气固反应热变温器系统的传热传质及系统性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济的发展和能耗需求的增加,节约能源和保护环境目前已经成为世界范围所共同关注的一个热点问题。气固反应热变温器系统,是基于可逆气固反应构建的热力学循环,通过热能和化学能的相互转化,能够提升热量的温度,实现低品位余热资源的有效回收和利用。和其他形式的热量回收系统,如常规的蒸气压缩热泵系统相比,气固反应热变温器系统不依赖电力的消耗,无运动部件和噪音,具有广泛的应用前景。系统通常采用对环境无害的自然工质,因此受到了国内外越来越多的关注。
     在系统的工质对选型方面,相对于金属氢化物/氢和金属氧化物/二氧化碳等工质对,金属氯化物/氨的反应量较大,温度范围较适合于低温余热资源的利用。但是,系统在实际应用中存在几个主要的问题,一是金属氯化物的导热系数较低(如CaCl_2的导热系数仅0.1 ~ 0.3W·m·K~(-1)),无法有效的传递反应热,致使系统的功率较低;二是金属氯化物/氨工质对在多次的合成/分解反应后,金属氯化物发生结块的现象(agglomeration phenomenon),导致反应性能衰减和传质恶化;三是系统的热力学性能(温度提升ΔT、系统COP和COP_(ex))较低,经济性较差。此外,系统性能的研究主要是理论分析,实验系统的建立和性能测试较少。
     针对以上问题,本文对气固反应热变温器系统的传热传质和系统性能进行研究,所获得的研究成果对气固反应热变温器系统的设计和性能优化,以及相关的气固反应系统和复杂传热传质过程的研究,都具有一定的指导意义。
     本文的主要内容包括:
     (1)从温度提升ΔT、系统COP和COP_(ex)以及工质对的匹配等方面,对两种基本结构的气固反应热变温器系统(E/C + R系统和R + R系统)进行了对比分析,确定采用R + R系统作为本文的主要研究对象,并对该系统的热力学完善度进行了理论分析,确定了平衡温降和反应腔室的非充分回热是系统热力学不完善的主要影响因素。
     (2)气固反应热变温器系统通常由低温反应盐和高温反应盐组成,系统运行过程包含两种反应盐的合成和分解反应。气体腔室的存在将对系统中的反应盐的化学反应过程产生作用。结合系统的结构和运行过程,本文分析了气体腔室体积对系统功率SHP、系统COP和COP_(ex)的影响。在气体腔室体积较小时,两种反应盐的反应速率较趋于平衡。此时,系统的功率SHP、系统COP和COP_(ex)较大。
     (3)本文针对膨胀石墨压块基材的复合反应块,依据反应块的物理结构,结合所经历的物理和化学过程,对反应块在气固反应过程中的热导率和气体渗透率等物性进行了分析,并对传热、传质性能对气固反应过程和系统性能的影响进行了研究,提出了优化的性能参数区间,为系统的性能优化提供了重要的依据。
     (4)本文建立了单级气固反应热变温器的实验系统,对系统的性能进行了测试(ΔT = 30℃、SHP = 254W·kg~(-1)、COP = 0.19和COP_(ex) = 0.23),实验验证了系统的可行性,并探讨了系统内部的多步反应过程和系统操作模式对系统性能的影响,验证了闭阀操作对系统功率SHP、系统COP和COP_(ex)的提升作用。
     (5)本文提出了一种二级气固反应热变温器系统的热力学循环。此系统是基于单级系统进行改进,有效的提高系统温度提升ΔT,并且避免系统压力在系统改进过程中所受到的影响,改善系统运行的可靠性和系统操作的安全性。本文还建立了二级气固反应热变温器的实验系统,并对系统性能进行了测试和初步的实验,最大温度提升ΔTmax可达70℃。
With the development of world economy and increment of energy demand,‘energy saving and environment protection’has become the common concern around the world. Solid-gas reaction heat transformer was the system based on reversible solid-gas reaction and natural material, and was able to effectively recycle and utilize low-temperature waste heat sources. Comparing with conventional vapor-compressed heat pump system, solid-gas reaction heat transformer system has the following advantages: 1) less consumption of electric power; 2) no reciprocate-motion device; and 3) less noise. As to solid-gas reaction heat transformer system, the working pair of metallic chloride and ammonia has large reaction heat and was the best choice available for recycle of wild-range waste heat. But there are several problems in the application of solid-gas reaction heat transformer system. Firstly, thermal conductivity of metallic chloride is very low (e.g. the thermal conductivity of CaCl_2 is only 0.1-0.3W·m~(-1)K~(-1)), so heat generation or consumption in solid-gas reaction can not be effective transferred, leading to low system power (SHP). Secondly, serious agglomeration phenomenon was happened in repeating synthesis/decomposition process, and it significantly deteriorated mass transfer and reaction performance. Thirdly, low system performance (i.e. SHP, COP and COP_(ex)) led to minimal economic value. For solving all of above problems, investigation on‘heat and mass transfer in solid-gas reaction heat transformer and system performance’was conducted in this thesis. Based on this work, the main contents in this paper include as follows:
     (1) Two types of basic solid-gas reaction heat transformer system (i.e. E/C + R and R + R) were compared, with the concern of temperature upliftΔT, system COP and COP_(ex), as well as option of working pairs. As a result, R + R system was taken as the subject of investigation in this paper. Equilibrium temperature drop and incomplete heat recovery were found as two major factors leading to thermodynamic irreversibility of solid-gas reaction heat transformer system.
