C A, Sanders J K M. The nature of π-π interactions[J]. J. Am. Chem. Soc., 1990,112:5525-5534.
    [32](a) Nishio M. CH/π hydrogen bonds in crystals[J]. CrystEngComm,2004,6:130-158. (b) Dance I, Scudder M. Molecules embracing in crystals[J]. CrystEngComm,2009, 11:2233-2247. (c) Russell V, Scudder M, Dance I. The crystal supramolecularity of metal phenanthroline complexes[J]. J. Chem. Soc., Dalton Trans.,2001,789-799. (d) McMurtrie J, Dance I. Engineering grids of metal complexes:development of the 2D M(terpy)2 embrace motif in crystals[J]. CrystEngComm,2005,7:216-229. (e) Dance I. Distance criteria for crystal packing analysis of supramolecular motifs[J]. New J. Chem.,2003,27:22-27. (f) Dance I. Inorganic intermolecular motifs, and their energies[J]. CrystEngComm, 2003,5:208-221.
    [33](a) Kim J, Chen B, Reineke T M, Li H, Eddaoudi M, Moler D B, O'Keeffe M, Yaghi, O M. Assembly of Metal-Organic Frameworks from Large Organic and Inorganic Secondary Building Units:New Examples and Simplifying Principles for Complex Structures[J]. J. Am. Chem. Soc.,2001,123:8239-8247. (b) Heo J, Jeon Y -M, Mirkin C A. Reversible Interconversion of Homochiral Triangular Macrocycles and Helical Coordination Polymers[J]. J. Am. Chem. Soc., 2007,129:7712-7713. (c) Roesky H W, Andruh M. The interplay of coordinative, hydrogen bonding and π-π stacking interactions in sustaining supramolecular solid-state architectures. A study case of bis(4-pyridyl)- and bis(4-pyridyl-N-oxide) tectons[J]. Coord. Chem. Rev.,2003,236:91-119. (d) Barnett S A, Chempness N R. Structural diversity of building-blocks in coordination framework synthesis-combining M(NO3)2 junctions and bipyridyl ligands[J]. Coord. Chem. Rev.,2003,246:145-168. (e) Leininger S, Olenyuk B, Stang P J. Self-Assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals[J]. Chem. Rev.,2000,100: 853-908. (f) Li J-R, Yu Q, Sanudo E C, Tao Y, Bu X -H. An azido-CuⅡ-triazolate complex with utp-type topological network, showing spin-canted antiferromagnetism[J]. Chem. Commun.,2007,2602-2604.
    [34]Janiak C. A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands[J]. J. Chem. Soc. Dalton Trans.,2000,3885-3896.
    [35](a) Chavarot M, Menage S, Hamelin O, Charnay F, Pecaut J, Fontecave M. "Chiral-at-Metal" Octahedral Ruthenium(II) Complexes with Achiral Ligands:A New Type of Enantioselective Catalyst[J]. Inorg. Chem.,2003,42:4810-4816. (b) Li M, Sun Q, Bai Y, Duan C, Zhang B, Meng Q. Chiral aggregation and spontaneous resolution of thiosemicarbazone metal complexes[J]. Dalton Trans., 2006,2572-2578. (c) Zuccaccia D, Bellachioma G, Cardaci G, Zuccaccia C, Macchioni A. Aggregation tendency and reactivity toward AgX of cationic half-sandwich ruthenium(II) complexes bearing neutral N,O-ligands[J]. Dalton Trans.,2006, 1963-1971. (d) Covelo B, Carballo R, Vazquez-Lopez E. M, Garcia-Martinez E, Castineiras A, Balboa S, Niclos J. Supramolecular architectures of neutral and cationic complexes of transition metals with lactate and 1,10-phenanthroline[J]. CrystEngComm,2006,8:167-177.
    [36]Zhou C-Y, Zhao J, Wu Y-B, Yin C-X, Yang P. Synthesis, characterization and studies on DNA-binding of a new Cu(II) complex with N1,N8-bis(1-methyl-4-nitropyrrole-2-carbonyl)triethylenetetramine[J]. J. Inorg. Biochem.,2007,101: 10-18.
    [37]SMART (control) and SAINT (integration) software. Bruker Analytical X-ray Systems, Madison, WI,1994. Bruker (2000). SMART (Version 5.0) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
    [38]Sheldrick G M, SADABS, A Program for Absorption Corrections. University of Gottingen, Germany,1996.
    [39]Sheldrick G M, SHELXL97, A Program for the Refinement of Crystal Structures from X-ray Data. University of Gottingen, Germany,1997.
