基于多模型切换的智能控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实际控制问题中,由于被控对象在不同工况下系统的参数或结构的变化,传统的自适应控制算法是无能为力。针对传统自适应控制和现有多模型自适应切换控制理论和方法中存在的问题,研究面向复杂系统的多模型切换控制新理论和新方法。本文对多模型建模与控制的若干问题作了研究和探索。主要研究内容包括:
     针对被控系统在不同工况下的模型参数突变,系统暂态响应特性较差,提出基于在线学习的多模型自适应控制方法。应用动态模型库技术来建立多模型,并证明该算法能够保证闭环系统的稳定性和跟踪误差的渐近收敛性。仿真结果表明所提出的建模方法和相应的多模型自适应控制器使系统的动态响应品质得到了明显的改善。
     基于神经网络强大的学习能力和非线性逼近能力,给出面向复杂系统的神经网络多模型切换控制方法。采用最近邻聚类学习算法对样本分类,并利用RBF神经网络进行离线建模。系统运行时在线检测系统当前状态,若超出现有各子模型所构成的状态空间,利用在线神经网络学习新状态并建立新的子模型加入动态模型库中,从而增强系统的鲁棒性。仿真结果表明该算法的有效性。
     针对传统多模型自适应控制中子模型数量过多的问题,给出一种基于递阶结构的多模型自适应控制算法。将整个控制系统分为基本工况级和控制模型级的两层递阶结构。在系统运行过程中,由常规自适应模型和重新赋值自适应模型在线自动地建立多模型及相应的控制器。该方法有效地减少了子模型数量和计算时间。
     将最小方差控制技术、神经网络的逼近能力及多模型切换控制技术相结合,给出一种基于RBF神经网络动态补偿的多模型控制方法。利用李亚普诺夫函数方法推导出网络权值的自适应调整律。采用具有积分性质的切换指标函数作为切换法则和最小方差的控制方法构成多模型自适应控制器。该算法有效地消除不确定引起的控制误差。
Due to the parameters or the structure changes of the system to be controlled under the different operating mode, the traditional adaptive control algorithm is helpless in many practical control problems. New theories and new methods are studied for complex systems multiple models switching control in this paper, which aims at the problem of conventional adaptive control and multiple models adaptive control in existence. Here, the dissertation mainly discusses issues on multiple models based modeling and control of complex nonlinear systems. The main contributions of this dissertation are summed as follows:
     A novel adaptive switching control algorithm based on multiple models is proposed to improve the dynamical response performance of plants with large parameters variations under different operating modes. At the same time dynamic model bank is applied to establish models bank without the prior system information. The closed-loop system stability and track error convergence asymptotically are proved. The simulation results have confirmed the efficacy of the proposed methods.
     A multiple models adaptive switching control based on neural network is proposed, which aims at the problem of conventional adaptive control and multiple models adaptive control in existence. We adopt the closest cluster algorithm to classify the samples, and then utilize RBF neural network’s strong learning and nonlinear approximates abilities to model off-line. Meanwhile dynamic model bank technology is applied to establish multi-model. Once the real time system’s states go beyond the space, which is formed of all existing sub-model, then a new state is learnt through online neural network and set up a new model that is added in the dynamic model bank in order to improve the dynamic system’s transient response and robustness. Finally, simulations are given to demonstrate the validity of the proposed method.
