刚性微分方程几类高效数值方法及中立型泛函微分方程数值稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
刚性微分方程常出现于航空、航天、热核反应、自动控制、电子网络及化学动力学等一系列高科技领域,其数值解法具有毋庸质疑的重要性。偏微分方程初边值问题半离散化而获得的大规模常微分方程组是产生刚性的另一个重要源泉。近几十年来,刚性微分方程算法理论获得了大量重要成果。对于刚性问题的计算,要求数值方法的绝对稳定域尽可能的大;同时要求Stiff分量的数值误差能够迅速衰减,从而要求方法在∞点是极端稳定的。因此构造这两方面都具有优势的高效数值方法一直是刚性问题研究的重要课题之一。
     一些著名的数值方法如BDF方法等在∞点是极端稳定的,但高阶方法的稳定域不够理想;而Gauss型Runge-Kutta方法尽管是A-稳定的,但在∞点不是强稳定的。为此,构造在∞点是极端稳定的且有较大稳定域的高效算法是本文的第一项工作:
     (1)构造了3-6阶改进的向后微分公式IBDF1及3-7阶改进的向后微分公式IBDF2;
     (2)构造了5-9阶改进的Enright方法;
     以上三类新的方法分别保持了BDF方法和Enright方法固有优点,但其稳定域得到了较大改善,有较好的应用前景。
     (3)运用模式搜索法得到了几类在∞点稳定性最优的s级r步Gauss型多步Runge-Kutta方法,其中s=1,2,3,r=2,3,这些方法在∞点的稳定性远优于s级Gauss型单步Runge-Kutta方法。理论分析和数值试验表明,对于求解强刚性问题,前者的实际计算精度远高于后者。
     应该注意到在∞点L-稳定的Gauss型多步Runge-Kutta方法是不存在的,能获得使稳定矩阵在∞处的谱半径最小的强稳定的s级r步Gauss型多步Runge-Kutta方法对于强刚性问题的求解是非常有利的。
     中立型泛函微分方程(NFDEs)常出现于生物学、物理学、控制理论及工程技术等诸多领域。在过去的几十年里,许多学者致力于数值方法的线性稳定性研究并获得了大量重要成果。最近,一些学者就非线性中立型延迟微分方程(NDDEs)和非线性中立型延迟积分微分方程(NDIDEs)的数值稳定性进行了研究。在此基础上进一步研究中立型延迟积分微分方程及更一般的中立型泛函微分方程的数值稳定性是本文的另一项工作:
     (4)研究了中立型延迟积分微分方程线性多步法的数值稳定性。结果表明:在问题本身渐近稳定的条件下,A-稳定的线性多步法也是渐近稳定的。
     (5)研究了巴拿赫空间中中立型泛函微分方程显式和对角隐式Rung-Kutta方法的非线性稳定性。获得了一些显式和对角隐式Rung-Kutta方法用于求解非线性中立型泛函微分方程时的数值稳定性和条件收缩性结果,数值试验进一步检验了这些理论结果的正确性。
     应当指出,在国内外其他文献中,迄今主要研究了中立型延迟微分方程数值方法的稳定性,尚未见到关于Banach空间中一般的非线性中立型泛函微分方程数值稳定性的研究工作。
Stiff differential equations can be found in the high-tech fields such as aviation, spaceflight, thermonuclear reaction, automatic control, electronic network and chemical kinetics and so on. The numerical methods for these stiff problems are undoubtedly important. The large-scale ordinary differential equations derived from the semi-discretization of partial differential equations are another important sources of stiff differential equations. In the last few decades, a lots of important results on the theory of computational methods for stiff differential equations have been obtained. The absolute stability regions are required as big as possible for computing the stiff problems and the numerical methods are required to be extremely stable at∞. Therefore the construction of highly efficient numerical methods which have advantages on both sides is always one of important research subject of stiff problems.
     Some famous numerical methods such as BDF and etc are extremely stable at∞. But the stability regions of high-order methods are not ideal enough. Although Runge-Kutta methods of Gauss type are A-stable, they are not strongly stable at∞. So the construction of highly efficient algorithm which has strong stability at∞and bigger stability region is the first work of this dissertation:
     (1) Two classes of improved backward differentiation formulae are presented, whose abbreviation are IBDF1 and IBDF2 respectively;
     (2) The improved Enright methods with order 5-9 are presented;
     The above new methods preserve the original advantages of BDF and Enright methods respectively and their stability regions have been achieved some large improvements. So the application prospect is very extensive.
