DNA遗传算法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遗传算法是模拟生物进化过程的一类随机性全局优化算法,广泛应用于化工过程的建模与优化中。然而遗传算法的局部搜索能力较弱、易早熟收敛,而且常用的二进制编码方法不能表达丰富的遗传信息,因此在其计算模型中没有反映出遗传信息对生物体的调控作用,尤其是起关键作用的DNA编码机制的调控作用。近年来,随着DNA计算的发展,人们发现基于DNA的智能系统能反映生物体的遗传信息,有利于发展功能更强大、能解决更复杂问题的智能方法。
     受DNA生物特性的启发,本文对DNA遗传算法及应用进行了深入的研究,主要研究工作如下:
     (1)受DNA分子操作启发,提出了多种新型交叉算子。利用Markov链模型分析讨论了具有新型交叉算子的DNA遗传算法的收敛性。测试函数计算结果表明所提新型交叉算子可以有效改善种群多样性,减少了寻优代数。将该算法用于催化裂化主分馏塔的参数估计问题中,实验结果表明所建立的模型反映了复杂系统的动态性能。
     (2)受DNA和遗传信息表达过程的启发,基于碱基编码方式,提出了多种新型变异算子。利用Markov链模型分析了具有新型变异算子的DNA遗传算法的收敛性。测试函数计算结果表明所提新型变异算子可以显著提高DNA遗传算法的收敛速度,增强算法克服问题欺骗的能力。将该算法用于渣油加氢过程的参数估计问题中,比较结果表明了该算法的有效性。
     (3)将所提出的新型交叉和变异算子在DNA遗传算法中配合使用。测试函数的检验结果表明配合使用新型操作算子可以进一步提高算法性能。使用具有新型交叉算子和变异算子的DNA遗传算法对重油热解过程建模,仿真实验结果表明了所建模型的误差小。
     (4)针对具有不等式约束的非线性规划问题,提出了一种混合DNA遗传算法。该算法将DNA遗传算法的全局搜索能力和SQP算法的局部搜索能力相结合。测试函数比较结果证明了该混合算法的有效性。利用该混合算法优化汽油调合问题的配方,结果表明该混合算法可以实现调合产品的质量指标卡边控制,增加生产利润。
     (5)提出了一种双链DNA遗传算法的广义回归神经网络建模方法,用来解决非线性系统建模问题。使用该方法对一个非线性系统进行建模,仿真结果表明所提方法的建模精度优于其它神经网络方法,并将该建模方法用于延迟焦化过程的建模,仿真结果表明所建模型精度高,其误差标准差和AIC指标较小
     (6)针对复杂非线性系统,提出了一种混沌DNA遗传算法的T-S模糊递归神经网络建模方法。在碱基编码和新型操作算子的基础上,混沌DNA遗传算法通过对劣质个体进行混沌细搜索,来提高个体品质。将该方法用于pH中和过程建模,仿真实验和比较结果表明所建立的模型的拟合精度高。
     (7)针对多目标优化问题,提出了一种多目标DNA遗传算法。测试函数的仿真研究表明,该算法可以更好的逼近Pareto前沿,解的分布更均匀,搜索速度更快。将该算法用于设计基于T-S模糊递归神经网络的广义预测控制器,对一个pH中和过程进行控制,仿真实验结果表明所建模型的精度更高,控制效果更好。
A genetic algorithm (GA) is a stochastic global optimization technique which simulates natural evolution process, and it has been widely employed in the modeling and optimization problems of chemical engineering processes. But GA has weak local searching ability and tends to premature. Furthermore, the binary encoding method cannot represent the abundant genetic information and reflect the organism control function of genetic information in its computing model, especially the function of the DNA encoding method. Recently, with the development of DNA computing, researchers find that the intelligent systems based on DNA can reflect the genetic information of organism and develop more powerful intelligent methods to solve complex optimization problems.
     Inspired by the biological characteristics of DNA, DNA genetic algorithms (DNA-GA) and their applications are studied in this dissertation. The main contents are as follows.
     (1) Inspired by DNA molecular operations, several novel crossover operators are proposed. The convergence of the DNA genetic algorithm with the crossover operators is analyzed in terms of Markov chain model, and the results of the test experiments show that the algorithm can effectively maintain the diversity of the population and reduce the required evolution generations. Then, the algorithm is used to estimate the parameters of a fluid catalytic cracking unit model, and the solution of typical test functions show the model can reflect the dynamic property of the complex process.
     (2) Inspired by DNA and the expression of genetic information, some novel mutation operators are desigened based on the nucleotide bases encoding method. The convergence of the DNA genetic algorithm with the mutation operators is analyzed in terms of Markov chain model. The results with some typical test functions show the proposed operators can largely increase the comvergence speed of the DNA genetic algorithm, and improve the capability of overcoming the fraudulence. The algorithm is applied to model a hydrogenation reaction, and the results illustrate the effectiveness of the algorithm.