    [40]Klaus B, DIAMOND 1999, Version 1.2c, University of Bonn, Germany.
    [41](a) Steiner, T.; Desiraju, G. R. Distinction between the weak hydrogen bond and the van der Waals interaction[J]. Chem. Commun.,1998,891-892. (b) Desiraju G R. Hydrogen Bridges in Crystal Engineering:Interactions without Borders[J].Acc. Chem. Res.,2002,35:565-573.
    [42]Casas J S, Garcia-Tasende M S, Sordo J. Main group metal complexes of semicarbazones and thiosemicarbazones. A structural review[J]. Coord. Chem. Rev., 2000,209:197-261.
    [43](a) Reger D L, Debreczeni A, Reinecke B, Rassolov V, Smith M D. Highly Organized Structures and Unusual Magnetic Properties of Paddlewheel Copper(II) Carboxylate Dimers Containing the π-π Stacking,1,8-Naphthalimide Synthon[J]. Inorg. Chem.,2009,48:8911-8924. (b) Reger D L, Elgin J D, Semeniuc R F, Pellechia P J, Smith M D. Directional control of π-stacked building blocks for crystal engineering:the 1,8-naphthalimide synthon[J]. Chem. Comm.,2005,4068-4070. (c) Reger D L, Semeniuc R F, Elgin J D, Rassolov V, Smith M D.1,8-Naphthalimide Synthon in Silver Coordination Chemistry:Control of Supramolecular Arrangement[J]. Cryst. Growth Des.,2006,6:2758-2768. (d) Reger D L, Elgin J D, Smith M D, Simpson B K. Structural organization of a {ruthenium[tris(bipyridyl)]}2+ complex by strong π-π stacking of a tethered 1,8-naphthalimide synthon:Impact on electrochemical and spectral properties[J]. Polyhedron,2009,28:1469-1474.
    [44]Falvello L. R, Garde R, Tomas M. Flexible Square Supramolecular Rings with Hydrogen-Bonded Bushing in Solid-State Oxalurate Complexes:Versatility of the Oxalurate Ligand in Covalent and Noncovalent Binding[J]. Inorg. Chem.,2002,41: 4599-4604.
    [45]Bernstein J, Davis R E, Shimoni L, Chang N -L. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals[J]. Angew. Chem. Int. Ed. Engl., 1995,34:1555-1573.
    [46]Zheng Y -Z, Speldrich M, Kogerler P, Chen X-M. The role of π-π stacking in stabilizing a,a-trans-cyclohexane-1,4-dicarboxylate in a 2D Co(Ⅱ) network[J]. CrystEngComm,2010,12:1057-1059.
    [47](a) Bondi A. van der Waals Volumes and Radii[J]. J. Phys. Chem.,1964,68: 441-451. (b) Taylor R, Kennard O. Crystallographic Evidence for the Existence of C-H…O, C-H…N, and C-H-Cl Hydrogen Bonds[J]. J. Am. Chem. Soc.,1982,104: 5063-5070. (c) Rowland R S, Taylor R. Intermolecular Nonbonded Contact Distances in Organic Crystal Structures:Comparison with Distances Expected from van der Waals Radii[J].J. Phys. Chem.,1996,100:7384-7391.
    [48](a) Hu C, Li Q, Englert U. Structural trends in one and two dimensional coordination polymers of cadmium(II) with halide bridges and pyridine-type ligands[J]. CrystEngComm.,2003,5:519-529. (b) Hu C, Englert U. Coordination polymers based on cadmium(Ⅱ) pyridine complexes:synthesis, range of existence, and structure[J]. CrystEngComm.,2002, 4:20-25.
    [49](a) Johnson A L, Willcocks A M, Richards S P. Synthesis and Structures of Group 11 Metal Triazenide Complexes:Ligand Supported Metallophilic Interactions[J]. Inorg. Chem.,2009,48,8613-8622. (b) Pyykko P, Straka M. Ab initio studies of the dimers (HgH2)2 and (HgMe2)2. Metallophilic attraction and the van der Waals radii of mercury[J]. Phys. Chem. Chem. Phys.,2000,2,2489-2493. (c) Pyykko P. Theoretical Chemistry of Gold[J]. Angew. Chem., Int. Ed.,2004,43: 4412-4456. (d) Wen L -L, Dang D -B, Duan C -Y, Li Y -Z, Tian Z -F, Meng Q -J. 1D Helix,2D Brick-Wall and Herringbone, and 3D Interpenetration d10 Metal-Organic Framework Structures Assembled from Pyridine-2,6-dicarboxylic Acid N-Oxide[J]. Inorg. Chem.,2005,44:7161-7170. (e) Wu J -Y, Hsu H -Y, Chan C -C, Wen Y -S, Tsai C, Lu K -L. Formation of Infinite Linear Mercury Metal Chains Assisted by Face-to-Face π-π (Aryl-Aryl) Stacking Interactions[J]. Cryst. Growth Des.,2009,9:258-262.
