用户名: 密码: 验证码:
机械臂协调操作柔性负载系统动力学与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对机械臂协调操作柔性负载,用有限元法建立了柔性负载的动力学模型。研究了系统坐标之间的关系,将机械臂协调操作柔性负载系统转化到同一个坐标空间,给出了力之间的关系。采用刚性控制对机械臂从起始点到期望点的运动进行了研究,对内力进行了控制,采用自适应控制方法对机械臂协调操作柔性负载的轨迹跟踪问题进行了研究。基于零点配置技术提出了一种新的EI成型器设计方法,将传统的基于零点配置的ZV成型器扩展成EI成型器,利用成型器周期性特点,提出了一种抑制多模态柔性结构振动的控制方法,并对机械臂协调操作柔性负载振动进行了控制。通过假设在机械臂末端能够测得接触点的振动信息,研究了基于观测器的控制问题。基于模型已知的情况下,设计了两种不同的控制器并对系统的稳定性进行了分析。同时针对模型参数未知的情况设计了控制器并对系统稳定性进行了分析与仿真实验。
In recent years, the manipulators cooperating flexible payload have been studied by many scholars and these studies focused on controller designing to ensure stability of the system and operating skills. In many workplace, precise and accurate operation are requires and at this time the vibration problem of flexible load would have to consider. In the aerospace, printed circuit boards, automotive and other fields, due to the aPlications of large-scale or thin metal plates, vibration would occur inevitably. The accuracy and safety requirements are high in these areas so the vibration must be controlled. In the automotive manufacturing, according to statistics it includes about 300-500 metal plates in each car, in order to bring them together, the complex fixture must be designed. The error allowing is only 0.5mm in automobile manufacturing, even if the auto body places a very small change in the shape the fixture means to be redesigned. The design of complex fixture takes a long time and money. In the aerospace field, with the development in space, a growing number of flying objects have been send into space orbit. After a long time the position or posture will change and they must be maintained. It is unable to complete these tasks depending on human and must rely on space robotics. Because these panels are mostly made from flexible materials and bulky and their operations often bring vibration, which not only creates difficulties for control of the robot also brings uncertainty, the robot control must take into account the coupled vibration characteristics. Multi-layer printed circuit board is composed of many small flake, manipulators are particularly suited to complete this work due to the precise. However, each small piece is very thin, bound to vibrate during operation, while the tasks require precise positioning so the vibration must be effectively controlled. From the current situation of research at home and abroad for operating flexible payload it is only at the initial stage. The cooperative control and vibration suPression problems are still not formed a complete system, in particular the study of vibration suPression is still less. Most scholars in the operation of flexible objects are in a specific question and there are many critical issues to be resolved. In this paper, the system modeling, the system stabilization control and trajectory tracking control based on rigid control, hybrid EI shaper design issues of based on partial points and the feedback control observer-based problem are studied. Main content and innovation are as follows.
     Finite element method is adopted to establish a dynamic model of the flexible payload. Based on both ends of flexible payload being fixed the rigidity of the system motion is determined. The flexible beam is divided into several modules. According to Lagrange equations the dynamics model of the system is derived. The relevant features of dynamics model are explained. The relationship of coordinates is expressed. The dynamics models of flexible payloads and manipulators are transformed into the same coordinate space. The relationship between the forces is given.
     The stabilization control and trajectory tracking control methods based on rigid control are proposed. For the flexible payload from the initial position moving to the desired location, the rigid controller with a compensation term is designed that can guarantee the stability of the system in the process of handling and can also ensure the vibration of flexible payload quickly calm after arriving at the designated location. For the trajectory tracking issue items, a rigid adaptive controller is designed ensuring stability of the system. The simulation results show the effectiveness of the method.
     The method of hybrid EI shaper based zero-placement technique is proposed. the traditional ZV shaper based zero-placement technique is expanded into the EI shaper or ZVD without changing the impulse number and delay time. The robustness of the shaper increases largely. Several higher hybrid EI shapers are designed taking the advantages of this design method. The relationship between the bias coefficient and the minimal vibration allowing for the system are given. The error range of the actual frequency and expected frequency is calculated. Taking full advantages of the cyclical nature, a method for vibration suPression of flexible structure with multi-mode is present. When the flexible structure is multi-mode, it need not design the controller for each mode, so a significant number impulse is reduced, but the delay time is more or less. The hybrid EI is proposed to control the vibration of manipulators cooperating flexible payload and the methods\ is verified by simulation experiments.