     (2) Effect of gas volume in solid-gas reaction heat transformer system on reaction rate balance and system performance, mainly as system SHP, COP and COP_(ex) was discussed in this paper. It was concluded that gas volume has balance effect on reaction process of low-temperature salt and high-temperature salt in solid-gas reaction heat transformer system. In the case of small gas volume, system power SHP, system COP and COP_(ex) were improved.
     (3) Physical parameters, e.g. thermal conductivity and gas permeability, of composite reactive block based on expanded graphite matrix were investigated. The theoretical model took consideration of the physical structure of composite reactive block and the physical and chemical processes suffered. Theoretical results were compared with those experimental data from references; good agreement was concluded. The influences of heat and mass transfer performance and system structure on system performance were also conducted in this paper. It was concluded that system performance was mainly confined by heat transfer process. Optimistic thermal conductivityλand heat transfer coefficient U were also proposed.
     (4) Experimental set-up of single-stage solid-gas reaction heat transformer system was developed and its performance measured. The main system performance was:ΔT = 30℃, SHP = 254W·kg~(-1), COP = 0.19 and COP_(ex) = 0.23. With the experimental set-up, feasibility of single-stage solid-gas reaction heat transformer system was proven; the effects of multi-step reaction and system operation mode on system performance were also investigated. It was confirmed that closed protocol on gas valve control was favored for system performance improvement, i.e. system power SHP, system COP and COP_(ex).
     (5) To improve temperature uplift, novel two-stage solid-gas reaction heat transformer system was proposed and the experimental set-up was developed. Theoretical comparison between novel system and other two-stage solid-gas reaction heat transformer systems in references suggested that reliability, operation safety and system performances were better in the novel system. Preliminary experiments were conducted and system performance was measured, with significant improvement of temperature uplift, i.e. maximum temperature upliftΔTmax was approaching 70℃.
引文
[1]朱明善,刘颖,林兆庄,彭晓峰,工程热力学.北京:清华大学出版社
    [2] http://energy.sjtu.edu.cn/knowledge.html
    [3]《中央关于制定十一五规划的建议》
    [4]中国能源消耗现状及其管理策略研究报告(2007)
    [5]《节能减排综合性工作方案》
    [6]《中华人民共和国节约能源法》
    [7]《关于加强节约能源工作的报告》
    [8] http://www.stats.gov.cn
    [9] http://www.cei.gov.cn
    [10]余吟清, "气固反应热变温器热力学性能分析及试验研究[硕士学位论文],"上海交通大学, 2008
    [11] Wongsuwan W., Kumar S., Neveu P., Meunier F., "A review of chemical heat pump technology and applications". Applied Thermal Engineering, vol. 21, pp. 1489-1519, 2001
    [12]王凯, "氯化物/膨胀石墨混合吸附剂的吸附特性及其在双热管型吸附制冷系统中的应用[博士学位论文],"上海交通大学, 2007
    [13] C. RE,V. R, "Possible adsorption pairs for use in solar cooling," Ambient Energy, vol. 7, pp. 183-190, 1986.
    [14] M. F, "Theoretical Performance of solid adsorbent cascading cycles using the zeolite-water and active carbon-methanol pairs: four cases studies," Heat Recovery System, vol. 6, pp. 491-498, 1988.
    [15] M. F,D. N, "Performance of adsorption heat pumps, active carbon-methanol and zeolite-water pairs," ASHRAE Transactions, vol. 2, pp. 267-274, 1990.
    [16] W. RZ, J. JP, T. Y, Z. YH, "Study on a new solid adsorption refrigeration pair, active carbon fiber-methanol," ASME Journal of Solar Energy Engineering, vol. 119, pp. 214-218, 1997.