    [50]Hueso-Urena F, Jimenez-Pulido S B, Moreno-Carretero M N, Quiros-Olozabal M, Salas-Peregrin J M. Synthesis and structural studies on 1:1 metal complexes with 1,3-dimethyllumazine and 1,3,6,7-tetramethyllumazine. Crystal structure of two dichloro copper(Ⅱ) and mercury(Ⅱ) compounds and a polymeric chloro-nitrato bridged-mercury(Ⅱ)complex[J].Polyhedron,1998,17:3409-3418.
    [51]Yesilel 0 Z, Kastas G, Buyukgungor 0. The novel polymeric potassium complex with a new coordination mode of orotic acid [K(μ5-H2Or)(μ-H2O)]n:Synthesis and structural characterization[J]. Inorg. Chem. Commun.,2007,10,936-939.
    [52]Bush M A, Truter M R. Alkali-metal Complexes. Part VI Crystal and Molecular Structure of a Complex formed from lsonitrosoacetophenone and Potassium o-Nitrophenolate[J]. J.Chem. Soc. (A),1971,745-750.
    [53]Shannon R D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides[J]. Acta Cryst.,1976, A32,751-767.
    [54](a) Hu T -L, Zou R -Q, Li J -R, Bu X -H. d10 Metal complexes assembled from isomeric benzenedicarboxylates and 3-(2-pyridyl)pyrazole showing 1D chain structures:syntheses, structures and luminescent properties[J]. Dalton Trans., 2008,1302-1311. (b) Zhang J, Xie Y -R, Ye Q, Xiong R -G, Xue Z -L, You X -Z. Blue to Red Fluorescent Emission Tuning of a Cadmium Coordination Polymer by Conjugated Ligands[J]. Eur. J. Inorg. Chem.,2003,2572-2577. (c) Chen S -S, Fan J, Okamura T, Chen M -S, Su Z, Sun W -Y, Ueyama N. Synthesis, Crystal Structure, and Photoluminescence of a Series of Zinc(Ⅱ) Coordination Polymers with 1,4-Di(1H-imidazol-4-yl)benzene and Varied Carboxylate Ligands[J]. Cryst. Growth Des.,2010,10:812-822.
    [55](a) Fu Z -Y, Wu X -T, Dai J -C, Hu S -M, Du W -X, Zhang H -H, Sun R -Q. The Structure and Fluorescence Properties of Two Novel Mixed-Ligand Supramolecular Frameworks with Different Structural Motifs[J]. Eur. J. Inorg. Chem.,2002,2730-2735. (b) Yang E -C, Zhao H -K, Ding B, Wang X -G, Zhao X-J. Four Novel Three-Dimensional Triazole-Based Zinc(Ⅱ) Metal-Organic Frameworks Controlled by the Spacers of Dicarboxylate Ligands:Hydrothermal Synthesis, Crystal Structure, and Luminescence Properties[J]. Cryst. Growth Des.,2007,7: 2009-2015. (c) Lu J, Zhao K, Fang Q -R, Xu J -Q, Yu J -H, Zhang X, Bie H -Y, Wang T -G. Synthesis and Characterization of Four Novel Supramolecular Compounds Based on Metal Zinc and Cadmium[J]. Cryst. Growth Des.,2005,5:1091-1098.
    [56](a) Dennis A E, Smith R C. "Turn-on" fluorescent sensor for the selective detection of zinc ion by a sterically-encumbered bipyridyl-based receptor[J]. Chem. Commun.,2007,4641-4643. (b) Warner T C, Hawkins W, Facci J, Torrisi R, Trembath T. Substituent effects on the fluorescence properties of aromatic esters of 9-anthroic acid[J]. J. Phys. Chem.,1978,82:298-301. (c) Seward C, Chan J, Song D, Wang S. Anion Dependent Structures of Luminescent Silver(Ⅰ) Complexes[J]. Inorg. Chem.,2003,42:1112-1120.