     By assuming that the ends the manipulator can be the installed sensors so the vibration information of the contact points can be measured and it can derive the vibration of the state. The feedback control methods based on observer are proposed. Under the condition for the model is known, the design method based on the matrix eigenvalue is proposed. It can chose the observer parameters to ensure that the eigenvalue of the system state equation matrix contains the negative real part and thus to guarantee system stability. The sliding mode control method with compensation items is proposed. The stability of the system is proven based on Lyapunov equations and the simulation is done. For the situation when the model is unknown in most cases, the controller is designed and system stability is analyzed and simulation results are given.
     The conclusion and the perspective of future research are given at the end of the paper.
引文
[1] T. Yukawa, M. Uchiyama and H. Inook. Handling of a Constrained Flexible Object by a Robot[C]. IEEE International Conference on Robotics and Automation, 1995, v1, p324-329
    [2] J.Q. Wu, Z.W. Luo and Koji Ito. Gain Scheduled Control for Robot Manipulator's Contact Tasks on Flexible Environments[C]. International Workshop on Advanced Motion Control, 1996, v2, p512-517
    [3] J.Q. Wu, Z.W. Luo, M. Yamakita and Koji Ito. Gain Scheduled Control of Robot Manipulators for Contact Tasks on Uncertain Flexible Objects[C]. IEEE International Conference on Systems, Man and Cybernetics, 1996, v1, p41-46
    [4] L. Ru and O. Fujio. Digital Control of A Manipulator Handling Flexible Objects[C]. The World Congress on Intelligent Control and Automation, 2004, v5, p4595-459
    [5] Y. F. Zhang, R. Pei and C. Chen. Strategies for Automatic Assembly of Deformable Objects[C]. IEEE International Conference on robotics and automation, 1991, v3, p2598-2603
    [6] F. Arai, L.L. Rong and T. Fukuda. Trajectory Control of Flexible Plate Using Neural Network[C]. IEEE International Conference on Robotics and Automation 1993, v1, p155-159
    [7] N. Hirofumi, K. Kosei and T. Hideo. Study of Insertion Task of a Flexible Beam into a Hole[C]. IEEE International Conference on Robotics and Automation, 1995, v1, p330-335
    [8] K. Jr. Werner and J. B. McCarragher. Force Fields in the Manipulation of Flexible Materials[C]. IEEE International Conference on Robotics and Automation, 1996, v3, p2352-2357
    [9] N. Hirofumi, K. Kosei and T. Hideo et al. Study of Deformation and Insertion Tasks of a Flexible Wire[C]. IEEE International Conference on Robotics and Automation Albuquerque, 1997, v3, p2397-2402
    [10] M. Z. Chen and Y. F. Zheng. Vibration-free Movement of Deformable Beams by Robot Manipulator[C]. IEEE International Conference on Robotics and Automation, 1993, v2, p456-461
    [11] J. Sandeep and K. Farshad. Vibration SuPression of Unknown Flexible Payloads Using a Wrist Mounted Force/Torque Sensor for Remote Manipulator Systems[C]. IEEE International Conference on Robotics and Automation, 1994, p2119-2124
    [12] J. Sandeep and K. Farshad. Positioning of Unknown Flexible Payloads for Robotic Arms Using a Wrist-mounted Force/Torque Sensor[J]. IEEE Transactions on Control Systems Technology, 3(2), 1995, p189-20
    [13] T. Zhou, A. A. Goldenberg and J. W. Zu, Modal Force Based Input Shaper for Vibration SuPression of Flexible Payloads[C]. IEEE International Conference on Robotics and Automation, 2002, v3, p2430-2435