     (3) Several classes of multistep Runge-Kutta methods of Gauss type which have the optimal stability at∞are obtained by using pattern search method. The stability at∞of these new methods is superior to the one-step Runge-Kutta methods of Gauss type. Theoretical analysis and numerical experiments show that the former's actual calculation accuracy are far higher than the latter for computing strongly stiff problems.
     It is should noticed that there does not exist the multistep Runge-Kutta method of Gauss type which are L-stable at∞. It is beneficial to obtain these strongly stable methods which stability matrix's spectral radius is minimal at∞.
     The Neutral Functional Differential Equations (NFDEs) often arise in biology, physics, control theory, engineering technology and so on. In the last few years, many authors have investigated the linear stability of numerical methods and obtained a lot of important results. Recently, some authors have studied the numerical stability of nonlinear neutral delay differential equations (NDDEs) and neutral delay integro-differential equations (NDIDEs). The further research of numerical stability for NDIDEs and more general NFDEs on basis of these results is an another work of this dissertation:
     (4) The numerical stability results of linear multistep methods for NDIDEs are obtained. Theoretical analysis shows that A-stable linear multistep methods are also asymptotically stable if the problems are asymptotically stable.
     (5) The nonlinear stability of explicit and diagonally implicit Runge-Kutta methods for neutral functional differential equations (NFDEs) are discussed in Banach spaces. The results on the numerical stability and conditional contractibility of some explicit and diagonally implicit Runge-Kutta methods for nonlinear NFDEs are obtained. Numerical examples are given to confirm the theoretical results.
     It should be pointed out that the other related literatures of home and abroad mainly discussed the stability of numerical methods for NDDEs. The research of numerical stabilities of general nonlinear NFDEs in Banach space haven't been seen yet.
引文
[1]Seider W.D.,White C.W.and Prokopskies G.J.,Stiff ODEs in chemical process analysis.Proc.of International Conference on stiff computation[C],Park City,Utah,1982,Ⅱ.
    [2]Curtiss C.F.,Hirschfelder J.O.,Integration of stiff equations,Proc.Nat.Acad.Sci.[J],1952,38:235-243.
    [3]Robertson,H.H.,The solution of a set of reaction rate equations[M],In:J.Walsh ed.:Numer.Anal.,an introduction,Academ.Press,1966,178-182.
    [4]Willoughby R.A.,Stiff Differential systems[M],Plenum press,New York,1974.
    [5]Lambert,J.D.,Computational methods in ordinary differential equations[M],John Wiley & Sons Ltd,1973.
    [6]Shampine,L.F.,Gear,C.W.,A user's view of solving stiff ordinary differential equations[J],SIAM Review,1979,21:1-17.
    [7]Dekker,K.,Verwer,J.G.,Stability of Runge-Kutta methods for stiff nonlinear differential equations[M],North-Holland,Amsterdam,1984.
    [8]李寿佛,刚性微分方程算法理论,湖南科学技术出版社[M],1997。
    [9]袁兆鼎、费景高、刘德贵,刚性常微分方程初值问题的数值方法,科学出版社[M],1987。
    [10]Shampine,L.F.,Numerical solution of ordinary differential equations[M],Chapman and Hall,1994.
    [11]徐绪海、朱方生,刚性微分方程的数值方法,武汉大学出版社[M],1996。
    [12]Deuflhard P.,Bornemann F.,Sciencific computing with ordinary differential equations[M],Springer-Verlag,2002.
    [13]Halter,E.,Wanner,G.,常微分方程的解法Ⅰ、Ⅱ,科学出版社[M],2006。
    [14]Aiken I.,Richard C.,Stiff computation[G],Oxford University Press,1984.
    [15]Dahlquist,G.,A special stability problem for linear multistep methods[J],BIT 1963,3:27-43.
    [16]Widlund O.B.,A note on unconditionally stable linear multistep methods[J],BIT 1967,7:65-70.
    [17]Gear,C.W.,The automatic integration of stiff ordinary differential equations[M],Information Processing 68,ed.A.J.H.Morrell,North Holland Publishing Co.,1969,187-193.
    [18]Gear,C.W.,Numerical initial value problems in ordinary differential equations[C],Prentice Hall,1971,253.
    [19]Henrici,P.,Discrete variable methods in ordinary differential equations[M],John Wiley and Sons,1962.