     (3) Both the novel crossover and mutation operators are adopted in the DNA genetic algorithm. The results of several test functions show that with the help of a proper combination of two kinds of operators, the performance of the DNA genetic algorithm can be improved. This algorithm is applied in the parameter estimation of the heavy oil thermal cracking model, and the results show that a smaller modeling error is reached.
     (4) A hybrid DNA genetic algorithm is presented for the nonlinear optimization problems with inequality constraints. The hybrid algorithm integrates the global searching ability of DNA genetic algorithm and the local searching ability of SQP. The comparison with typical test functions shows the effectiveness of the proposed hybrid algorithm. The optimal solution for the gasoline-blending scheduling problem gained through the hybrid algorithm shows that the higher profit and the product quality constraints are achieved.
     (5) A double-chain DNA genetic algorithm (dcDNA-GA) based general regression neural network (GRNN) method is proposed for nonlinear systems. In this method, GRNN optimized by dcDNA-GA is used to the modeling of a delayed coking process. The comparison and simulation results show that the smaller error and AIC indicators are gained.
     (6) A Chaos DNA genetic algorithm (CDNA-GA) based T-S fuzzy recurrent neural network method for complex nonlinear systems is suggested. In this method, the T-S neural network optimized by the CDNA-GA is used to the modeling of a pH neutralization process. The comparision and simulation results show the feasibility and advantage of this method.
     (7) A DNA multiobjective genetic algorithm is proposed for multi-objective optimization problems. The results of typical test functions show that the proposed algorithm can converge nearer to the Pareto front, and the spread and the precision of the solution are both improved. This algorithm is used to design a generalized predictive controller for a pH neutralization process, and the simulation results show the higher precision and better performance is obtained.
引文
[1]王正志,薄涛.进化计算[M].长沙:国防科技大学出版社,2000:1-25.
    [2]HOLLAND JH. Adaptation in natural and artificial systems[M]. Ann Arbor: University of Michigan Press, MI,1975.
    [3]DE JONG KA. An analysis of the behavior of a class of Genetic adaptive systems[D], Ann Arbor:University of Michigan,1975.
    [4]GOLDBERG DE. Genetic algorithms in Search, Optimization and Machine Learning[M]. Boston:Addison Wesley Longman Publishing Co.,1989.
    [5]DAVIS L. Handbook of Genetic Algorithms[M]. New York:Van Nostrand Reinhold,1991:1-6.
    [6]MICHALEWICZ Z. Genetic Algorithms+Data structures=Evolution Programs [M]. New York:Springer-Verlag,1996.
    [7]张顶学.遗传算法与粒子群算法的改进及应用[D].武汉:华中科技大学博士论文,2007:4-5.
    [8]GOLDBERG DE, DEB K. A comparative analysis of selection schemes used in genetic algorithms[M]//Foundations of Genetic Algorithms, San Mateo, CA: Morgan Kaufmann,1991:69-93.
    [9]POTTS JC. The development and evaluation of an improved genetic algorithm based on migration and artificial selection[J]. IEEE Tran on SMC,1994,24(1): 73-76.
    [10]BACK T. Evolutionary algorithms in theory and practice[M]. New York:Oxford University Press,1996.
    [11]陶吉利.基于DNA计算的遗传算法及应用研究[D].杭州:浙江大学博士论文,2007.
    [12]TING C, SU C, LEE C. Multi-parent extension of partially mapped crossover for combinatorial optimization problems[J]. Expert Systems with Applications, 2010,37(3):1879-1886.
    [13]GARCIA-MARTINEZ C, LOZANO M, HERRERA F, MOLINA D, SANCHEZ AM. Global and local real-coded genetic algorithms based on parent-centric crossover operators[J]. European Journal of Operational Research, 2008,185(3):1088-1113.
    [14]LU H, FANG W. Joint transmit/receive antenna selection in MIMO systems based on the priority-based genetic algorithm[J]. Antennas and Wireless Propagation Letters, IEEE,2007,6:588-591.
    [15]TOHKA J, KRESTYANNIKOV E, DINOV ID, GRAHAM AM, SHATTUCK DW, RUOTSALAINEN U, TOGA AW. Genetic algorithms for finite mixture model based voxel classification in neuroimaging[J]. IEEE Transactions on Medical Imaging,2007,26(5):696-711.
    [16]DEEP K, THAKUR M. A new crossover operator for real coded genetic algorithms[J]. Applied Mathematics and Computation,2007,188(1):895-911.
    [17]DEEP K, THAKUR M. A new mutation operator for real coded genetic algorithms[J]. Applied Mathematics and Computation,2007,193(1):211-230.
    [18]ZHANG Q, SUN J, TSANG E. An evolutionary algorithm with guided mutation for the maximum clique problem[J]. IEEE Transactions on Evolutionary Computation,2005,9(2):192-200.
    [19]COELHO LS, MARIANI VC. Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect[J]. IEEE Transactions on Power Systems,2006,21(2):989-996.