    [14] T. Zhou, J. W. Zu and A. A. Goldenberg. Vibration Controllability of Flexible Robot-Payload Systems[C]. IEEE International Conference on Robotics and Automation, 2000, v2, p1484-1489
    [15] N. Fahantidis, K. Paraschidis, V. Petridis, Z. Doulgeri, L. Petrou, G. Hasapis. Robot Handling of Flat Textile Materials[J]. IEEE Robotics and Automation Magazine, 1997, 4(1), p34-41
    [16] K. M. James and G.-L. Ing Jerry. Robotic Fixtureless Assembly of Sheet Metal Parts Using Dynamic Finite Element Models: Modelling and Simulation[C]. IEEE International Conference on Robotics and Automation, 1995, v3, p2350-2357
    [17] N. Wai and K. M. James. Multi-Robot Control for Flexible Fixtureless Assembly of Flexible Sheet Metal Auto Body Parts[C]. IEEE International Conference on Robotics and Automation, 1996, v3, p2340-2345
    [18] D. Sun and Y. H. Liu. Modeling and Impedance Control of a Two-Manipulator System Handling a Flexible Beam[C]. IEEE International Conference on Robotics and Automation, 1997, v2, p1787-1792
    [19] Y. H. Liu and D. Sun. Stabilizing a Flexible Beam Handled by Two Manipulators Via PD Feedback[J]. IEEE Transactions on Automatic Control, 2000, 45(11), p2159-2164
    [20] D. Sun, M. K. James and Y. H. Liu. Hybrid Position and Force Control of Two Industrial Robots Manipulating a Flexible Sheet: Theory and Experiment[C]. IEEE International Conference on Robotics & Automation, 1998, v2, p1835-1840
    [21] D. Sun and Y. H. Liu. Position and Force Tracking of a Two-Manipulator System Manipulating a Flexible Beam Payload[C]. IEEE International Conference on Robotics & Automation, 2001, v4, p3483-3488
    [22] D. Sun and Y.H. Liu, Position and Force Tracking of a Two-Manipulator System Manipulating a Flexible Beam[J]. Journal of Robotic Systems, 2001, 18(4), p197-212
    [23] D. Sun, X.L. Shi and Y.H. Liu. Modeling and Cooperation of Two-Arm Robotic System Manipulating a Deformable Object[C]. IEEE International Conference on Robotics and Automation, 1996, v3, p2346-2351
    [24] D. Sun, M. K. James Y.H. Liu. Position Control of Multiple Robots Manipulating a Flexible Payload[C]. Proceedings of the American Control Conference. 1998, p456-460
    [25] D. Sun, M. K. James and Y.H. Liu. Position Control of Robot Manipulators Manipulating a Flexible Payload[J]. International Journal of Robotics Research, 1999, 18(3), p319-332
    [26] Y. F. Zheng and M. Z. Chen. Trajectory Planning for Two Manipulators to Deform Flexible Beams[C]. IEEE International Conference on Robotics and Automation, 1993, v1, p1019-1024
    [27] M. Z. Chen and Y. F. Zheng. Deform flexible beams by two manipulators through neural network learning[C]. IEEE International Conference on Robotics and Automation, 1994, v4, p3180-3185
    [28] Al. Omar, Y. F. Zheng and K.Y. Yi. Efficient Trajectory Planning for Two Manipulators to Deform Flexible Materials with Experiments[C]. IEEE International Conference on Robotics and Automation, 1995, v1, p312-317
    [29] Al. Omar, Y. F. Zheng and K.Y. Yi. Trajectory Planning for Two Manipulators to Deform Flexible Materials Using Compliant Motion[C]. IEEE International Conference on Robotics and Automation, 1995, v2, p1517-1522
    [30] T. Matsuno, D. Tanaki, F. Arai and T. Fukuda. Manipulation of Deformable Linear Objects with Knot Invariant to Classify Condition[C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2005, v2, p893-898
    [31] T. Matsuno, T. Fukuda and F. Arai. Flexible Rope Manipulation by Dual Manipulator System Using Vision Sensor[C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2001, v2, p677-682