    [57](a) Zheng S -L, Zhang J -P, Chen X -M, Huang Z -L, Lin Z -Y, Wong W -T. Syntheses, Structures, Photoluminescence, and Theoretical Studies of a Novel Class of d10 Metal Complexes of 1H-[1,10]phenanthrolin-2-one[J]. Chem. Eur. J., 2003,9:3888-3896. (b) Zheng S -L, Chen X -M. Recent Advances in Luminescent Monomeric, Multinuclear, and Polymeric Zn(Ⅱ) and Cd(Ⅱ) Coordination complexes[J]. Aust. J. Chem.,2004,57:703-712. (c) Zheng S -L, Zhang J -P, Wong W -T, Chen X -M. A Novel, Highly Electrical Conducting, Single-Component Molecular Material:[Ag2(ophen)2] (Hophen) 1H-[1,10]phenanthrolin-2-one)[J]. J. Am. Chem. Soc.,2003,125:6882-6883.
    [58](a) Dervan P B, Edelson B S. Recognition of the DNA minor groove by pyrrole-imidazole polyamides[J]. Curr. Opin. Struct. Biol.,2003,13:284-299. (b) Edayathumangalam R S, Weyermann P, Gottesfeld J M, Dervan P B, Luger K. Molecular recognition of the nucleosomal "supergroove"[J]. PNAS,2004, 101(18):6864-6869. (c) Son G Su, Yeo J -A, Kim M -S, Kim S K, Holmen A, Akerman B, Norden B. Binding Mode of Norfloxacin to Calf Thymus DNA[J]. J. Am. Chem. Soc.,1998, 120:6451-6457.
    [59](a) Oleksi A, Blanco A G, Boer R, Uson I, Aymami J, Rodger A, Hannon M J, Coll M. Molecular Recognition of a Three-Way DNA Junction by a Metallosupramolecular Helicate[J].Angew. Chem. Int. Ed.,2006,45:1227-1231. (b) Banerjee S, Mondal S, Chakraborty W, Sen S, Gachhui R, Butcher R J, Slawin A M Z, Mandal C, Mitra S. Syntheses, X-ray crystal structures, DNA binding, oxidative cleavage activities and antimicrobial studies of two Cu(Ⅱ) hydrazone complexes[J]. Polyhedron,2009,28:2785-2793.
    [60](a) Li Y, Yang Z -Y, Wang M -F. Synthesis, characterization, DNA binding properties and antioxidant activity of Ln(Ⅲ) complexes with hesperetin-4-one-(benzoyl) hydrazone [J]. Eur. J. Med. Chem.,2009,44: 4585-4595. (b) Friedman A E, Kumar C V, Turro N J, Barton J K. Luminescence of Ruthenium(II) Polypyridyls:Evidence for Intercalative Binding to Z-DNA[J]. Nucleic Acids Res.,1991,19:2595-2602. (c) Pyle A M, Morri T, Barton J K. Probing microstructures in double-helical DNA with chiral metal complexes:recognition of changes in base-pair propeller twisting in solution[J]. J. Am. Chem. Soc.,1990,112:9432-9434. (d) Barton J K, Goldberg J M, Kumar C V, Turro N J. Binding modes and base specificity of tris(phenanthroline)ruthenium(II) enantiomers with nucleic acids: tuning the stereoselectivity[J]. J. Am. Chem. Soc.,1986,108:2081-2088. (e) Proctor P H, Reynolds E S. Free radicals and disease in man[J]. Physiol. Chem. Phys. Med. NMR,1984,16:175-195.
    [61]Richardson D R, Bernhardt P V. Crystal and molecular structure of 2-hydroxy -1-naphthaldehyde isonicotinoyl hydrazone (NIH) and its iron (Ⅲ) complex:an iron chelator with anti-tumour activity[J]. J. Biol. Inorg. Chem.,1999,4(3):266-273.
    [62](a) Tabner B J, Turnbull S, El-Agnaf O M A, Allsop D. Formation of hydrogen peroxide and hydroxyl radicals from Aβ and a-synuclein as a possible mechanism of cell death in Alzheimer's disease and Parkinson's disease[J]. Free Radical Biol. Med.,2002,32:1076-1083. (b) Krapfenbauer K, Engidawork E, Cairns N, Fountoulakis M, Lubec G. Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders[J]. Brain Res.,2003,967:152-160.