    [20]NIE R, YUE J, DENG S, LIU Y. Wave impedance inversion in coalfield based on immune genetic algorithm[J]. Procedia Earth and Planetary Science,2009, 1(1):929-935.
    [21]李宏.求解几类复杂优化问题的进化算法及其应用[D].西安:西安电子科技大学博士论文,2009:4-6.
    [22]VENKATRAMAN S, YEN GG. A generic framework for constrained optimization using genetic algorithms[J]. IEEE Transaction on Evolutionary Computation,2005,9(4):424-435.
    [23]CHOOTINAN P, CHEN A. Constraint handling in genetic algorithms using a gradient-based repair method[J]. Computers & Operations Research,2006, 33(8):2263-2281.
    [24]WANG Y, CAI Z, GUO G, ZHOU Y. Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems[J]. IEEE Transaction on Systems, Man, and Cybernetics-Part B:Cybernetics,2007,37(3): 560-575.
    [25]张敏.约束优化和多目标优化的进化算法研究[D].合肥:中国科学技术大学博士论文,2008:9-12.
    [26]崔逊学.多目标进化算法及其应用[M].北京:国防工业出版社,2006.
    [27]SCHAFFER JD. Multiple objective optimization with vector evaluated genetic algorithms[C]//Proceedings of an International Conference on Genetic Algorithms and Their Applications. Hillsdale:L. Erlbaum Associates, Inc.,1985: 93-100.
    [28]COELLO COELLO CA. Recent trends in evolutionary multi-objective optimization[C]//ABRAHAM A, JAIN L C, GOLDBERG R. Evolutionary Multi-Objective Optimization:Theoretical Advanees and Applications. Berlin: Springer-Verlag,2005:7-32.
    [29]COELLO COELLO CA. Evolutionary multi-objective optimization:A historical review of the field[J]. IEEE Computational Intelligence Magazine, 2006,1(1):28-36.
    [30]FONSECA CM, FLEMING PJ. Genetic Algorithms for Multiobjective Optimization, Formulation, discussion and generalization[C]//Proc.5th Int. Conf. Genetic Algorithms. San Mateo:Morgan Kauffman Publishers,1993,416-423.
    [31]SRINIVAS N, DEB K. Multiobjective optimization using non-dominated sorting in genetic algorithms[J]. Evolutionaly Computation,199,2(3):221-248.
    [32]HORN J, NAFPLIOTIS N, GOLDBERG DE. A niched Pareto genetic algorithm for multiobjective optimization[C]//FOGARTY TC. Proceeding of the 1st IEEE Congress on Evolutionary Computation. Piscataway:IEEE,1994: 82-87.
    [33]ZITZLER E, THIELE L. Mult-Objective evolutionary algorithms:A comparative case study and the strength Pareto approach[J]. IEEE Transaction on Evolutionary Computation,1999,3(4):257-271.
    [34]ZITZLER E, LAUMANNS M, THIELE L. SPEA2:Improving the strength Pareto evolutionary algorithm[C]//GIANNAKOGLOU K, TSAHALIS DT, PERIAUX J, PAPAILIOU KD, FOGARTY T. Evolutionary Methods for Design, Ootimization and Control with Applications to industrial Problems. Berlin: Springer-Verlag,2002:95-100.
    [35]KNOWLES JD, CORNE DW. Approximating the non-dominated front using the Pareto archived evolution strategy[J]. Evolutionary Computation,2000,8(2): 149-172.
    [36]CORNE DW, KNOWLES JD, OATES MJ. The Pareto Envelope-based Selection algorithm for multi-objective optimization [C]//SCHOENAUER M et al. Parallel Problem Solving from Nature. Berlin:Springer-Verlag, 2000:869-878.
    [37]CORNE DW, JERRAM NR, KNOWLES JD. Oates MJ, PESA-II: Region-Based selection in evolutionary multi-objective optimization[C]// SPECTOR L. GOODMAN ED, et al. Proceeding of the Genetic and Evolutionary Computation Conference. SanFrancisco:Morgan Kaufmann Publishers,2001:283-290.
    [38]ERICKSON M, MAYER A, HORN J. The niched pareto genetic algorithm2 applied to the design of groundwater remediation system[C]//ZITZLER E, DEB K, et al. Proceeding of the 1st Int'1 Conf. on Evolutionary Multi-Criterion Optimization. Berlin:Springer-Veriag,2001:681-695.
    [39]DEB K, PRATAP A, AGRAWAL S, et al. A fast and elitist multi-objective genetic algorithm:NSGA-II[J]. IEEE Transaction on Evolutionary Computation, 2002,6(2):182-197.
    [40]TUONG Q, HYOUNG S, BYUNG R. Propulsive velocity optimization of 3-joint fish robot using genetic-hill climbing algorithm[J]. Journal of Bionic Engineering,2009,6(4):415-429.
    [41]杨永刚,赵杰,刘玉斌,朱延河.6-PRRS并联机器人正运动学求解[J].吉林大学学报(工学版),2008,38(3):731-734.