    [32] T. Fukuda, T. Matsuno and F. Arai, Flexible Object Manipulation by Dual Manipulator System[C]. IEEE International Conference on Robotics & Automation, 2000, v2, p1955-1960
    [33] T. Yukava, M. Uchiyama, D. N. Nenchev and H. Inooka, Stability of Control System in Handling of a Flexible Object by Rigid Arm Robots[C]. IEEE International Conference on Robotics and Automation, 1996, v3, p2332-2339
    [34] M. M. Svinin, and M. Uchiyama. Coordination Strategy for a System of Manipulators Coupled Via a Flexible Object[C]. Industrial Electronics Conference, 1994, v2, p685-690
    [35] T. Yukawa, M. Uchiyama and H. Inooka. Cooperative Control of a Vibrating Flexible Object by a Rigid Dual-Arm Robot[C]. IEEE International Conference on Robotics and Automation, 1995, v2, p1820-1826
    [36] M. M. Svinin and M. Uchiyama, Cartesian-Level Control Strategy for a System of Manipulators Coupled Through a Flexible Object[C]. IEEE International Conference on Intelligent Robots and Systems, 1994, v1, p687-694
    [37] K. Kazuhiro, H. Satoshi, Y. Hidehiro. Human-Robots Collaboration System for Flexible Object Handling[C]. IEEE International Conference on Robotics, 1998, v2, p1841-1846
    [38] W. F. Dellinger and J. N. Anderson, Interactive Force Dynamics of Two Robotic Manipulators Grasping a Non-rigid Object[C]. IEEE International Conference on Robotics and Automation, 1992, v3, p2205-2210
    [39] K.M. Yuen and G. M. Bone. Robotic Assembly of Flexible Sheet Metal Parts[C]. IEEE International Conference on Robotics and Automation, 1996, v2, p1511-1516
    [40] K. Jr. Werner and B. J. McCarragher. Case Studies in The Manipulation of Flexible Parts Using a Hybrid Position/Force Aproach[C]. IEEE International Conference on Robotics and Automation, 1997, v1, p202-207
    [41] H. G. Tanner and K. J. Kyriakopoulos. Analysis of Deformable Object Handling[C]. IEEE International Conference on Robotics & Automation, 1999, v4, p2674-2679
    [42] M. Kudo, Y. Nasu, K. Mitobe and B.v Borovac. Multi-arm Robot Control System for Manipulation of Flexible Materials in Sewing Operation[J]. Mechatronics, 2000, 10(3), p371-402
    [43] Y.C Ji and Y.k Park. Optimal Input Design for a Cooperating Robot to Reduce Vibration When Carrying Flexible Objects[J]. Robotica, 2001, 19(2), p209–215
    [44] V.Yu. Rutkovsky, V.M. Sukhanov, V.M. Glumov, S.D. Zemlyakov and S.D. Dodds. Computer Simulation of an Sdaptive Control System for a Free-flying Space Robotic Module with Flexible Payload’s Transportation[J]. Mathematics and Computers in Simulation, 2002, 58 (4-6), p407–421
    [45] A. Tavasoli, M. Eghtesad , H. Jafarian. Two-time scale control and observer design for trajectory tracking of two cooperating robot manipulators moving a flexible beam[J]. Robotics and Autonomous Systems, (2009) Vol.57 p212–221
    [46]刘迎春,余跃庆.冗余度柔性机器人协调操作刚性和柔性负载的仿真分析[J].机械科学与技术, 2005, 24(6), p631-635
    [47]刘迎春,余跃庆,窦建武.柔性机器人协调操作柔性负载的动力学模型[J].机械科学与技术, 2002, 21(4), p565-568
    [48]刘迎春,余跃庆.考虑负载变形的柔性机器人协调操作动力学[J].中国机械工程2002,13(14) , p1246-1250
    [49] R.J. Theodore, A. Ghosa. Comparison of the Assumed Modes and Finite Element Models for Flexible Multi-link Manipulators[J]. International Journal of Robotics Research. 1995, 14 (2), p91–111.
    [50] G.G. Hastings, W.J. Book. Verification of a Linear Dynamic Model for Flexible Robotic Manipulators[C]. Proceedings of the IEEE International Conference on Robotics and Automation, 1986, p1024–1029.