    [17] V. LL, M. DA, V. L. Jr, "Multi-effect complex compound/ammonia sorption machines," presented at Int. Absorption Heat Pump Conference, Montreal, 1996.
    [18]谭盈科,冯毅,崔乃英, "吸附式太阳能冰箱的研究,"太阳能学报, vol. 13, pp. 255-257, 1992.
    [19]冯毅,谭盈科, "实验用吸附式制冰机的研制与分析,"制冷, vol. 1, pp. 1-4, 1999.
    [20]李保官,李建敏, "固体吸附式制冷的原理及工质的研究,"工程热物理学报, vol. 15, pp. 1-5, 1994.
    [21] K. KF, G. A, S. R, "Conceptual studies on modular adsorption systems for various applications," ASME, Advanced Energy Systems Division(AES), Heat Pump Design, Analysis, and Applications, vol. 26, pp. 49-56, 1991.
    [22] R. G,C. G, "Performances of adsorption systems for ambient heating and air conditioning," International Journal of Refrigeration, vol. 22, pp. 18-26, 1999.
    [23] A. P. F. Leite,M. Daguenet., "Performance of a new solid adsorption ice maker with solar energy regeneration," Energy Conversation and Management, vol. 41, pp. 1625-1647, 2000.
    [24] K. Sumathy,Z. F. Li, "Experiments with solar-powered adsorption ice maker," Renewable Energy, vol. 16, pp. 704-707, 1999.
    [25] R. E. Critoph, "Ammonia carbon solar refrigerator for vaccine cooling," Renewable Energy, vol. 5, pp. 502-508, 1994.
    [26] R. E. Critoph, "Forced convection adsorption cycles," Applied Thermal Engineering, vol. 18, pp. 799-807, 1998.
    [27] R. E. Critoph, "Forced convection adsorption cycle with packed bed heat regeneration," International Journal of Refrigeration, vol. 22, pp. 38-46, 1999.
    [28] R. E. Critoph, "Rapid cycling solar/biomass powered adsorption refrigeration system," Renewable Energy, vol. 16, pp. 673-678, 1999.
    [29] R. E. Critoph, Z. Tamainot-Telto, G. N. L. Davies, "Prototype of a fast cycle adsorption refrigerator utilizing a novel carbon-aluminium laminate," Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 214, pp. 439-448, 2000.
    [30] C. G, R. G, M. L, "Composites of activated carbon for refrigeration adsorption machines," Carbon, vol. 33, pp. 1205-1210, 1995.
    [31] H. E. J, "A study of thermal decomposition of methanol in solar powered adsorption refrigeration systems," Solar Energy, vol. 62, pp. 325-329, 1998.
    [32] J. JA, "Sorption refrigeration research at JPL/NASA," Heat Recovery System &CHP, vol. 13, pp. 363-371, 1993.
    [33] J. JA, "Carbon/ammonia regenerative adsorption heat pump," presented at Proceedings of the International Absorption Heat Pump Conference, 1994.
    [34] J. JA,V. Christophilos, "High-efficiency regenerative adsorption heat pump," ASHRAE Transactions, vol. 99, pp. 54-60, 1993.
    [35] Z. Tamainot-Telto,R. E. Critoph, "Solar sorption refrigerator using a CPC collector," Renewable Energy, vol. 16, pp. 735-738, 1999.
    [36] L. L. Vasiliev, D. A. Mishkinis, A. A. Antukh, L. L. Vasiliev, Jr., "New solid sorption refrigerator," presented at Proceedings of the International Conference on Energy and Environment, ICEE, Shanghai, China, 1998.
    [37] L. L. Vasiliev, D. A. Mishkinis, A. A. Antukh, L. L. Vasiliev, Jr., "Solar-gas solid sorption heat pump," Applied Thermal Engineering, vol. 21, pp. 573-583, 2001.
    [38] T.-T. Z,C. RE, "Adsorption refrigerator using monolithic carbon-ammonia pair," International Journal of Refrigeration, vol. 23, pp. 146-155, 1997.
    [39] T.-T. Z,C. RE, "Advanced solid sorption air conditioning modules using monolithic carbon-ammonia pair," Applied Thermal Engineering, vol. 23, pp. 659-674, 2003.
    [40]卢允庄,王如竹, "真空集热型太阳能固体吸附式制冷的理论研究,"太阳能学报, vol. 22, pp. 480-485, 2001.
    [41]常士楠,林贵平,文东升, "吸附式制冷系统传热传质过程的数值模拟,"太阳能学报, vol. 20, pp. 335-339, 1999.
    [42]姜周曙,王如竹,卢允庄,邵渊, "吸附-吸收复叠式三效制冷循环,"化工学报, vol. 53, pp. 566-571, 2002.