    [42]BEHRANG M, NAVID M, FARHANG J. A hybrid GA-SQP optimization technique for determination of kinetic parameters of hydrogenation reactions[J]. Computers & Chemical Engineering,2008,32(7):1447-1455.
    [43]LUO X, WEN Q, FIEG G A hybrid genetic algorithm for synthesis of heat exchanger networks[J]. Computers & Chemical Engineering,2009,33(6): 1169-1181.
    [44]CHEN H, FLANN NS, WATSON DW. Parallel genetic simulated annealing:a massively parallel SIMD algorithm[J]. IEEE Transactions on Parallel and Distributed Systems,1998,9(2):126-136.
    [45]WANG D, FUNG R, IP WH. An immune-genetic algorithm for introduction planning of new products[J]. Computers & Industrial Engineering,2009,56(3): 902-917.
    [46]CHEN T, HSIEH Y. Using immune-based genetic algorithms for single trader's periodic marketing problem[J]. Mathematical and Computer Modeling,2008, 48(3-4):420-428.
    [47]马昕,宋锐,郭睿,李贻斌.基于免疫自适应遗传算法的机器人栅格地图融合[J].控制理论与应用,2009,26(9):1004-1008.
    [48]KAO Y, ZAHARA E. A hybrid genetic algorithm and particle swarm optimization for multimodal functions[J]. Applied Soft Computing,2008,8(2): 849-857.
    [49]YAN X, CHEN D, HU S. Chaos-genetic algorithms for optimizing the operating conditions based on RBF-PLS model[J]. Computers & Chemical Engineering, 2003,27(10):1393-1404.
    [50]LI B, WANG L. A hybrid quantum-inspired genetic Algorithm for multiobjective flow shop scheduling[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2007,37(3):576-591.
    [51]任立红,丁永生,邵世煌.采用DNA遗传算法优化设计的TS模糊控制系统[J].控制与决策,2001,16(1):16-24.
    [52]朱玉贤,李毅,郑晓.现代分子生物学[M].北京:高等教育出版社,2007:66-67.
    [53]赵亚华.分子生物学教程[M].北京:科学出版社,2004.
    [54]WATSON JD, CRICK FHC. A structure for deoxyribose nucleic acid[J]. Nature, 1953,171(3):737-738.
    [55]ADLEMAN L. Molecular computation of solution to combinatorial problems[J]. Science,1994,266(11):1021-1024.
    [56]刘西奎.DNA计算和遗传算法的编码与几个优化模型的研究[D].武汉:华中科技大学博士论文,2003:4-5.
    [57]陈智华.基于DNA计算自组装模型的若干密码问题研究[D].武汉:华中科技大学博士论文,2009:1-2.
    [58]LIPTON R. DNA solution of hard computation problems[J]. Science,1995, 268(4):542-545.
    [59]ROWEIS S, WINFREE E, BURGOYNE R, et al. A sticker-based model for DNA computation[J]. Journal of Computational Biology,1998,5(4):615-629.
    [60]OUYANG Q, KAPLAN PD, LIU S, LIBCHABER A. DNA solution of the maximal clique problem[J]. Science,1997,278(17):446-449.
    [61]LIU QH, WANG LM, ANTHONY G, et al. DNA computing on surfaces[J]. Nature,2000,403:175-179.
    [62]LIU QH, FRUTOS AG, WANG L, et al. Progress toward demonstration of a surface based DNA computation:A one word approach to solve a model satisfiability problem[J]. Biosystems,1999,52(1-3):25-33.
    [63]WU HY. An improved surface-based method for DNA computation[J]. Biosystems,2001,59(1):1-5.
    [64]刘勇.基于DNA-GA的最早截止期限优先调度算法优化[D].太原:太原理工大学硕士论文,2007:45-46.
    [65]丁永生,任立红,邵世煌.DNA计算与软计算[M].北京:科学出版社,2002.
    [66]李怀远.基于分子计算的图像智能恢复技术研究[D].银川:北方民族大学硕士论文,2008:26-40.
    [67]崔志华,曾建潮.利用多群体DNA遗传算法求解线性规划问题[J].系统工程与电子技术,2002,24(3):104-107.
    [68]黄明,宫旭德,梁旭.改进的DNA免疫遗传算法在车间调度中的应用[J].化工自动化及仪表,2009,36(2):14-18.
    [69]王淑超,王乘.改进DNA遗传算法求解非线性多约束规划研究[J].华中科技大学学报(自然科学版),2004,(32)6:39-6.
    [70]TAO JL, WANG N. DNA computing based RNA genetic algorithm with applications in parameter estimation of chemical engineering processes[J]. Computers & Chemical Engineering,2007,31(12):1602-1618.
    [71]许光泞,俞金寿.自适应DNA免疫算法在化工软测量中的应用[J].华东理工大学学报(自然科学版),2009,35(1):139-143.
    [72]张振翮.基于DNA计算和遗传算法的多用户检测技术研究[D],成都:电子科技大学硕士论文,2008:27-75.