    [63](a) Banerjee S, Ray A, Sen S, Mitra S, Hughes D L, Butcher R J, Batten S R, Turner D R. Pseudohalide-induced structural variations in hydrazone-based metal complexes:Syntheses, electrochemical studies and structural aspects[J]. Inorg. Chim. Acta,2008,361:2692-2700. (b) Banerjee S, Sen S, Basak S, Mitra S, Hughes D L, Desplanches C. Two new pseudohalide-bridged Cu(II) complexes with a hydrazone ligand:Syntheses, crystal structures and magnetic studies[J]. Inorg. Chim. Acta,2008,361: 2707-2714.
    [64](a) Sen S, Talukder P, Rosair G, Mitra S. Two new octahedral Cd(Ⅱ) complexes [Cd(L)2] and {[Cd(LH)2(SCN)2]H2O} [L=C6H5C(OH)NN=C(CH3)C5H4N]: Synthesis and structural studies [J]. Struct. Chem.,2005,16:605-610. (b) Sen S, Mitra S, Hughes D L, Rosair G, Desplanches C. Two new pseudohalide bridged di-and poly-nuclear copper(Ⅱ) complexes:Synthesis, crystal structures and magnetic studies[J]. Polyhedron,2007,26:1740-1744. (c) Banerjee S, Sen S, Mitra S, Rizzoli C, Rosair G M. Synthesis and structural characterization of a novel dinuclear complex compound formed by the aerial oxidation of cobalt(Ⅱ) having an interligand C-C σ-bond[J]. Dalton Trans.,2008, 1783-1786.
    [65](a) Wis Vitolo L M, Hefter G T, Clare B W, Webb J. Iron chelators of the pyridoxal isonicotinoyl hydrazone class Part Ⅱ. Formation constants with iron(Ⅲ) and iron(Ⅱ)[J]. Inorg. Chim. Acta,1990,170:171-176. (b) Dubois J E, Fakhrayan H, Doucet J P, El Hage Chahine J M., Kinetic and thermodynamic study of complex formation between iron(Ⅱ) and pyridoxal isonicotinoylhydrazone and other synthetic chelating agents[J]. Inorg. Chem., 1992,31:853-859.
    [66]Kalinowski D S, Sharpe P C, Bernhardt P V, Richardson D R. Structure-Activity Relationships of Novel Iron Chelators for the Treatment of Iron Overload Disease: The Methyl Pyrazinylketone Isonicotinoyl Hydrazone Series[J]. J. Med. Chem., 2008,51:331-344.
    [67]Han G Y, Yang P. Synthesisand Characterization Water-insoluble and Water-soluble Diblltyltin(IV) PorphyrinateBased On Tris(pridinyl)porphtyrin Miotie and Their Aetivity of anti-Tumor in Vitro and Interaetion With DNA[J]. J. Inorg. Biochem., 2002,91(1):230-236.
    [68]李彦萍.联咪唑类金属配合物的合成、表征及其与DNA作用的研究[M].山西大学2007届博士学位论文,49-57.
    [69]Vahrenkamp H. Why does nature use zinc-a personal view[J]. Dalton Trans.,2007, 4751-4759.
    [70]Emily L Q, Dylan W D, Christopher J C. Metals in Neurobiology:Probing Their Chemistry and Biology with Molecular Imaging[J]. Chem. Rev.,2008,108: 1517-1549.
    [71]Walkup G K, Burdette S C, Lippard S J, Tsien R Y. A New Cell-Permeable Fluorescent Probe for Zn2+[J]. J. Am. Chem. Soc.,2000,122:5644-5645.
    [72]Tang B, Huang H, Xu K, Tong L, Yang G, Liu X, An L. Highly sensitive and selective near-infrared fluorescent probe for zinc and its application to macrophage cells[J]. Chem. Commun.,2006,3609-3611.
    [73]Jiang W, Fu Q, Fan H, Wang W. An NBD fluorophore-based sensitive and selective fluorescent probe for zinc ion[J]. Chem. Commun.,2008,259-261.
    [74]Gale P A. Anion and ion-pair receptor chemistry:highlights from 2000 and 2001 [J]. Coord. Chem. Rev.,2003,240:191-221.
    [75]Komatsu K, Kikuchi K, Kojima H, Urano Y, Nagano T. Selective Zinc Sensor Molecules with Various Affinities for Zn2+, Revealing Dynamics and Regional Distribution of Synaptically Released Zn2+ in Hippocampal Slices[J]. J. Am. Chem. Soc.,2005,127:10197-10204.
    [76]Xue L, Wang H -H, Wang X -J, Jiang H. Modulating Affinities of Di-2-picolylamine (DPA)-Substituted Quinoline Sensors for Zinc Ions by Varying Pendant Ligands[J]. Inorg. Chem.,2008,47:4310-4318.