    [43] G. Cacciola, A. Hajji, G. Maggio, G. Restuccia, "Dynamic simulation of a recuperative adsorption heat pump," Energy (Oxford), vol. 18, pp. 1125-1137, 1993.
    [44] G. Cacciola,G. Restuccia, "Reversible adsorption heat pump: a thermodynamic model," International Journal of Refrigeration, vol. 18, pp. 100-106, 1995.
    [45] J.-J. Guilleminot, F. Poyelle, F. Meunier, "Experimental results and modeling tests of an adsorptive air-conditioning unit," San Francisco, CA, USA, 1998.
    [46] F. Poyelle, J.-J. Guilleminot, F. Meunier, "Experimental tests and predictive model of an adsorptive air conditioning unit," Industrial & Engineering Chemistry Research, vol. 38, pp. 298-309, 1999.
    [47] M. Tather,A. Erdem-Senatalar, "When do thin zeolite layers and a large void volume in the adsorber limit the performance of adsorption heat pumps?," Microporous and Mesoporous Materials, vol. 54, pp. 89-96, 2002.
    [48] L. Z. Zhang, "Design and testing of an automobile waste heat adsorption cooling system," Applied Thermal Engineering, vol. 20, pp. 103-114, 2000.
    [49] B. Cerkvenik, A. Poredos, F. Ziegler, "Influence of adsorption cycle limitations on the system performance," International Journal of Refrigeration, vol. 24, pp. 475-485, 2001.
    [50] H.-M. Lai, "Enhanced adsorption cycle operated by periodic reversal forced convection," Applied Thermal Engineering, vol. 20, pp. 595-617, 2000.
    [51] E. C. Boelman, B. B. Saha, T. Kashiwagi, "Experimental investigation of a silica gel-water adsorption refrigeration cycle - the influence of operating conditions on cooling output and COP," San Diego, CA, USA, 1995.
    [52] B. B. Saha, E. C. Boelman, T. Kashiwagi, "Computer simulation of a silica gel-water adsorption refrigeration cycle - the influence of operating conditions on cooling output and COP," San Diego, CA, USA, 1995.
    [53] Y. Yonezawa, T. Ohnishi, S. Okumura, "Method of operating adsorption refrigerators." US Patent, nf
    [54] Y. Yonezawa, M. Matsushita, K. Oku, "Adsorption refrigeration system." US patent, nf
    [55] H. T. Chua, K. C. Ng, A. Chakraborty, N. M. Oo, M. A. Othman, "Adsorption characteristics of silica gel + water systems," Journal of Chemical and Engineering Data, vol. 47, pp. 1177-1181, 2002.
    [56] S.-H. Cho,J.-N. Kim, "Modeling of a silica gel/water adsorption-cooling system," Energy (Oxford), vol. 17, pp. 829-839, 1992.
    [57] E. C. Boelman, B. B. Saha, T. Kashiwagi, "Parametric study of a silica gel-water adsorption refrigeration cycle - the influence of thermal capacitance and heat exchanger UA-values on cooling capacity, power density, and COP," Philadelphia, PA, USA, 1997.
    [58] H. T. Chua, K. C. Ng, A. Malek, T. Kashiwagi, A. Akisawa, B. B. Saha, "Entropy generation analysis of two-bed, silica gel-water, non-regenerative adsorption chillers," Journal of Physics D: Applied Physics, vol. 31, pp. 1471-1477, 1998.
    [59] B. B. Saha,T. Kashiwagi, "Experimental investigation of an advanced adsorption refrigeration cycle," ASHRAE Transactions, vol. 103, pp. 50-58, 1997.
    [60] K. C. A. Alam, B. B. Saha, Y. T. Kang, A. Akisawa, T. Kashiwagi, "Heat exchanger design effect onthe system performance of silica gel adsorption refrigeration systems," International Journal of Heat and Mass Transfer, vol. 43, pp. 4419-4431, 2000.
    [61] H. T. Chua, K. C. Ng, A. Malek, T. Kashiwagi, A. Akisawa, B. B. Saha, "Modeling the performance of two-bed, silica gel-water adsorption chillers," International Journal of Refrigeration, vol. 22, pp. 194-204, 1999.
    [62] H. T. Chua, K. C. Ng, A. Malek, T. Kashiwagi, A. Akisawa, B. B. Saha, "Multi-bed regenerative adsorption chiller - improving the utilization of waste heat and reducing the chilled water outlet temperature fluctuation," International Journal of Refrigeration, vol. 24, pp. 124-136, 2001.