    [51] F. Karray, S. Tafazolli, W. Guealeb. Robust Tracking of Lightweight Manipulator Systems[J]. Nonlinear Dynamics, 1999, 20 (2), p169–179.
    [52] H. Diken. Frequency–response Characteristics of a Single-link Flexible Joint Manipulator and Possible Trajectory Ttracking[J]. Journal of Sound and Vibration, 2000, 223, p179–194.
    [53] D.K. Wedding, A. Eltimsahy. Flexible Llink Control Using Multiple Forward Paths Multiple RBF Neural Networks in a Direct Control Application[C]. IEEE International Conference on Systems, Man, and Cybernetics, 2000, p2619–2624.
    [54] T. Zhang, G. Zhi. Model Reduction of Flexible Manipulators[C]. Proceedings of the 3rd World Congress on Intelligent Control and Automation, 2000, p95–98.
    [55] M. Karkoub, K. Tamma, Modelling and Dynthesis Control of Flexible Manipulators[J]. Computers and Structures, 2001, 79, p543–551.
    [56] B.P. Nagaraj, B.S. Nataraju, D.N. Chandrasekhar. Nondimensional Parameters for the Dynamics of a Single Flexible Link[C]. International Conference on Theoretical, Applied, Computational and Experimental Mechanics (ICTACEM), 2001, p51-55
    [57] J. Martins, M.A. Botto, J. Sa da Costa. Modeling Flexible Beams for Robotic Manipulators[J]. Multibody System Dynamics. 2002, 7 (1), p79–100.
    [58] J.M. Martins, Z. Mohamed, M.O. Tokhi, J. Sa da Costa, M.A. Botto. Aproaches for Dynamic Modelling of Flexible Manipulator Systems[J]. IEE Proceedings on Control Theory and Applications, 2003, 150 (4), p401–411.
    [59] S.K. Tso, T.W. Yang, W.L. Xu, Z.Q. Sun. Vibration Control for a Flexible Link Robot Arm with Deflection Feedback[J]. International Journal of Non-Linear Mechanics, 2003, 38, p51–62.
    [60] F. Rakhsha, A.A. Goldenberg, Dynamic Modeling of a Dingle Link Flexible Robot[C]. Proceedings of the IEEE International Conference on Robotics and Automation. 1985, p984–989.
    [61] E. Barbieri, U . Ozguner. Unconstrained Mode Expansion for a Flexible Slewing Link[J]. ASME Journal of Dynamic Systems, Measurement, and Control. 1988, 110, p416–421.
    [62] T. Singh, Dynamics and Control of Flexible Arm Robots[D]. Mechanical Engineering, Waterloo University, Canada,1991.
    [63] A. Green, J.Z. Sasiadek. Robot Manipulator Control for Rigid and Assumed Mode Flexible Dynamics Models[J]. AIAA Guidance, Navigation and Control Conference and Exhibit. 2003, p2003-2005.
    [64] A. Green, J.Z. Sasiadek, Dynamics and Trajectory Tracking Control of a Two-link Robot Manipulator[J]. Journal of Vibration and Control. 2004, 10 (10), p1415–1440.
    [65] H.H. Lee. New Dynamic Modeling of Flexible-link Robots[J]. ASME Journal of Dynamic Systems, Measurement, and Control. 2005, 127, p307–309.
    [66] M.O. Tokhi, A.K.M. Azad, H. Poerwanto, S. Kourtis, M.J. Baxter. A Simulink Environment for Simulation and Control of Flexible Manipulator Systems[C]. International Conference on Control, 1996, p210–215.
    [67] M.O. Tokhi, Z. Mohamed, S.H.M. Amin, R. Mamat. Dynamic Characterization of a Flexible Manipulator Dystem: Theory and Experiments[C]. Proceedings of TENCON, 2000, P167–172.
    [68] M.O. Tokhi, Z. Mohamed, M.H. Shaheed. Dynamic Characterisation of a Flexible Manipulator System[J]. Robotica, 2001, 19, p571–580.
    [69] S.S. Ge, T.H. Lee, G. Zhu. A Nonlinear Feedback Controller for a Single-link Flexible Manipulator Based on Finite Element Model[J]. Journal of Robotic Systems, 1998, 14 (3), p165–178.