    [77]Kawabata E, Kikuchi K, Urano Y, Kojima H, Odani A, Nagano T. Design and Synthesis of Zinc-Selective Chelators for Extracellular Applications[J]. J. Am. Chem. Soc.,2005,127:818-819.
    [78]Nolan E M, Ryu J W, Jaworski J, Feazell R P, Sheng M, Lippard S J. Zinspy Sensors with Enhanced Dynamic Range for Imaging Neuronal Cell Zinc Uptake and Mobilization[J]. J. Am. Chem. Soc.,2006,128:15517-15528.
    [79]Gunnlaugsson T, Davis A P, Hussey G M, Glynn M. Design, synthesis and photophysical studies of simple fluorescent anion PET sensors using charge neutral thiourea receptors[J]. Org. Biomol. Chem.,2004,2:1856-1863.
    [80]Cho E J, Moon J W, Ko S W, Lee J Y, Kim S K, Yoon J, Nam K C. A New Fluoride Selective Fluorescent as Well as Chromogenic Chemosensor Containing a Naphthalene Urea Derivative [J]. J. Am. Chem. Soc.,2003,125:12376-12377.
    [81]Hoshiko J A, Wang G, Ziller J W, Yee G T, Heyduk A F. Synthesis, structure and magnetism of a {Mn[NNO]} 10 wheel[J]. Dalton Trans.,2008,5712-5714.
    [82]Murugesu M, Habrych M, Wernsdorfer W, Abboud K A, Christou G. Single- Molecule Magnets:A Mn25 Complex with a Record S=51/2 Spin for a Molecular Species[J]. J. Am. Chem. Soc.,2004,126:4766-4767.
    [83]Stamatatos T C, Abboud K A, Wernsdorfer W, Christou G. "Spin Tweaking" of a High-Spin Molecule:An Mn25 Single-Molecule Magnet with an S=6'/2 Ground State[J]. Angew. Chem., Int. Ed.,2007,46:884-888.
    [84]Gerasimenko A V, Davidovich R L, Bulimestru I G, Gulea A P, Ng S W. Bis(μ-salicylaldehyde semicarbazonato) bis[formatocopper(Ⅱ)][J]. Acta Crystallogr. E61,2005,ml816-ml817.
    [85]Chumakov Yu M, Tsapkov V I, Biyushkin V N, Mazus M D, Samus'N M. Crystal Structure of Salicylidene semicarbazido dimethyl formamido aqua copper(Ⅱ) salicylidene semicarbazidodiaqua copper(Ⅱ) Sulfate Trihydrate[J]. Kristallografiya (Crystallography Reports),1996,41(5):831-836.
    [86]Patole J, Dutta S, Padhye S, Sinn E. Tuning up superoxide dismutase activity of copper complex of salicylaldehyde semicarbazone by heterocyclic bases pyridine and N-methyl imidazole[J]. Inorg. Chim. Acta,2001,318:207-211.
    [87]Wang J -L, Liu B, Yang B -S, Huang S -P. Novel Copper(Ⅱ) Complex with Unusual 7r-Stacking Structure, [Cu(SSC)Cl]2-CH3OH·2H2O (SSC=Salicylaldehyde Semicarbazone Anion)[J]. J. Struct. Chem.,2008,49:570-574.
    [88]Noblia P, Baran E J, Otero L, Draper P, Cerecetto H, Gonzalez M, Piro O E, Castellano E E, Inohara T, Adachi Y, Sakurai H, Gambino D. New Vanadium(V) Complexes with Salicylaldehyde Semicarbazone Derivatives:Synthesis, Characterization, and in vitro Insulin-Mimetic Activity-Crystal Structure of [VⅤO2(salicylaldehyde semicarbazone)][J]. Eur. J. Inorg. Chem.,2004, (2):322-328.
    [89]Rao C N R, Venkataraghavan R, Kasturi T R. Contribution to the infrared spectra of organo sulphur compounds [J]. Canadian J. of Chem.,1964,42:36-42.
    [90]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr. J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao 0, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev 0, Austin A J, Cammi R, Pomelli C, W.Ochterski J, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Laham M A A, Peng C Y, Nanayakkara A, Gonzalez C, Pople J A, Gaussian 03, Gaussian Inc., Pittsburgh, PA, 2003.
    [91](a)Aullon G, Bellamy D, Brammer L, Bruton E A, Orpen A G. Metal-bound chlorine often accepts hydrogen bonds[J]. Chem. Commun.,1998,653-654. (b) Brammer L, Bruton E A, Sherwood P. Understanding the Behavior of Halogens as Hydrogen Bond Acceptors[J]. Cryst. Growth Des.,2001,1(4):277-290.