    [63] V. Tangkengsirisin, A. Kanzawa, T. Watanabe, "Solar-powered adsorption cooling system using a silica gel-water mixture," Energy (Oxford), vol. 23, pp. 347-353, 1998.
    [64] R.J. Romero, A.Rodriguez-Martinez, "Optimal water purification using low grade waste heat in an absorption heat transformer," Desalination, vol. 220, pp. 506-513, 2008
    [65] A. Sozen, H.S. Yucesu, "Performance improvement of absorption heat transformer," Renewable Energy, vol. 32, pp. 267-284, 2007
    [66]黄涛,董海虹, "第二类吸收式热泵回收地热余热的应用研究,"制冷与空调, vol. 22, pp. 43-48, 2008
    [67]赵宗昌,阎雪峰,沙庆云,李淞平, "第二类LiBr-H2O吸收式热泵热力循环分析,"节能技术, vol. 20, pp. 5-9, 2002
    [68]金星,张小松, "温度参数对升温型溴化锂吸收式热泵性能系数影响程度模拟分析,"流体机械, vol. 36, pp. 55-58, 2008
    [69]方起书,骆萍梅, "第二类吸收式热泵的研究及应用,"应用能源技术, vol. 10, pp. 36-39, 2008
    [70]朱家玲,刘国强,张伟, "利用第二类吸收式热泵回收地热余热的模拟研究,"太阳能学报, vol. 28, pp. 745-750, 2007
    [71] A. Yanoma, M. Yoneta, T. Nitta, Okuda, "DESIGN AND OPERATION OF THE COMMERCIAL SIZE CHEMICAL HEAT PUMP SYSTEM USING METAL HYDRIDES," Honolulu, HI, USA, 1987.
    [72] M. Ron, "HYDROGEN HEAT PUMP AS A BUS AIR CONDITIONER," Journal of the less-Common Metals, vol. 104, pp. 259-278, 1984.
    [73] A. Isselhorst, M. Groll, "Two-stage metal hydride heat transformer laboratory model," Journal of Alloys and Compounds, vol. 231, pp. 888-894, 1995
    [74] E. L. Huston, G..D. Sandrock, "Engineering properties of metal hydrides," Journal of the Less-Common Metals, vol. 74, pp. 435-443, 1980
    [75]李刚,刘华军,李来风, "金属氢化物热泵空调研究进展,"制冷学报, vol. 2, pp. 1-7, 2005
    [76] Yukitaka Kato, Naozumi Harada, Yoshio Yoshizawa, "Kinetic feasibility of a chemical heat pump for heat utilization of high-temperature processes," Applied Thermal Engineering, vol. 19, pp. 239-254,1999
    [77] R. de Boer, W. G.Haije, J. B. J.Veldhuis, "Determination of structural, thermodynamic and phase properties in the system for application in a chemical heat pump," Thermochimica Acta, vol. 395, pp. 3-19, 2003
    [78]林贵平,袁修平, "化学热泵系统在太阳能热利用中的作用,"太阳能学报, vol. 17, pp. 93-97, 1996.
    [79]林贵平,袁修平,梅志光, "太阳能固体吸收式制冰机,"太阳能学报, vol. 14, pp. 101-113, 1993.
    [80]梅宁, "吸附式制冷单管吸附床传热传质的数值模拟及分析,"青岛海洋大学学报(自然科学版), vol. 33, pp. 469-475, 2003.
    [81]王丽伟,王如竹,吴静怡,王凯, "氯化钙-氨的吸附特性研究及其在制冷中的应用,"中国科学E辑, vol. 34, pp. 268-279, 2004.
    [82]王丽伟,王如竹,吴静怡,王凯, "氯化钙-氨在吸附制冷中的化学吸附前驱态研究,"中国科学E辑, vol. 35, pp. 31-42, 2005.
    [83] O. C. Iloeje, A. N. Ndili, S. O. Enibe, "Computer simulation of a CaCl2 solid-adsorption solar refrigerator," Energy (Oxford), vol. 20, pp. 1141-1151, 1995.
    [84] O. C. Iloeje, "QUANTITATIVE COMPARISONS OF TREATED CaCl2 ABSORBENT FOR SOLAR REFRIGERATION," Solar Energy, vol. 37, pp. 253-260, 1986.