    [70] Z. Mohamed, M.O. Tokhi. Command Shaping Techniques for Vibration Control of a Flexible Robot Manipulator[J]. Mechatronics, 2004, 14, p69–90.
    [71] J. Chung, H.H. Yoo, Dynamic Analysis of a Rotating Cantilever Beam by Using the Finite Element Method[J]. Journal of Sound and Vibration, 2002, 249, p147–164.
    [72] J.D. Lee, B.L. Wang. Optimal Control of a Flexible Robot Arm[J]. Computers and Structures. 1988, 29 (3), p459–467.
    [73] V.O.G. Rosado, E.A.O. Yuhara, Dynamic Modeling and Simulation of a Flexible Robotic Manipulator[J]. Robotica, 1999, 17, p523–528.
    [74] V.O.G. Rosado. A Planar Flexible Robotic Manipulator[J]. Kybernetes. 2000, 29, p787–796.
    [75] N.C. Singer and W.P. Seering. Preshaping Command Inputs to Reduce System Vibration[J]. Journal of Dynamic Systems, Measurement, and Control, 1990, 112(1), p76-82
    [76] W. Singhose, W.P. Seering, and N.C Singer. Residual Vibration Reduction Using Vector Diagrams to Generate Shaped Inputs[J]. Journal of Mechanical Design. 1994, 116(2), p654-659
    [77] T. D. Tuttle and W. P. Seering. A Zero-placement Technique for Designing Shaped Inputs to Suppress Multiple-mode Vibration[C]. Proceeding of The American Control Conference, 1994, p2533-2537
    [78] L.Y.Pao. Multi-input Shaping Design for Vibration Reduction[J]. Automatica, 1999, 35(1), p81– 89
    [79] M.A. Lau and L.Y. Pao. Input Shaping and Time-optimal Control of Flexible Structures[J]. Automatica, 2003, 39(5), p893– 900
    [80] L.Y. Pao and C. La-orpacharapan. Shaped Time-Optimal Feedback Controllers for Flexible Structures[J]. Journal of Dynamic Systems, Measurement, and Control, 2004, 126(1), p173-186
    [81] M.D. Baumgart and L.Y. Pao. Discrete Time-optimal Command Shaping[J]. Automatica, 2007, 43(8), p1403 -1409.
    [82] S. Rhim, and W. J. Book. Adaptive Time-Delay Command Shaping Filter for Flexible Manipulator Control[J]. IEEE/ASME Transactions on Mechatronic, 2004, 9(4), p619-626
    [83] C.F. Cutforth and L.Y. Pao. Adaptive Input Shaping for Maneuvering Flexible Structures[J]. Automatica, 2004, 40(4), p685– 693
    [84] S. John and A. Tzes. Adaptive Input Shaping for Nonlinear Systems: A Case Study[J]. Journal of Dynamic Systems, Measurement, and Control, 2007, 129(2), p219-223
    [85] S.Y. Lim, H.M. Stevens and J.P. How. Input Shaping Design for Multi-input Flexible Systems[J]. Journal of Dynamics System, Measurement and Control, 1999, 121, p443-447.
    [86] J.Y. Park, and P.H. Chang. Learning Input Shaping Technique for Non-LTI Systems[J]. Journal of Dynamic Systems, Measurement, and Control, 2001, 123, p288-293.