    [73]翁妙凤.采用DNA进化算法优化设计TS模糊控制器[J].计算机科学,2003,30(12):141-143.
    [74]伍铁斌.PID控制器参数智能整定方法[D].长沙:湖南科技大学硕士论文,2007:37-41.
    [75]余文,李人厚.一种有效的双向进化算法[J].小型微型计算机系统,2003,24(3):527-30.
    [76]张海刚,顾幸生.基于DNA进化算法的车辆调度问题[J].华东理工大学学报(自然科学版),2006,32(12):1463-1468.
    [77]CHEANG S, LEE K, LEUNG K. Applying genetic parallel programming to synthesize combinational logic circuits[J]. IEEE Transactions on Evolutionary Computation,2007,11(4):503-520.
    [78]LAM HK, LEUNG F. Design and training for combinational neural-logic systems[J]. IEEE Transactions on Industrial Electronics,2007,54(1):612-619.
    [79]ELLIOTT RC, KRZYMIEN WA. Downlink scheduling via genetic algorithms for multiuser single-carrier and multicarrier MIMO systems with dirty paper coding[J]. IEEE Transactions on Vehicular Technology,2009,58(7):3247-3262.
    [80]CARRANO EG, CARDOSO RTN, TAKAHASHI RHC, FONSECA CM, NETO OM. Power distribution network expansion scheduling using dynamic programming genetic algorithm[J]. Generation, Transmission & Distribution, IET,2008,2(3):444-455.
    [81]CAMCI F. System maintenance scheduling with prognostics information using genetic algorithm [J]. IEEE Transactions on Reliability,2009,58(3):539-552.
    [82]LEE K, KASAT R. Simulated moving bed multiobjective optimization using standing wave design and genetic algorithm[J]. AICHE Journal,2008,54(11): 2852-2871.
    [83]BABU K, KUMAR M, KAISTHA N. Controllable optimized designs of an ideal reactive distillation system using genetic algorithm[J]. Chemical Engineering Science,2009,64(23):4929-4942.
    [84]AWAD M, CHEHDI K, NASRI A. Multi-component image segmentation using a hybrid dynamic genetic algorithm and fuzzy C-means[J]. Image Processing, IET,2009,3(2):52-62.
    [85]HONG J, CHO S, CHO U. A novel evolutionary approach to image enhancement filter design:method and applications[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2009,39(6):1446-1457.
    [86]ZACHARIA E, MAROULIS D. An original genetic approach to the fully automatic gridding of microarray images[J]. IEEE Transactions on Medical Imaging,2008,27(6):805-813.
    [87]RIZZI A, MASCIOLI FMF, BALDINI F, MAZZETTI C, Bartnikas R. Genetic optimization of a PD diagnostic system for cable accessories[J]. IEEE Transactions on Power Delivery,2009,24(3):1728-1738.
    [88]ESPEJO PG, VENTURA S, HERRERA F. A survey on the Aapplication of genetic programming to classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,2010,40 (2):121-144.
    [89]PASOLLI E, MELGANI F, DONELLI M. Gaussian process approach to buried object size estimation in GPR images[J]. Geoscience and Remote Sensing Letters, IEEE,2010,7 (1):141-145.
    [90]ZHANG Y, CONG M, GUO D, WANG D. Design optimization of a bidirectional microswimming robot using giant magnetostrictive thin films[J]. IEEE Transactions on Mechatronics,2009,14(4):493-503.
    [91]ZHAN Y, LEUNG H, KWAK K, YOON H. Automated speaker recognition for home service robots using genetic algorithm and dempster-shafer fusion technique[J]. IEEE Transactions on Instrumentation and Measurement,2009, 58(9):3058-3068.
    [92]AHN K, ANH HP. Inverse double NARX fuzzy modeling for system identification[J]. IEEE Transactions on Mechatronics,2010,15(1):136-148.
    [93]TAN Y, HE Y, CUI C, QIU G. A novel method for analog fault diagnosis based on neural networks and genetic algorithms[J]. IEEE Transactions on Instrumentation and Measurement,2008,57(11):2631-2639.
    [94]PAN C, CHEN W, YUN Y. Fault diagnostic method of power transformers based on hybrid genetic algorithm evolving wavelet neural network[J]. Electric Power Applications, IET,2008,2(1):71-76.
    [95]BENYAHIA B, LATIFI MA, FONTEIX C, PLA F, NACEF S. Emulsion copolymerization of styrene and butyl acrylate in the presence of a chain transfer agent:Part 1:Modelling and experimentation of batch and fedbatch processes[J]. Chemical Engineering Science,2010,65(2):850-869.
    [96]LEE S, HEBER A. Ethylene removal using biotrickling filters:part Ⅱ. Parameter estimation and mathematical simulation[J]. Chemical Engineering Journal,2010,158(2):89-99.
    [97]PARK S, BHARGAVA S, CHASE G. Fitting of kinetic parameters of NO reduction by CO in fibrous media using a genetic algorithm[J]. Computers & Chemical Engineering,2010,34(4):485-490.