    [85] U. Rockenfeller, L. D. Kirol, "HVAC and heat pump development employing complex compound working media," International Absorption Heat Transfer Conference, vol. 31, pp. 433-437, 1993
    [86] K. Wang, J.Y. Wu, R.G.. Olivera,R.Z. Wang, "Performance prediction of CaCl2-Expanded graphite consolidated adsorbent used in chemical adsorption ice maker," Energy Conversion and Management, 2008
    [87] T.-H. Eun, H.-K. Song, J. H. Han, K.-H. Lee, J.-N. Kim, "Enhancement of heat and mass transfer in silica-expanded graphite composite blocks for adsorption heat pumps: Part I. Characterization of the composite blocks," International Journal of Refrigeration, vol. 23, pp. 64-73, 2000
    [88] O. M. M. Eltom,A. A. M. Sayigh, "Simple method to enhance thermal conductivity of charcoal using some additives," Renewable Energy, vol. 4, pp. 113-118, 1994.
    [89] H. Yanagi,N. Ino, "Heat and mass transfer characteristics in consolidated silica gel/water adsorption - cooling system," presented at American Society of Mechanical Engineers (Paper), Singapore, Singapore, 1997.
    [90] L. L. Vasiliev, K. LE, A. A. Antukh, A. G. Kulakov, "NaX zeolite, carbon fiber and CaCl2 ammonia reactors for heat pumps and refrigerators," Adsorption, vol. 2, pp. 311-316, 1996.
    [91] J. J. Guilleminot, A. Choisier, J. B. Chalfen, S. Nicolas, J. L. Reymoney, "Heat transfer intensification in fixed bed adsorbers," Heat Recovery Systems & CHP, vol. 13, pp. 297-300, 1993.
    [92] J. J. Guilleminot, F. Meunier, J. Pakleza, "HEAT AND MASS TRANSFER IN ANON-ISOTHERMAL FIXED BED SOLID ADSORBENT REACTOR: A UNIFORM PRESSURE - NON-UNIFORM TEMPERATURE CASE," International Journal of Heat and Mass Transfer, vol. 30, pp. 1595-1606, 1987
    [93] M. Groll, "Reaction beds for dry sorption machines," presented at Proceedings of Symposium of Solid Sorption Refrigeration, Paris, France, 1992.
    [94] S. Mauran, P. Prades, F. L'Haridon, "Heat and mass transfer in consolidated reacting beds for thermochemical systems," Heat Recovery Systems & CHP, vol. 13, pp. 315-319, 1993.
    [95] T.-H. Eun, H.-K. Song, J. H. Han, K.-H. Lee, J.-N. Kim, "Enhancement of heat and mass transfer in silica-expanded graphite composite blocks for adsorption heat pumps. Part II. Cooling system using the composite blocks," International Journal of Refrigeration, vol. 23, pp. 74-81, 2000.
    [96] T.-H. Eun, H.-K. Song, J. H. Han, K.-H. Lee, J.-N. Kim, "Enhancement of heat and mass transfer in silica-expanded graphite composite blocks for adsorption heat pumps: Part I. Characterization of the composite blocks," International Journal of Refrigeration, vol. 23, pp. 64-73, 2000
    [97] T. Miltkau,B. Dawond, "Dynamic modeling of the combined heat and mass transfer during the adsorption/desorption of the water vapor into/from a zeolite layer of an adsorption heat pump," International Journal of Thermal Science, vol. 41, pp. 753-762, 2002
    [98] S. Dunne, "Carousel heat exchanger for sorption cooling process." US Patent, [116] F. Meunier, "Solid sorption heat powered cycles for cooling and heat pumping applications," Applied Thermal Engineering, vol. 18, pp. 715-729, 1998
    [99] V. LL, "Sorption refrigerators with heat pipe thermal control," presented at Proceedings of ICCR'2003, Zhejinag: Hangzhou, 2003.
    [100]王丽伟,王如竹,吴静怡, "类分离热管船用吸附制冰机,中国专利,专利申请号:200310108924.5," 2003.
    [101]夏再忠,王如竹,吴静怡, "采用分离型热管的新型高效可靠的吸附制冷机,中国专利,专利申请号:200410025398.0," 2004.
    [102]夏再忠,王如竹,吴静怡, "余热驱动的复合交变热管发生器,中国专利,专利申请号:200410018291.3," 2004
    [103] V. Goetz, F. Elie and B. Spinner, "Structure and performance of single effect solid/gas chemical heat pumps," Heat Recovery Systems CHP, vol. 13, pp. 79-96, 1993
    [104] H. T. Chua, K. C. Ng, A. Malek, T. Kashiwagi, A. Akisawa, B. B. Saha, "Multi-bed regenerative adsorption chiller - improving the utilization of waste heat and reducing the chilled water outlet temperature fluctuation," International Journal of Refrigeration, vol. 24, pp. 124-136, 2001
    [105]王如竹,许煜雄,吴静怡,施雯,腾毅, "连续回热型吸附式制冷机的改进及运行实验,"工程热物理学报, vol. 19, pp. 275-278, 1998.