    [92]Vishweshwar P, Nangia A, Lynch V M. Cooperative assistance in a very short O-H…O hydrogen bond. Low-temperature X-ray crystal structures of 2,3,5,6-pyrazinetetracarboxylic and related acids[J]. Chem. Commun.,2001,179-180.
    [93]Lu Y -H, Lu Y -W, Wu C -L, Shao Q, Chen X -L, Bimbong R N B. UV-visible spectroscopic study of the salicyladehyde benzoylhydrazone and its cobalt complexes[J]. Spectrochim. Acta A,2006,65:695-701.
    [94]Ranford J D, Vittal J J, Wang Y M. Dicopper(Ⅱ) Complexes of the Antitumor Analogues Acylbis(salicylaldehyde hydrazones) and Crystal Structures of Monomeric [Cu2(1,3-propanedioyl bis(salicylaldehyde hydrazone)) (H2O)2]·(ClO4)2·3H2O and Polymeric [{Cu2(1,6-hexanedioyl bis(salicylaldehyde hydrazone)) (C2H5OH)2}m]·(C104)2m·m(C2H5OH)[J]. Inorg. Chem.,1998,37: 1226-1231.
    [95]Wang Z, Yang B. UV and fluorescence spectral changes induced by neodymium binding of N,N'-ethylenebis[2-(o-hydroxyphenolic)glycine] and N,N'-di(2-hydroxybenzyl)ethylenediamine-N,N'diacetic acid[J], Spectrochim. Acta A,2006,65: 946-949.
    [96]Duan L, Zhao Y-Q, Yang B-S. Spectral studies on the interaction of yttrium ion with the ligands of phenolic groups:N,N'-Ethylenebis[2-(o-hydroxyphenolic)glycine] and N,N'-di(2-hydroxybenzyl) ethylenediamine-N,N'-diacetic acid[J]. Spectrochim. Acta A,2007,68:165-168.
    [97]de Silva A P, Gunaratne H Q N, Gunnlaugsson T, Huxley A J, McCoy C P, Rademacher J T, Rice T E. Signaling Recognition Events with Fluorescent Sensors and Switches[J]. Chem. Rev.,1997,97:1515-1566.
    [98]Holliday B J, Mirkin C A. Strategies for the Construction of Supramolecular Compounds through Coordination Chemistry[J]. Angew. Chem. Int. Ed.,2001, 40(11):2022-2043.
    [99]Whitesides G M, Mathias J P, Seto C T. Molecular Self-Assembly and Nanochemistry:A Chemical Strategy for the Synthesis of Nanostructures[J]. Science, 1991,254:1312-1319.
    [100]Whitesides G M, Grzybowski B. Self-Assembly at All Scales[J]. Science,2002,295: 2418-2421.
    [101]William H. Brown. Organic Chemistry[M]. Saunders College Publishing,1995: 946.
    [102]陈小明,蔡继文.单晶结构分析[M].北京:科学技术出版社,2003:114-115.
    [103]鲍林L.化学键的本质[美][M].卢嘉锡,黄耀曾,曾广植,陈元桂等译校,上海科学技术出版社,1966:246-251.
    [104](a) Boyer J H, Borgers R, Wolford L T. The Azomethine Linkage of Pyridine in Ring-closure Isomerizations[J]. J. Am. Chem. Soc.,1957,79:678-680. (b) Niel V, Gaspar A B, Munoz M C, Abarca B, Ballesteros R, Real J A. Spin Crossover Behavior in the Iron(Ⅱ)-2-pyridyl[1,2,3]triazolo[1,5-α]pyridine System:X-ray Structure, Calorimetric, Magnetic, and Photomagnetic Studies[J]. Inorg. Chem., 2003,42:4782-4788. (c) Battaglia L P, Carcelli M, Ferraro F, Mavilla L, Pelizzi C, Pelizzi G. A convenient method for the preparation of 3-(2-pyridyl)triazolo[1,5-α] pyridine (L). Crystal structures of L and [CuL2(OH2)2][NO3]2[J]. J. Chem. Soc. Dalton Trans.,1994, 2651-2654. (d) Xiang J, Yin Y-G, Mei P. Cu(Ⅱ)-assisted oxidation of quinoline-2-carbaldehyde hydrazone to give [1,2,3]triazolo[1,5-α]quinoline:The first example of Cu(Ⅰ) complex containing [1,2,3]triazolo-ligand[J]. Inorg. Chem. Commu.,2007,10: 1168-1171.