     Multiple models adaptive control based on hierarchical structure is presented, which aims at the problem of many sub-models in conventional multiple models adaptive control. The system to be controlled is divided into basic operating-condition level and control model level. Multiple models and corresponding controllers are automatically established on-line by the conventional adaptive model and a reinitialized one. The proposed method can reduce the number of
引文
1. Lainiotis D G. Optimal adaptive estimation structure and parameter adaptation. IEEE trans. Automat. Contr., 1971, 16(2): 160-170
    2. Lainiotis D G, Deshpande J G, Upadhyay T N. Optimal adaptive control: a non-linear separation theorem. Int. J. Control, 1972, 15(5): 877-888
    3. Deshpande J G, Upadhyay T N, Lainiotis D G. Adaptive control of stochastic systems. Automatica, 1973, 9(1): 107-115
    4. Lainiotis DG. Partitioning a unifying framework for adaptive system, I: estimation. Proceeding of IEEE, 1976, 64:1126-1143
    5. Middleton R H, Goodwin G C, Hilland D J, et al. Design issues in adaptive control. IEEE Trans. Automat. Contr., 1988, 33(1): 50-58
    6. Morse A S, Mayne D Q, Goodwin G C. Applications of hysteresis switching in parameter adaptive control. IEEE Trans. Automat. Contr., 1992, 37(9): 1343-1354
    7. Weller S R, Goodwin G C. Hysteresis switching adaptive control of linear multivariable systems. IEEE Trans. Automat. Contr., 1994, 39(7): 1360-1375
    8. Jota F G, Goodwin G C. Switching control: some stability results. Proceedings of the 36th IEEE Conference on Decision and Control, San Diego, CA, 1997. 2209–2210
    9. Narendra K S, Balakrishnan J. Improving transient response of adaptive control using multiple models and switching. IEEE Trans. Automat. Contr., 1994, 39(9): 1861-1866
    10. Narendra K S, Balakrishnan J, Ciliz M K. Adaptation and learning using multiple models, switching and tuning. IEEE Trans. Contr. system. Mag., 1995, 15(3): 37-51
    11. Narendra K S, Balakrishnan J. Adaptive control using multiple models. IEEE Trans. Automat. Contr., 1997, 42(2): 171-187
    12. Narendra K S, Cheng Xiang. Adaptive control of discrete-time systems using multiple models. IEEE Trans. Automat. Contr., 2000, 45(9): 1669-1686
    13. Chen L J, Narendra K S. Nonlinear adaptive control using neural networks and multiple models. Automatica, 2001, 37(8): 1245-1255
    14. Chen L J, Narendra K S. Intelligent control using neural networks and multiple models.Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada USA, 2002. 1357-1362
    15. Narendra K S, George K. Adaptive control of simple nonlinear systems using multiple models. Proceedings of the American Control Conference, Anchorage, AK, 2002. 1779-1784
    16. Cheng Xiang and Narendra K S. Design issues in stochastic adaptive control of discrete-time systems using multiple models. Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada USA, 2002. 2183-2188
    17. 王伟,李晓理.多模型自适应控制[M].北京:科学出版社,2001.
    18. Fu M Y, Barmish B R. Adaptive stabilization of linear systems via switching control. IEEE Trans. Automat. Contr., 1986, 31(12): 1097-1103
    19. Fu M Y. Minimum switching control for adaptive tracking. Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan, 1996. 3749-3754
    20. Aly G, Badr A, Binder Z. multi-model control of MIMO systems: location and control algorithms. Int. J. Syst. Sci, 1988, 19(9): 1687-1698
    21. Nagib G, Gharieband W, Binder Z. Qualitative multi-model control using a learning approach. Int. J. Syst. Sci, 1990, 23(6): 855-869
    22. Badr A, Binder Z, Rey D. Application of tracking multi-model control to nonlinear thermal control process. Int. J. Syst. Sci, 1990, 21(9): 1795-1803
    23. Badr A, Binder Z, Rey D. Weighted multi-model control. Int. J. Syst. Sci, 1992, 23(9): 145-149
    24. Ha T Y, Binder Z, Horacek P, et al. Fuzzy supervisory control. Proceeding 5th symposium on Low Cost Automation, Shenyang, China, 1998
    25. Li X R, Bar-Shalom Y. Design of an interacting multiple model algorithm for air traffic control tracking. IEEE Trans. on Control Systems Technology, 1993, 1(3): 186-194
    26. Li X R, Bar-Shalom Y. Performance prediction of the interacting multiple model algorithm. IEEE Trans. Aerospace and Electronic Systems, 1993, 29(3): 755-771