    [87] K. Sadettin, A. Gursel and B. Sedat. Residual Dwing/Vibration Reduction Using a Hybrid Input Shaping Method[J]. Mechanism and Machine Theory, 2001, 36, p311-326
    [88] M. D. Baumgart and L.Y. Pao. Discrete Time-optimal Command Shaping[J]. Automatica, 2007, 43, p1403– 1409
    [89] M.S. Alam and M.O. Tokhi. Designing Feedforward Command Shapers with Multi-objective Genetic Optimisation for Vibration Control of a Single-link Flexible Manipulator[J]. Engineering Applications of Artificial Intelligence, 2008, 21, p229–246
    [90]钟庆昌梁春燕谢剑英.容许幅度法设计时滞陷波器抑制残余振动[J].振动工程学报. 2001, 14(1), p105-108
    [91]闫安志,徐晖,王国旗.抑制残留振动的三种整形器设计和鲁棒性分析[J].振动工程学报. 2003, 16(4), p446-448
    [92]董明晓,郑康平,陈继文,张明勤.最优鲁棒EI时滞滤波器的设计原理及性能分析[J].振动与冲击. 2007, 26(2), p138-140
    [93]张瑞军,张明勤,秦英林.闭环时滞滤波器消除二阶振荡系统残留振动的仿真研究[J].振动与冲击. 2007, 26(11), p163-165
    [94] S. Nicosia and P.Tomei. Robot Control by Using Only Joint Position Measurements[J]. IEEE Transactions on Automatic Control. 1999, 35(9), p1058-1061
    [95] De Wit, C. Canudas, J. Slotine. Sliding Observers for Robot Manipulators[J]. Automatica. 1988, 37(5), p859-864
    [96] C. Canudas, De Wit, N.Fixot. Robot Control via Robust Estimated State Feedback[J]. IEEE Transactions on Automatic Control. 1991, 36(12), p1497-1501
    [97] C. Canudas, De Wit, N.Fixot, K. J. Astrom. Trajectory Tracking in Robot Manipulators via Nonlinear Estimated State Feedback[J]. IEEE Transactions on Robotics and Automation. 1992, 8(1), p138-144
    [98] B. Harry, N. Henk. Passivity Aproach to Controller-observer Sesign for Robots[J]. IEEE Transactions on Robotics and Automation. 1993, 9(6), p740-754
    [99] P.R.Pagilla, M. Tomizuka. An Adaptive Output Feedback Controller for Robot Arms: Stability and Experiments[J]. Automatica 2001, .37(7), p983-995
    [100] G. Jorge, A. Marco A. Munoz, et.al. On the Control of Cooperative Robots without Velocity Measurements[J]. IEEE Transactions on Control Systems Technology. 2004, 12.(4), p600-608
    [101] Y.X. Su, C. M. Peter., C.H.Zheng. A Simple Nonlinear Observer for a Class of Uncertain Mechanical Dystems[J]. IEEE Transactions on Automatic Control. 2007, 52(7), p1340-1345
    [102] J. Hernandez, J.P. Barbot. Sliding Observer-based Feedback Control for Flexible Joints Manipulator[J]. Automatica.1996, 32(9), p1243-1254
    [103] De Leon-Morales, J. J.G. Alvarez-Leal. R. Castro-Linares, et.al. Control of a Flexible Joint Robot Manipulator via a Non-linear Control-observer Scheme[J]. International Journal of Control.2001, 74(3), p290-302
    [104] A. Farzaneh, H.A.Talebi, R. V.Patel. A Stable Neural Network-based Observer with Application to Flexible-joint Manipulators[J]. IEEE Transactions on Neural Networks, 2007, 17(1), p118-129
    [105] W.H. Chen, J. Donald et. al. A Nonlinear Disturbance Observer for Robotic Manipulators[J]. IEEE Transactions on Industrial Electronics. 2000, 47( 4), p932-938
    [106] Y. F. Li and X. B. Chen. End-Point Sensing and State Observation of a Flexible-Link Robot[J]. IEEE/ASME Transactions on Mechatronics. 2001, 6(3), p351-356.
    [107] J. Cheong, Y. Youm et. al.. Joint Tracking Controller for Multi-link Flexible Robot Using Disturbance Observer and Parameter Adaptation Scheme[J]. Journal of Robotic Systems. 2002, 19(8), p401-417.