    [98]MAJDALANI S, FAHS M, CARRAYROU J, ACKERER P. Reactive transport parameter estimation:Genetic Algorithm vs. Monte Carlo Approach[J]. AICHE Journal,2009,55(8):1959-1968.
    [99]NASSEH S, MOHEBBI A, SARRAFI A, TAHERI M. Estimation of pressure drop in venturi scrubbers based on annular two-phase flow model, artificial neural networks and genetic algorithm[J]. Chemical Engineering Journal,2009, 150(1):131-138.
    [100]FILHO A, FILHO R. Hybrid training approach for artificial neural networks using genetic algorithms for rate of reaction estimation:Application to industrial methanol oxidation to formaldehyde on silver catalyst[J]. Chemical Engineering Journal,2010,157(2-3):501-508.
    [101]PARK B, PEDRYCZ W, OH S. A design of genetically oriented fuzzy relation neural networks (FrNNs) based on the fuzzy polynomial inference scheme[J]. IEEE Transactions on Fuzzy Systems,2009,17(6):1310-1323.
    [102]RAJENDRA M, JENA P, RAHEMAN H. Prediction of optimized pretreatment process parameters for biodiesel production using ANN and GA[J]. Fuel,2009, 88(5):868-875.
    [103]MIRZAZADEH T, SOLTANIEH F, MOHAMMADI M, JOUDAKI E. Optimization of caustic current efficiency in a zero-gap advanced chlor-alkali cell with application of genetic algorithm assisted by artificial neural networks [J]. Chemical Engineering Journal,2008,140(1-3):157-164.
    [104]JUANG J, HUANG M, LIU W. PID Control using presearched genetic algorithms for a MIMO system[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,2008,38(5):716-727.
    [105]ALTINTEN A, KETEVANLIOGLU F, ERDOGAN S, HAPOGLU H, ALPBAZ M. Self-tuning PID control of jacketed batch polystyrene reactor using genetic algorithm[J]. Chemical Engineering Journal,2008,138(1-3):490-497.
    [106]DEVARAJ D, SELVABALA B. Real-coded genetic algorithm and fuzzy logic approach for real-time tuning of proportional-integral-derivative controller in automatic voltage regulator system[J]. Generation, Transmission & Distribution, IET,2009,3(7):641-649.
    [107]HO W, TSAI J, CHOU J. Robust quadratic-optimal control of TS-fuzzy-model-based dynamic systems with both elemental parametric uncertainties and norm-bounded approximation error[J]. IEEE Transactions on Fuzzy Systems,2009,17(3):518-531.
    [108]TSENG C, CHEN B. Robust fuzzy observer-based fuzzy control design for nonlinear discrete-time systems with persistent bounded disturbances[J]. IEEE Transactions on Fuzzy Systems,2009,17 (3):711-723.
    [109]GALDI V, PICCOLO A, SIANO P. Designing an adaptive fuzzy controller for maximum wind energy extraction[J]. IEEE Transactions on Energy Conversion, 2008,23 (2):559-569.
    [110]VALERO S, ARGENTE E, Botti V, et al. DoE framework for catalyst development based on soft computing techniques[J]. Computers & Chemical Engineering,2009,33(1):225-238.
    [111]SENTIES O, PIBOULEAU L, DOMENECH S. Multiobjective scheduling for semiconductor manufacturing plants[J]. Computers & Chemical Engineering, 2010,34(4):555-566.
    [112]YOSHIKAWA T, FURUHASHI T, UCHIKAWA Y. DNA coding method and a mechanism of development for acquisition of fuzzy control rules[C]// Proceeding of the 5th IEEE International Conference on Fuzzy Systems, New Orleans, LA, USA,1996, Sep.8-11,pp.2194-2200.
    [113]李冠一,林栖凤,朱锦天,黄惜等.核酸生物学[M].北京:科学出版社,2007.
    [114]HARTL RF. A global convergence proof for a class of genetic algorithms [D]. University of Technology, Vienna,1990.
    [115]李敏强,寇纪松,林丹,李书全.遗传算法的基本理论与应用[M].北京:科学出版社,2002,81-82.
    [116]钟璇,张泉灵,王树青.催化裂化主分馏塔产品质量的广义预测控制策略[J].控制理论与应用,2001,18(z1):134-140.
    [117]刘齐忠,康庆山.FCCU分馏塔20层塔盘温度前馈控制系统在DCS上的实施[J].石油化工自动化,1997,5:29-31.
    [118]VOSE MD, LIEPINS GE. Schema Disruption[C]//BELEW, R., BROOKER L In Proceedings of the 4th international conference on Genetic Algorithms (ICGA 4). San Francisco:Morgan Kaufmann Publishers, Inc.,1991:237-242.
    [119]CULBERSON JC. On the futility of blind search[J]. Journal of Evolutionary Computation,1998,6(2):109-128.
    [120]DE JONG KA, SPEARS WM. A formal analysis of the role of multi-point crossover in genetic algorithms[J]. Annals of Mathematics and Artificial Intelligence,1992,5(1):1-26.