    27. Li X R, Bar-Shalom Y. A recursive multiple model approach to noise identification. IEEE Trans. Aerospace and Electronic Systems, 1994, 30(3): 671-684
    28. Li X R. Optimal selection of estimate for multiple-model estimation with uncertainparameters. IEEE Trans. Aerospace and Electronic Systems, 1998, 34(2): 653-657
    29. Li X R, Zhang Y. Numerically robust implementation of multiple-model algorithms. IEEE Trans. Aerospace and Electronic Systems, 2000, 36(1): 266-278
    30. Jilkov V P, Li X R. Online Bayesian estimation of transition probabilities for Markovian jump systems, IEEE Trans. Signal Processing, 2004, 52(6): 1620-1630
    31. Athans M, Castanon D, Dunn K P, et al. The stochastic control of the F-8Caircraft using a multiple model adaptive control (MMAC) method-part 1:equilibrium flight. IEEE Trans. on Automat. Contr., 1977, 22(5): 768-780
    32. Athans M et al. The stochastic control of the F-8C aircraft using a multiple model adaptive control (MMAC) method[C]. Proceeding of the 14th IEEE Conference on Decision and Control, Houston, TX, 1975. 217-228
    33. Mealy G L, Tang W. Application of multiple model estimation to a recursive terrain height correlation system. IEEE Trans. Automat. Contr., 1983, 28(3): 323-331
    34. Diao Y X, Passino K M. Intelligent fault tolerant control using adaptive schemes and multiple models[C]. Proceedings of the American Control Conference, Arlington, VA, 2001. 25-27
    35. Lane D W and Maybeck P S. Multiple model adaptive estimation a lied to the lambda URV for failure detection and identification[C], Proceeding of the 33rd IEEE Conference on Decision and Control, 1994, Lake Buena Vista FL, 678-683
    36. Banerjee A, Arkun Y, Ogunnaike B, et al. Estimation of nonlinear system using linear multiple models. AICHE Journal, 1997, 43(5): 1204-1226
    37. Eikes B, Karim M N. Process identification with multiple neural network models. Int. J control, 1999, 72(7/8): 576-590
    38. Konstaintinov K B, Yoshida T. A knowledge-based pattern recognition approach for real-time diagnosis and control of fermentation processes as variable structure plants. IEEE Trans. System, Man and Cybernetics, 1994, 24(4): 908-914
    39. Pottmann M, Unbehauen H, Seborg D E. Application of a general multi-model approach for identification of highly nonlinear processes: a case study. Int. J Control, 1993, 57(1): 97-120
    40. Nystrom R H, Sandstrom K V, Gustafsson T K, et al. Multi-model robust control of nonlinear plants: a case study. Journal of Process Control, 1999, 9(2): 135-150
    41. Ciliz M K, Narendra K S. Multiple model based adaptive control of robotic manipulators [C]. Proceeding of the 33rd IEEE Conference on Decision and Control, Lake Buena Vista, FL, 1994. 1305-1310
    42. Zufiria P J, Fraile-ardanuy J, Riaza R, et al. Neural adaptive control of nonlinear plants via a multiple inverse model approach. Int. J Adaptive Control Signal Process, 1999, 13: 219-239
    43. He W G, Kaufman H, Roy R. Multiple-model adaptive control procedures for blood pressure control. IEEE Trans. Biomedical Engineering, 1986, 33(1): 10-19
    44. Yu C, Roy R J, Kaufman H, et al. Multiple-model adaptive predictive control of mean arterial pressure and cardiac output. IEEE Trans. Biomedical Engineering, 1992, 39(8):
    765-778
    45. Yu C, He W G, So J M, et al. Improvement in arterial oxygen control using multiple-model adaptive control procedures. IEEE Trans. Biomedical Engineering, 1987, 34(8): 567-573
    46. Hunt K J, Johansen T A. Design and analysis of gain-scheduled control using local controller networks. Int. J Control, 1997, 66(5): 619-651
    47. Johansen T A, Hunt K J, Gawthrop P J, et al. Off-equilibrium linearization and design of gain-scheduled control with application to vehicle speed control. Control Engineering Practice, 1998, 6: 167-180
    48. Wyczalek F A. Hybrid electric vehicles year 2000 status. IEEE Trans. Aerospace and Electronic Systems Magazine, 2001, 16(3): 15-25
    49. Wolpert D M, Kawato M. Multiple paired forward and inverse models for motor control. Neural Networks, 1998, 11: 1317-1329