    [106]吴静怡, "连续回热型吸附式空调/热泵机组的循环特性及其实验研究[博士学位论文],"上海交通大学, 2000.
    [107]吴静怡,王如竹,许煜雄, "连续回热型吸附式空调实际运行与吸附床性能分析,"中国工程热物理学会工程热力学与能源利用学术会议, pp. 45-49, 1999
    [108] S. V. Shelton, W. J. Wepfer, D. J. Miles, "Ramp wave analysis of the solid/vapor heat pump," Journal of Energy Resources Technology, Transactions of the ASME, vol. 112, pp. 69-78, 1990
    [109] R. E. Critoph, "Performance estimation of convective thermal wave adsorption cycles," Applied Thermal Engineering, vol. 16, pp. 429-437, 1996
    [110]谭智超,王如竹, "双效复叠式制冷循环的研究,"太阳能学报, vol. 19, pp. 156-160, 1998
    [111] D. W. Sun, "Thermodynamic analysis of the operation of two-stage metal-hydride heat pumps," Applied Energy, vol. 54, pp. 29-47, 1996
    [112] Suda Seijirau, Komazaki Yoshio, Narasaki Hiroshi, Uchida Masaki, "Development of double stage heat pump: experimental and analytical surveys," Journal of Less-Common Metals, vol. 172, pp. 1092-1110, 1991
    [113] B. Spinner, M. Sorin, J. Berthiaud, N. Mazet, F. Rheault, "New cascades for thermo-chemical refrigeration," International Journal of Thermal Sciences, vol. 44, pp. 1110-1114, 2005
    [114] M. Pons,F. Poyelle, "Adsorptive machines with advanced cycles for heat pumping or cooling applications," International Journal of Refrigeration, vol. 22, pp. 27-37, 1999.
    [115] R. Z. Wang, "Performance improvement of adsorption cooling by heat and mass recovery operation," International Journal of Refrigeration, vol. 24, pp. 602-611, 2001
    [116] A. Sozen, E. Arcaklioglu, "Exergy analysis of an ejector-absorption heat transformer using artificial neutral network approach," Applied Thermal Engineering, vol. 27, pp. 481-491, 2007
    [117] J. C. Chen, "Optimal choice of the performance parameters of an absorption heat transformer," Heat Recovery System and CHP, vol. 15, pp. 249-256, 1995
    [118] T. Z. Chen, Z. J. Yan, "An ecological optimization criterion for a class of irreversible absorption heat transformers," Journal of Physics D: Applied Physics, vol. 31, pp. 1078-1082, 1998
    [119] J. C. Chen, "The influence of multi-irreversibilities on the performance of a heat transformer," Journal of Physics D: Applied Physics, vol. 30, pp. 2953-2957, 1997
    [120] J. C. Chen, "The coefficient of performance of a multi-temperature-level absorption heat transformer at maximum specific heating load," Journal of Physics D: Applied Physics, vol. 31, pp. 3316-3322, 1998
    [121]秦晓勇,林根,孙丰瑞, "不可逆四热源吸收式热变换器的最优性能,"工程热物理学报, vol. 25, pp. 185-188, 2004
    [122] S. Z. Wu, J. C. Chen, "Parametric optimum design of an irreversible heat-transformer based on the thermo-economic approach," Applied Energy, vol. 80, pp. 349-365, 2005
    [123] K. Castets, N. Mazet, "Analysis and optimization of the cyclic working mode of thermochemical transformers," Applied Thermal Engineering, vol. 20, pp. 1649-1666, 2000
    [124] S. Spoelstra, W. G.Haije, J. W. Dijkstra, "Techno-ecocomic feasibility of high-temperature high–lift chemical heat pumps for upgrading industrial waste heat," Applied Thermal Engineering, vol. 22, pp. 1619-1630, 2002
    [125] J. Bougard, R. Jadot, V. Poulain, "Solid-gas reactions applied to thermotransformer design," International Absorption Heat Pump Conference, vol. 31, pp. 413-418, 1993
    [126]王宁惠, "能量利用的新途径——化学热泵,"天津理工学院学报, vol. 10, pp. 27-34, 1994
    [127] A. Yanoma, M. Yoneta, T. Okuda, "Design and operation of the commercial-size chemical–size chemical heat-pump system using metal hydride," Proceeding of 1987 ASEM-JSME Thermal Engineering Joint Conference, pp. 431-437, 1987
    [128] E. Willers, M. Groll, "The two-stage metal hydride heat transformer," International Journal of Hydrogen Energy, vol. 24, pp. 269-276, 1999
    [129] H. Takeda, T. Kabutomori, U. Wakisaka, K. Ohnishi. Characteristics of heat-hydrogen gas energy conversion and hydrogen gas transportation using hydrogen absorbing alloy. Journal of Alloys and Compounds 1997 Vol.253-254: 677-681
    [130] W.G. Haije, J.B.J. Veldhuis, S.F. Smeding, R.J.H. Grisel, "Solid/vapour sorption heat transformer: Design and performance," Applied Thermal Engineering, vol. 27, pp. 1371-1376, 2007
    [1]天津化工研究院,无机盐工业手册.北京:化学工业出版社, 1996.