    [121]SPEARS WM. The role of mutation and recombination in evolutionary algorithm[D], George Mason University, Fairfax, VA,1998.
    [122]SCHAFFER JD, ESHELMAN LJ. On crossover as an evolutionarily viable strategy[C]//BELEW RK, BROOKER LB. SAN Mateo. In Proceedings of the 4th International Conference on Genetic Algorithms. CA:Morgan Kaufmann Publishers,1991:61-68.
    [123]HESSER J, MANNER R. Towards an optimal mutation probability for genetic algorithm[C]//SCHWEFEL HP, MANNER R. In Proceedings of the lth Workshop on Parallel Problem Solving Nature (PPSN 1). Heidelberg Berlin: Springer-Verlag,1990:23-32.
    [124]ATMAR JW. The philosophical errors that plague both evolutionary theory and simulated evolutionary programming[C]//FOGEL DB, ATMAR JW. In proceedings of the 1th First Annual Conference on Evolutionary Programming. San Diego, CA:Evolutionary Programming Society,1992:27-34.
    [125]FOGEL DB, ATMAR JW. Comparing genetic operators with Gaussian mutations in simulated evolutionary processes using linear systems[J]. Biological Cybernetics,1992,63(2):111-114.
    [126]梁文杰.重质油化学[M].东营:石油大学出版社,2000.
    [127]韩崇仁.加氢裂化工艺与工程[M].北京:中国石化出版社,2001.
    [128]LONG F, GEVERT B. Kinetics of vanadyl etioporphyrin hydrodemetallization [J]. Journal of Catalysis,2001,200(1):91-98.
    [129]LONG F, GEVERT B. Kinetic parameter estimation and statistical analysis of vanadyl etioporphyrin hydrodemetallization[J]. Computers & Chemical Engineering,2003,27(5):697-700.
    [130]许先焜,张立昌,翁惠新.渣油加氢精制动力学模型研究[J].炼油技术与工程,2005,35(3):44-48.
    [131]张立昌,许先馄,翁惠新.渣油加氢脱金属动力学模型研究[J].高校化学工程学报,2006,20(2):227-232.
    [132]郑启富,刘化章.改进的全息搜索策略及其在化工优化中的应用[J].化工学报,2006,57(10):2349-2354.
    [133]宋晓峰.优生演进优化和统计学习建模[D].杭州:浙江大学博士论文,2003.
    [134]张顶学,关治洪,廖锐全.基于粒子群算法的重油热解模型参数估计[J].西安石油大学学报(自然科学版),2008,23(2):94-98.
    [135]HAN S-P. A global convergent method for nonlinear programming[J]. Journal of Optimlzation Theory and Applications,1977,22(3):297-309.
    [136]POWELL MJD. A fast algorithm for nonlinearly constrained optimization calculations, analysis[C]//Lecture Notes in Mathematics, Heidelberg:Springer Berlin,1978,630:144-157.
    [137]POWELL MJD. Restart procedure for the conjugate gradient method[J]. Mathematical Programming,1977,12(1):241-254.
    [138]BURKE JV, HAN S-P. A robust sequential quadratic programming method[J], Mathematical Programming,1989,43(1-3):277-303.
    [139]BURKE JV. A sequential quadratic programming method for potentially infeasible mathematical programs[J]. Journal of Mathematical Analysis and Applications,1989,139(2):319-351.
    [140]薛美盛,李祖奎,吴刚,孙德敏.油品调合调度优化问题的分步求解策略[J].中国科学技术大学学报,2006,36(8):834-839.
    [141]DEB K. An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics and Engineering,2000,186(2-4): 311-338.
    [142]MICHALEWICZ Z. Genetic Algorithms+Data structures=Evolution Programs (3rd edition) [M]. New York:Springer-Verlag,1996.
    [143]TAO JL, WANG N. DNA double helix based hybrid genetic algorithm for the gasoline blending recipe optimization problem[J]. Chemical Engineering Technology,2008,31(3):440-451.
    [144]SINGH A, FORBES JF, VERMEER PJ, WOO SS. Model-based real-time optimization of automotive gasoline blending operations[J]. Journal of Process Control,2000,10(1):43-58.
    [145]LITVINENKO VI, BURGHER JA, VYSHEMIRSKIJ VS, SOKOLOVA NA. Application of genetic algorithm for optimization gasoline fractions blending compounding[C], Proceedings of the IEEE International Conference on Artificial Intelligences Systems (ICAIS'02). Divnomorskoe, Russia,2002: 391-394。
    [146]ZHANG Y, MONDER D, FORBES JF. Real-time optimization under parametric uncertainty:a probability constrained approach[J]. Journal of Process Control,2002,12(3):373-389.
    [147]GLISMANN K, GRUHN G. Short-term scheduling and recipe optimization of blending processes[J]. Computers & Chemical Engineering,2001,25(4-6): 627-634.