    50. Ren Lixin, Irwin G W, Flynn D. Nonlinear identification and control of a turbo generator an on-line scheduled multiple model/controller approach. IEEE Trans. Energy Conversion, 2005, 20(1): 237-245
    51. 赵付涛,杜维,徐义亨等.多模态控制器的设计及应用,仪器仪表学报[J].1998, 19(5): 520-524
    52. Narendra K S. Parameter adaptive control-the end…or the beginning? [C]. Proceedings of the 33rd IEEE Conference on Decision and Control, Lake Buena Vista, FL, 1994. 2117-2125
    53. Kalkkuhl J, Johansen T A, Ludemann J. Improved transient performance of nonlinear adaptive backstepping using estimator resetting based on multiple models. IEEE Trans. Automat. Contr., 2002, 47 (1): 136-140
    54. Ippoliti G, Longhi S. Multiple models for adaptive control to improve the performance of minimum variance regulators. IEE Proceedings-Control Theory and Applications, 2004, 151 (2): 210-217
    55. Cherkassky V, Ma Y. Multiple Model Regression Estimation. IEEE Trans. Neural Networks, 2005, 16 (4): 785-798
    56. 席裕庚,王凡.非线性系统预测控制的多模型方法[J].自动化学报,1996, 22(4):456-461
    57. Palm R. Synchronization of decentralized multiple-model systems by market-based optimization. IEEE Trans. Systems, Man and Cybernetics, Part B, 2004, 34(1): 665-671
    58. Patton R J, Lopez Toribio C J, Simani S. Robust fault diagnosis in a chemical process using multiple-model approach[C]. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida USA, 2001: 149-154
    59. Yang Haiqing, Yu Li, Xu Chi. Multiple model adaptive control of automatic quasi-synchronization for 500 kW hydropower generator[C]. Intelligent Control and Automation, 2004. WCICA. Fifth World Congress on, Hangzhou, P.R. China, 2004. 5112-5115
    60. Eikes B, Karim M N. Process identification with multiple neural network models. Int. J control, 1999, 72 (7/8): 576-590
    61. Stenman A, Gustafasson F, Ljung L. Just in time models for dynamic systems[C]. Proceedings of the 35th IEEE Conference on Decision, Kobe, Japan, 1996. 1115-1120
    62. Bontempi G, Birattari M, Bersini H. Lazy learning for local modelling and control design. Int. J Control, 1999, 72 (7/8): 643-658
    63. Zheng Q B, Kimura H. Just-in-time modeling for function prediction and its applications [C]. Proceedings of the 3rd Asian Control Conference, Shanghai, China, 2000. 1816-1821
    64. 孙维,王伟.基于即时学习算法非线性系统多模型自适应控制[J].大连理工大学学报,2002, 45(2):611-615
    65. 孙维,王伟,朱瑞军. 即时学习算法在非线性系统迭代学习控制中的应用[J].控制与决策,2003, 18(3):263-266
    66. Johansen Tor A,Foss Bjarne A. Identification of Non-linear System Structure and Parameters using Regime Decomposition. Automatica, 1995, 31(2): 321-326
    67. 皮道映 , 孙优贤 . 多模型 MIMO 系统的模糊加权控制策略 [J], 自动化学报 , 1998,24(3):387-390
    68. Lashlee R W Jr, Maybeck P S. Space structure control using moving bank multiple model adaptive estimation, Decision and Control[C]. Proceedings of the 27th IEEE Conference on, Austin, Texas, 1988. 712-717
    69. Gustafson J A, Maybeck P S. Control of a large flexible space structure with moving-bank multiple model adaptive algorithms, Decision and Control[C]. Proceedings of the 31st IEEE Conference on, Tucson, Arizonan, 1992. 1273-1278
    70. Gustafson J A, Maybeck P S. Flexible space structure control via moving-bank multiple model algorithms. IEEE Trans. Aerospace and Electronic Systems, 1994, 30(3): 750-757
    71. Zhivoglyadov P V, Middleton R H, Fu M. Localization based switching adaptive control for time-varying discrete time systems. IEEE Trans. Automat. Contr., 2000, 45(4): 752-755
    72. Zhivoglyadov P V, Middleton R H, Fu M Y. Localization based switching adaptive control for time-varying discrete-time system[C]. Proceedings of the 36th IEEE Conference on Decision and Control, San Diego, 1997. 4151-4156
    73. Zhivoglyadov P V, Middleton R H, Fu M Y. Further results on localization-based switching adaptive control. Automatica, 2001, 37(2): 257-263
    74. 刘鲁源,吕伟杰,牟世忠.基于在线优化的切换多模型自适应控制[J].控制与决策,2002, 17(4): 407-410
    75. Liberzon D, Morse A S. Basic problems in stability and design of switched systems. IEEE Control systems Magazine, 1999, 19(5): 59-70
    76. Branicky M S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Automat. Contr., 1998, 43(4): 475-482
    77. Petersen I R, Hollot Christopher V. A Riccati Equation to the stabilization of uncertain linear systems. Automatica, 1986, 22(4): 397-411