    [108] W. Chatlatanagulchai, H.C.Nho, P. H.Meck. Robust Observer BackstePing Neural Network Control of Flexible-joint Manipulator[C]. Proceedings of the American Control Conference. 2004, p5250-5255
    [109] F. Bouakrif, D. Boukhetala and F.Boudjema. Passivity-based Controller-observer for Robot Manipulators[C]. International Conference on Information and Communication Technologis: From Theory to Applications. 2008, p1-5
    [110] Y. G. Kim, J. Seok, I. Noh et.al. An Adaptive Sisturbance Observer for a Two-link Robot Manipulator[C]. International Conference on Control, Automation and Systems. 2008, p141-145
    [111] N. Mehrzad. A Class of Globally Convergent Velocity Observers for Robotic Manipulators[J]. IEEE Transactions on Automatic Control, 2009, 54(8), p1956-1961
    [112] C.C. Yih. Extended Nicosia-tomei Observer-based Tracking Control of Robot Manipulators[C]. IEEE International Conference on Robotics and Automation. 2009, p2575-2580.
    [113]王国利,韩建达.柔性机械臂基于观测的逆动力学轨迹跟踪控制[J].机器人. 1999, 21(3), p177-183
    [114]顾海军,张天平,曹永忠.基于观测器的机器人鲁棒跟踪控制[J].控制工程. 2003, 10(6), p568-570
    [115]陈国栋,贾培发.基于扩张状态观测的机器人分散鲁棒跟踪控制[J].自动化学报. 2008, 34(7), p828-831
    [116]马赛,肖胜红.机器人控制中的变结构观测器[J].舰船电子工程. 2009, 29(2), p158-161
    [117]张天平,华森.基于观测器的机器人动态面控制[J].控制工程. 2009, 16(5), p630-633
    [118]周芳,朱齐丹,蔡成涛,赵国良.基于观测器的机械臂位置/力神经网络控制[J].华中科技大学学报(自然科学版). 2009, 37(7), p79-82.
    [119]张袅娜,张德江,尤文.基于鲁棒滑模观测器的两关节柔性机械手控制[J].控制理论与应用. 2009, 26(7), p722-726.
    [120]杨荣柏,机械结构分析的有限元法[M].华中理工大学出版社.1989
    [121] Y.C. Li, B.J. Tang, Z.X. Shi, et al. Experimental Study for Trajectory Tracking of a Two-link Flexible Manipulator[J]. International Journal of Systems Science, 2000, 31(1), p3-9.
    [122] Y.C. Li and F. Matsuno. Trajectory Control Two-degree-of-freedom Flexible Manipulators[C]. The Annual Conference of the Robotics Society of Japan, 1995, P81-82.
    [123] S.S. Ge, T.H. Lee, G. Zhu. Nonlinear Feedback Controller for a Single-link Flexible Manipulator Based on a Finite Element Model[J]. Journal of Robotic Systems. 1997, 14(3), p165-178.
    [124] H. Du, M.K. Lim, K.M. Liew, A Nonlinear Finite Element Model for Dynamics of Flexible Manipulators[J]. Mechanism and Machine Theory, 1996, 31(8), p1109-1119.
    [125] J.M. Martins, Z. Mohamed, M.O. Tokhi, et al. Aproaches for Dynamic Modelling of Flexible Manipulator Systems[J]. IEE Proceedings: Control Theory and APlications. 2003, 150(4), p401-411
    [126] J.G. Han, W. X. Ren, Y. Huang. A Wavelet-based Stochastic Finite Element Method of Thin Plate Bending[J]. Applied Mathematical Modelling, 2007, 31, p181-193
    [127] S. S. Ge, T. H. Lee, and G. Zhu, Comparison Studies between Assumed Modes Method and Finite Element Method in Modeling a Single-link Flexible Manipulator[C]. IEEE International Conference on intelligent control and instrument. 1995, p376-381.
    [128] J. E. Slotine, W.P. Li, Applied Nonlinear Control[M]. Prentice-Hall, USA, 1991
    [129] S. S. Chong and X.H. Yu. A Robust Adaptive Sliding Mode Controller for Robotic Manipulators[C]. IEEE Workshop on Variable Structure Systems.1996. p31-35
    [130]张鹏李元春.基于铰链结构的机械臂操作柔性负载系统建模与控制[J].吉林大学学报(工学版), 2008,38(2), p7-11
    [131] P. Zhang, Y.C. Li. Simulations and Trajectory Tracking of Two Manipulators Manipulating a Flexible Payload[C]. International Conference on Robotics, Automation and Mechatronics. 2008, p72-77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700