    [105](a) Larabi L, Harek Y, Reguig A, Mostaf M M. Synthesis, structural study and electrochemical properties of copper(Ⅱ) complexes derived from benzene- and p-toluenesulphonylhydrazones[J]. J. Serb. Chem. Soc.,2003,68(2):85-95. (b) Reguig A, Mostafa M M, Larabi L, Harek Y. Nickel(Ⅱ) Complexes with Sulphonylhydrazone Derivatives:Spectroscopic and Electrochemical Studies[J]. J. Appl. Sci.,2008,8(18):3191-3198.
    [106](a) Katayev E A, Ustynyuk Y A, Sessler J L. Receptors for tetrahedral oxyanions[J]. Coord. Chem. Rev.,2006,250:3004-3047. (b) Schmidtchen F P. Reflections on the construction of anion receptors:Is there a sign to resign from design?[J]. Coord. Chem. Rev.,2006,250:2918-2928. (c) Gale P A. Structural and Molecular Recognition Studies with Acyclic Anion Receptors[J].Acc. Chem. Res.,2006,39:465-475. (d) Yoon J, Kim S K, Singh N J, Kim K S. Imidazolium receptors for the recognition of anions[J]. Chem. Soc. Rev.,2006,35:355-360. (e) Bowman-James K. Alfred Werner Revisited:The Coordination Chemistry of Anions[J]. Acc. Chem. Res.,2005,38:671-678. (f) Beer P D, Hayes E J. Transition metal and organometallic anion complexation agents[J]. Coord. Chem. Rev.,2003,240,167-189. (g) Sessler J L, Camiolo S, Gale P A. Pyrrolic and polypyrrolic anion binding agents[J]. Coord. Chem. Rev.,2003,240,17-55. (h) Martinez-Manez R, Sancenon F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions[J]. Chem. Rev.,2003,103,4419-4476. (i) Sun S -S, Lees A J. Transition metal based supramolecular systems:synthesis, photophysics, photochemistry and their potential applications as luminescent anion chemosensors[J]. Coord. Chem. Rev.,2002,230:171-192.
    [107]Moon K S, Singh N, Lee G W, Jang D O. Colorimetric anion chemosensor based on 2-aminobenzimidazole:naked-eye detection of biologically important anions[J]. Tetrahedron,2007,63:9106-9111.
    [108]魏太保,王军,张有明.人工合成受体的阴离子识别研究(Ⅳ)[J].无机化学学报2006,22(12):2212-2216.
    [109]Jian F -F, Zhu C -Y, Xiao H -L, Xu L -Z. Synthesis and Structure Characterization of Metal-organic Frameworks with a Triple Iron Helical Complex[J]. Z. Anorg. Allg. Chem.,2005,61:769-772.
    [110]武汉大学化学系.仪器分析[M].北京:高等教育出版社,2000:118-132.
    [111]Dean J A. Lange's Handbook of Chemistry[M].15th Ed., McGraw-Hill Book Co., 1999:4.39.
    [112]Dal H, Suzen Y, Sahin E. Synthesis, spectral studies of salicylidine-pyridines: Crystal and molecular structure of 2-[(1E)-2-aza-2-(5-methyl (2-pyridyl)ethenyl)]-4-bromobenzen-l-ol[J]. Spectrochim. Acta A,2007,67:808-814.
    [113]Sreerama S G, Pal S. Dinuclear Triple Helicates with Diazine Ligands:X-ray Structural, Electrochemical, and Magnetic Studies[J]. Inorg. Chem.,2005,44: 6299-6307.
    [114]Jancso A, Paksi Z, Mikkola S, Rockenbauer A, Gajda T. Iron(Ⅲ)- and copper(Ⅱ) complexes of an asymmetric, pentadentate salen-like ligand bearing a pendant carboxylate group[J]. J. Inorg. Biochem.,2005,99:1480-1489.
    [115]Dunitz J D, Gavezzotti A. Attractions and Repulsions in Molecular Crystals:What Can Be Learned from the Crystal Structures of Condensed Ring Aromatic Hydrocarbons?[J]. Acc. Chem. Res.,1999,32:677-684.
    [116]Dreuw A, Plotner J, Lorenz L, et al. Molecular Mechanism of the Solid-State Fluorescence Behavior of the Organic Pigment Yellow 101 and Its Derivatives[J]. Angew. Chem. Int. Ed.,2005,44:7783-7786.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700