    78. 俞立. 鲁棒控制——线性矩阵不等式处理方法[M].北京:清华大学出版社,2002
    79. 周东华. 非线性系统的自适应控制导论. [M].北京:清华大学出版社,2002
    80. 李晓理,王书宁.含有界扰动系统的多模型自适应控制[J], 控制理论与应用, 2004,20(4):577-581
    81. Goodwin G C, Sin K S. Adaptive Filtering, Prediction And Control [M]. Englewood Cliffs: Prentice Hall, 1984.
    82. Filev D, Sr Larsson T. Intelligent adaptive control using multiple models[C]. Proceedings of the 2001 IEEE International Symposium on Intelligent Control, Mexico City, Mexico, 2001: 314-319
    83. Middleton R H, Goodwin G C, Hill D J, et al. Design issues in adaptive control. IEEE Trans. Automat. Contr., 1988, 33(1): 50-58
    84. Sugeno M, Kang G T. Structure identification of fuzzy model. Fuzzy Sets and Systems, 1988, 28: 15-33
    85. Cao S G, Rees N W, Feng G. Analysis and design for a class of complex control systems part Ⅰ: fuzzy modeling and identification. Automatica, 1997, 33 (6): 1017-1028
    86. Yin T K. Stability analysis and design of fuzzy control systems. Fuzzy Sets and Systems, 1992, 45 (2): 135-156
    87. 李杰星,章云,符曦.一种改进的最近邻聚类学习算法[J].控制理论与应用,2000, 17(5):735-738
    88. Lu Yingwei, Sundararajan N, Saratchandran P. Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm. IEEE Trans. Neural Network, 1998, 9(2): 308-318
    89. 王昕,李少远,岳恒.一类非最小相位系统分层递阶多模型解耦控制器[J], 控制理论与应用, 2005,22(2):201-206
    90. 维权,刘兰亭,林鸿洲.多元统计分析[M].北京:高等教育出版社,1989.
    91. 翟军勇,费树岷.基于在线学习的多模型自适应控制[J].中国电机工程学报, 2005, 25(9): 80-83
    92. Li Xiaoli, Wang Wei. Minimum variance based multi-model adaptive control [A]. Proc. of IFAC’99[C], Beijing, 325-329
    93. Al-Akhras M A, Aly G M, Green R J. Neural network learning approach of intelligent multimodel controller. IEE Proceedings-Control Theory and Applications, 1996, 143(4): 395-400
    94. 孙维,李晓理,王伟. 基于多模型的非线性系统自适应最小方差控制[J].控制理论与应用.2002, 19(4): 639-643
    95. 牛玉刚,杨成梧,赵建丛. 一类非线性不确定系统的最小方差神经控制[J].控制与决策.2000, 15(4): 465-468
    96. Kandel A, Byatt W J. Fuzzy sets, fuzzy algebra, and fuzzy statistics. Proceedings of the IEEE, 1978, 66(12): 1619-1639
    97. Abdul-Rahman K H, Shahidehpour S M. A fuzzy-based optimal reactive power control. IEEE Trans. Power Systems, 1993, 8(2): 662-670
    98. Son C. Intelligent process model for robotic part assembly in a partially unstructured environment. IEE Proceedings- Control Theory and Applications, 1999, 146(3): 282-288
    99. Sun F C, Sun Z Q, Feng G. An adaptive fuzzy controller based on sliding mode for robot manipulators. IEEE Trans. Systems, Man and Cybernetics, Part B. 1999, 29(5): 661-667
    100.Margaliot M, Langholz G. A new approach to fuzzy modeling and control of discrete-time systems. IEEE Trans. Fuzzy Systems, 2003, 11(4): 486-494