    [148]ZHAO X, RONG G. Blending scheduling under uncertainty based on particle swarm optimization algorithm[J]. Chinese Journal of Chemical Engineering, 2005,13(4):535-541.
    [149]赵小强.炼厂生产调度问题研究[D].杭州:浙江大学博士论文,2005.
    [150]FORBES JF, MARLIN TE. Model accuracy for economic optimizing controllers:the bias update case[J]. Industrial & Engineering Chemistry Research,1994,33(8):1919-1929.
    [151]HEALEY JR WC, MAASEN CW, PETERSON RT. A new approach to blending octanes[C], Proceeding of 24th Meeting API Refining Division, vol. 39, New York:1959.
    [152]张建明,冯建华.两群微粒群算法及其在油品调和优化中的应用[J].化工学报,2008,59(7):1721-1726.
    [153]SPECHT DF. A general regression neural network[J]. IEEE Transactions on Neural Networks,1991,2(6):568-576.
    [154]PANAGOU EZ, KODOGIANNIS VS. Application of neural networks as a non-linear modeling technique in food mycology[J]. Expert Systems with Applications,2009,36(1):121-131.
    [155]PADMAVATHI G, MANDAN MG, MITRA SP, CHAUDHURI KK. Neural modeling of Mooney viscosity of polybutadiene rubber[J]. Computers & Chemical Engineering,2005,29(7):1677-1685.
    [156]郝鑫.广义回归神经网络和遗传算法研究及其在化工过程建模中的应用[D].杭州:浙江大学硕士论文,2004.
    [157]张金磊.基于人工神经网络的非线性时变系统辨识研究[D].北京:中国石油大学,2008.
    [158]周晓龙,陈绍洲,张以,常可怡,李承烈.减压渣油族组分热转化反应动力学研究[J].石油学报(石油加工),1999,15(1):8-12.
    [159]侯祥麟.中国炼油技术[M].北京:中国石化出版社,1991,12.
    [160]秦宣云,卜英勇,夏毅敏.基于AIC准则优化的径向神经网络微地形曲面重构[J].中南大学学报(自然科学版),2004,35(5):815-819.
    [161]杨海东,鄂加强.自适应变尺度混沌免疫优化算法及其应用[J].控制理论及应用,2009,26(10):1069-1074.
    [162]姚俊峰,梅炽,彭小奇.混沌遗传算法(CGA)的应用研究及其优化效率评价[J].自动化学报,2002,28(6):935-942.
    [163]ESEN H, OZGEN F, ESEN M, SENGUR A. Artificial neural network and wavelet neural network approaches for modeling of a solar air heater[J]. Expert Systems with Applications,2009,36(8):11240-11248.
    [164]HENRIQUE HM, LIMA EL, SEBORG DE. Model structure determination in neural network models[J]. Chemical Engineering Science,2000,55(22): 5457-5469.
    [165]叶其革,王晨皓,吴捷.基于模糊神经网络的统一潮流控制器[J].控制理论与应用,2005,22(6):925-930.
    [166]唐墨.新型模糊混沌神经网络及特性研究[D].哈尔滨:哈尔滨工程大学博士论文,2007:2-4.
    [167]JIN Y, JIANG J, ZHU J. Neural network based fuzzy identification and its application to modeling and control of complex systems[J]. IEEE transaction on systems, man, and cybernetics,1995,25(6):990-997.
    [168]綦守荣.中储式钢球磨制粉系统的建模与优化控制研究[D].北京:华北电力大学博士论文,2008.
    [169]周立芳,张赫男.基于聚类多模型建模的多模态预测控制[J].化工学报,2008,59(10):2546-2552.
    [170]FERNANDEZ A, JESUS M, HERRERA F. On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets[J]. Information Sciences,2010,180(8):1268-1291.
    [171]陶吉利,王宁,陈晓明.基于多目标的模糊神经网络及在PH控制过程中的应用[J].化工学报,2009,60(11):2820-2826.
    [172]NAHAS EP, HENSON MA, SEBORG DE. Nonlinear internal model control strategy for neural network models, Computers & Chemical Engineering, vol.16, no.12, pp.1039-1057,1992
    [173]HALL RC, SEBORG DE. Modelling and self-tuning control of a multivariable pH proeess, Part I:Modelling and multiloop control[C], Proeeedings of 1989, American Control Conference, Pittsburgh:1822-1827,1989.
    [174]伍军,郑金华,文诗华.一种基于相似个体的多目标进化算法[J].计算机工程与应用,2008,44(14):67-73.
    [175]CLARKE DW, MOHTADI C, THFFS PS. Generalized Predictive control[J]. Automatica,1987,23(2):137-160.
    [176]张日东.非线性预测控制及应用研究[D].杭州:浙江大学博士论文,2007:1-13.
    [177]苏成利.非线性模型预测控制的若干问题研究[D].杭州:浙江大学博士论文,2006:1-16.
    [178]金元郁,顾兴源.改进的广义预测控制算法[J].信息与控制,1990,19(3):8-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700