    [20]Curtiss,C.F.,Hirschfelder,J.O.,Integration of stiff equations,Proc.Nat.Acad.Sci.[J],1952,38:235-243.
    [21]Gear,C.W.,Algorithm 407,DIFSUB for solution of ordinary differential equations[J],Comm.ACM.,1971,14,185-190.
    [22]Enright,W.H.,Hull,T.E.and Lindberg,B.,Comparing numerical methods for stiff systems of ordinary differential equations[J],BIT,1975,15(1):10-48.
    [23]李寿佛,离散变量方法的稳定程度,湘潭大学自然科学学报[J],1984,2:47-62。
    [24]Hindmarsh A.C.,LSODE and LSODI,two new initial value ordinary differential equations sloves[J],ACM-SIGNUM Newsletter 1980,15:10-11.
    [25]Sloate,H.M.,Bickart,T.A.,A-stable composite multistep methods[J],J.ACM 1973,20:7-26.
    [26]Tendler,J.M.,Bickart,T.A.and Picel,Z.,A stiffly stable integration process[J],ACM Trans.Math.Software 1978,4:339-368.
    [27]Cash,J.R.,On the integration of stiff systems of ordinary differential equations using extended backward differentiation formulae[J],Numer.Math.1980,34:235-246.
    [28]Cash,J.R.,The integration of stiff initial value problems in ODEs using modified extended backward differentiation formulae[J],Comput.Math.Appl.1983,9:645-657.
    [29]徐洪义、包雪松、王长富,关于求解Stiff常微分方程数值方法[J],计算数学,1985,7:415-419。
    [30]匡蛟勋、项家祥,一类修正的BDF方法[J],计算数学,1987,9:411-418。
    [31]蒋立新,Gear方法的改进,湘潭大学自然科学学报[J],1990,2:13-18。
    [32]李庆扬、谢敬东,解刚性常微分方程的改进的Gear方法[C],计算数学天津会议论文集,399-402,该内容收入李庆扬,常微分方程数值解法[M],高等教育出版社,1991。
    [33]杨大地、刘冬兵,一类A(α)稳定的k阶线性k步法公式[J],计算数学,2008,30:143-146。
    [34]Enright,W.H.,Second derivative multistep methods for stiff ordinary differential equations[J],SIAMJ.Numer.Anal.,1974,11:321-331.
    [35]徐洪义、吴新元,求解stiff常微分方程的二阶导数多步方法[J],南京大学学报(自然科学),1990,26(2):187-195。
    [36]Butcher,J.C.,Implicit Runge-Kutta processes[J],Math.Comput.,1964,18(85):50-64.
    [37]Ehle,B.L.,High order A-stable methods for the numerical solution of systems of differential equation[J],BIT,1968,8(3):276-278.
    [38]Butcher,J.C.,A stability property of implicit Runge-Kutta methods[J],BIT,1975,15(3):358-361.
    [39]Burrage,K.,Butcher,J.C.,Stability criteria for implicit Runge-Kutta methods[J],SIAM.J.Numer.Anal.,1979,16(1):46-57.
    [40]Burrage,K.,High order algebraically stable multistep Runge-Kutta methods[J],SIAM J.Nummer.Anal.1987,24:106-115.
    [41]Burrage,K.,Hundsdorfer,W.H.,The order of B-convergence of algebraically stable Runge-Kutta methods[J],BIT,1987,27:62-71.
    [42]李寿佛,多步Runge-Kutta方法的代数稳定性[J],系统仿真学报,1993,5(2):51-56。
    [43]Li shoufu,B-convergence properties of multistep Runge-Kutta methods[J],Math.Comput,1994,62,565-575.
    [44]李寿佛,多步Runge-Kutta方法的代数稳定性与B-收敛性[R],全国第五届常微分方程数值方法学术会议论文报告,南京,1995.
    [45]Bellen,A.,Guglielmi,N.and Zennaro,M.,On the contractivity and asymptotic stability of systems of delay differential equations of neutral type[J],BIT,1999,39:1-24.
    [46]Brayton,R.K.,Willoughby,R.A.,On the numerical integration of a symmetric system of difference-differential equations of neutral type[J],J.Math.Anal.Appl.,1967,18:182-189.
    [47]Bellen,A.,Jackiewicz,Z.and Zennaro,M.,Stability analysis of one-step methods for neutral delay-differential equations[J],Numer.Math.,1988,52:605-619.
    [48]Hu Guangda,Mitsui,T.,Stability analysis of numerical methods for systems of neutral delay-differential equations[J],BIT,1995,35:504-515.