    [2]丁国良,张春路,赵力,制冷空调新工质上海交通大学出版社, 2003.
    [3]王如竹,吴静怡,代彦军,吸附式制冷.北京:机械工业出版社, 2002.
    [4] T. Z. Chen, Z. J. Yan. An ecological optimization criterion for a class of irreversible absorption heat transformers [J]. Journal of Physics D:Applied Physics, 1998, 31: 1078-1082
    [5] S. Z. Wu, J. C. Chen. Parametric optimum design of an irreversible heat-transformer based on the thermo-economic approach [J]. Applied Energy, 2005, 80: 349-365
    [1] Boersma,M. A. M, Carbon: Electrochemical and Physicochemical Properties. New York: John Wiley & Sons, 1988
    [2] Oliveira RG. Consolidated composite reactive bed for refrigeration sorption system. Post-doctor report. Shanghai Jiao Tong University. 2006:10-12
    [3] M. J. Prakash, M. Prasad, K. Srinivasan, "Modeling of thermal conductivity of charcoal-nitrogen adsorption beds," Carbon, vol. 38, pp. 907-913, 2000
    [4]杨世铭,传热学.北京:高等教育出版社, 1987
    [5]王凯, "氯化钙/膨胀石墨混合吸附剂的吸附特性及其在双热管型吸附制冷系统中的应用[博士学位论文],"上海交通大学, 2007
    [6] J.H Han, K.H. Lee. Effective thermal conductivity of graphite-metallic salt complex for chemical heat pumps. Journal of thermo-physics and heat transfer. V13(4). 1999
    [7] S. Mauran, O. Coudevylle, H.B. Lu. Optimization of porous reactive media for solid sorption heat pumps. In: International Ab-sorption heat pump conference. Quebec, Montreal. 1996
    [8] M. Mbaye, Z. Aidoun, V. Valkov, A. Legault, "Analysis of chemical heat pumps (CHPS): Basic concepts and numerical model description," Applied Thermal Engineering, vol. 18, pp. 131-146, 1998
    [1]王丽伟, "新型复合吸附剂的吸附特性与机理及其在高效热管型余热制冷中的应用[博士学位论文],"上海交通大学, 2005
    [2] Kang BH, Yabe A. Performance analysis of a metal-hydride heat transformer for waste heat recovery. Appl. Therm. Eng. 1996;16:677-690
    [3] Spinner B, Rhault F. Kinetics models in solid/gas reactions under imposed pressure and temperature constraints. Proceedings of international workshop on heat transformation and storage. ISPRA. 1985
    [4] Oliveira RG. Consolidated composite reactive bed for refrigeration sorption system. Post-doctor report. Shanghai Jiao Tong University. 2006:10-12.
    [5] Mazet N, Amouroux M, Spinner B. Analysis and experimental study of the transformation of non-isothermal solid/gas reacting medium. Chem. Eng. Comm. 1991;99:155-174
    [1] A. Isselhorst, M. Groll. Two-stage metal hydride heat transformer laboratory mdel. J. Alloys & Compounds. 1995;231:888-894
    [2] B. Spinner, M. Sorin, J. Berthiaud, N. Mazet, F. Rheault, "New cascades for thermo-chemical refrigeration," International Journal of Thermal Sciences, vol. 44, pp. 1110-1114, 2005
    [3] Oliveira RG. Consolidated composite reactive bed for refrigeration sorption system. Post-doctor report. Shanghai Jiao Tong University. 2006:10-12.
    [4] Kang BH, Yabe A. Performance analysis of a metal-hydride heat transformer for waste heat recovery. Appl. Therm. Eng. 1996;16:677-690
    [5] Mazet N, Amouroux M, Spinner B. Analysis and experimental study of the transformation of non-isothermal solid/gas reacting medium. Chem. Eng. Comm. 1991;99:155-174
    [6] W.G. Haije, J.B.J. Veldhuis, S.F. Smeding, R.J.H. Grisel, "Solid/vapour sorption heat transformer: Design and performance," Appl. Therm. Eng. 2007;27:1371-1376

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700