    101.Tao C W, Taur J S. Robust fuzzy control for a plant with fuzzy linear model. IEEE Trans. Fuzzy Systems, 2005, 13(1): 30-41
    102.孙优贤.造纸过程建模与控制[M].杭州:浙江大学出版社,1993
    103.袁向阳,施颂椒.多模型系统最优同时镇定状态反馈控制器设计算法[J].上海交通大学学报,1999, 33(11):1443-1445
    104.皮道映,孙优贤.一种新的多模型模糊自适应控制算法[J].控制与决策,1996, 11(1): 77-80
    105.Jamal Daafouz, Jacques Bernussou. Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties. Systems & Control Letters, 2001,43(5): 355-359
    106.恒庆海.采用 H∞性能指标的锅炉过热汽温鲁棒控制[J].电机与控制学报,2004, 8(4):319-321
    107.范伊波,巨林仓,胡勇等.基于自适应神经元网络的过热汽温智能控制[J].动力工程,1998, 18(2):7-10
    108.陶文伟,肖大雏.,姚钢等.单神经元控制器及其在过热汽温控制中的应用[J].自动化仪表,2000, 21(4):20-22
    109.章臣樾.锅炉动态特性及其数学模型[M].北京:水利电力出版社,1987.
    110.范永胜,徐治皋,陈来九.基于动态特性热力分析的锅炉过热汽温自适应模糊控制系统研究[J].中国电机工程学报,1997, 17(1):23-28
    111.韩璞,王东风,王国玉等.多模型预测函数控制及其应用研究[J].控制与决策,2003, 18(3):375-377
    112.张法文.直流炉单元机组自动调节系统[M].北京:水利电力出版社,1986
    113.王国玉,韩璞,王东风等.PFC-PID 串级控制在主汽温控制系统中的应用研究[J].中国电机工程学报,2002, 22(12):50-55
    114.Younkins T D, Chow J H. Multivariable feedwater control design for a steam generator. Control Systems Magazine, 1988, 8(2): 77-80
    115.Nomura M, Sato Y. Adaptive optimal control of steam temperatures for thermal power plants. IEEE Trans. Energy Conversion, 1989, 4(1): 25-33
    116.Klure-Jensen J, Hanisch R. Integration of steam turbine controls into power plant systems. IEEE Trans. Energy Conversion, 1991, 6(1): 177-185
    117.Man Gyun Na. Auto-tuned PID controller using a model predictive control method for the steam generator water level. IEEE Trans. Nuclear Science, 2001, 48(5): 1664-1671
    118.Weng Chen-Kuo, Ray A. Robust wide-range control of steam-electric power plants. IEEE Trans. Control Systems Technology. 1997, 5(1): 74-88
    119.Liu Hongbo, Li Shaoyuan, Chai Tianyou. Intelligent control of power-plant main steam pressure and power output[C]. American Control Conference, Denver, Colorado, 2003:2857-2862
    120.Andone D, Hossu A. Predictive control based on fuzzy model for steam generator[C]. IEEE International Conference on Fuzzy Systems, Budapest, Hungary, 2004:1245-1250
    121.Zanobetti D. Power Station Simulators, Elsevier Science Publishers B.V., 1989
    122.陈来九.热工过程自动调节原理和应用[M].北京:水利电力出版社, 1982
    123.林文孚,胡燕.单元机组自动控制技术[M],北京:中国电力出版社,2003
    124.金以慧,方崇智.过程控制[M],北京:清华大学出版社,1993
    125.易武,李立争.模糊控制器的一种加权平均算法[J].控制与决策,1992,7(5):382-385
    126.Fujinaka T, Omatu S. A switching scheme for adaptive control using multiple models [A].IEEE SMC’99 Conference Proceedings [C]. Tokyo, Japan, 1999:80-85
    127.Yu C, Roy R J, Kaufman H, et al. Multiple-model adaptive predictive control of mean arterial pressure and cardiac output. IEEE Trans. Biomedical Engineering, 1992, 39(8): 765-778

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700