    [49]Koto,T.,A stability property of A-stable collocation based Runge-Kutta methods for neutral differential equations[J],BIT,1996,36:855-859.
    [50]Huang Chengming,Linear stability of general linear methods for systems of neutral delay differential equations[J],Appl.Math.Lett.,2001,14:1017-1021.
    [51]匡蛟勋,泛函微分方程的数值处理[M],北京,科学出版社,1999.
    [52]Bellen,A.,Zennaro.M.,Numerical methods for delay differential equations[M],Oxford:Oxford University Press,2003.
    [53]Kuang Jiaoxun,Cong Yuhao,Stability of numerical methods for delay differential equations[M],Beijing:Science Press,2005.
    [54]Zhao Jingjun,Xu Yang and Liu Mingzhu,Stability analysis of numerical methods for linear neutral Volterra delay-integro-differential equations[J],Appl.Math.Comput.,2005,167:1062-1079.
    [55]赵景军、徐阳,中立型Volterra延迟积分微分方程块θ-方法的稳定性,系统仿真学报[J],2007,19:3940-3942。
    [56]Zhang Chengjian,Stefan Vandewalle,Stability criteria for exact and discrete solutions of neutral multidelay-integro-differential equations[J],Adv.Comut.Math.,2008,28:383-399.
    [57]Wu Shffeng,Gan Siqing,Analytical and numerical stability of neutral delay integro-differential equations and neutral delay partial differential equations[J],Computers & Mathematics with Applications,2008,55(11):2426-2443.
    [58]Bellen,A.,Guglielmi N.and Zennaro,M.,Numerical stability of nonlinear delay differential equations of neutral type[J],J.Comp.Appl.Math.,2000,125:251-263.
    [59]Zhang Chengjian,Li Shoufu,Dissipativity and exponentially asymptotic stability of the solutions for nonlinear neutral functional-differential equations[J],Appl.Math.Comput.,2001,119:109-115.
    [60]Zhang Chengjian,Nonlinear stability of natural Runge-Kutta methods for neutral delay differential equations[J],J.Comput.Math.,2002,20:583-590.
    [61]黄枝娇、张诚坚,数值求解NDDEs系统的单支方法的非线性稳定性[J],数学物理学报,2002,22A:421-426。
    [62]Vermiglio,R.,Torelli,L.,A stable numerical approach for implicit non-linear neutral delay differential equations[J],BIT,2003,43:195-215.
    [63]Yu Yuexin,Stability analysis of numerical methods for several classes of Volterra functional differential equations[D],Ph.D.Thesis,Xiangtan:Xiangtan Univ.,2006.
    [64]余越听、文立平、李寿佛,非线性中立型延迟微分方程Runge-Kutta方法的稳定性[J],系统仿真学报,2005,17:49-52。
    [65]余越听、文立平、李寿佛,非线性中立型延迟微分方程线性θ-方法的渐近稳定性[J],高等学校计算数学学报,2006,28:103-110.
    [66]余越昕、文立平、李寿佛,非线性中立型延迟微分方程单支方法的数值稳定性[J],计算数学,2006,28:357-364。
    [67]Yu Yuexin,Wen Liping and Li Shoufu,Stability analysis of general linear methods for nonlinear neutral delay differential equations[J],Appl.Math.Comput.,2007,187(2):1389-1398.
    [68]王晚生,非线性刚性中立型延迟微分方程连续Runge-Kutta法稳定性分析[硕士学位论文],湘潭:湘潭大学,2004。
    [69]王晚生、李寿佛,非线性中立型延迟微分方程稳定性分析[J],计算数学,2004,26(3):303-314。
    [70]Wang Wansheng,Zhang Yuan and Li Shoufu,Nonlinear stability of one-leg methods for delay differential equations of neutral type[J],Appl.Numer.Math.,2008,58:122-130.
    [71]Wang Wansheng,Li Shoufu and Su Kai,Nonlinear stability of Runge-Kutta methods for neutral delay differential equations[J],J.Comput.Appl.Math.,2008,214:175-185.
    [72]Wang Wansheng,Li Shoufu and Wang Wenqiang,Contractivity properties of a class of linear multistep methods for nonlinear neutral delay differential equations Chaos[J],Solitons & Fractals,2009,40(1),15:421-425.
    [73]Hu Peng,Huang Chengming and Wu Shulin,Asymptotic stability of linear multistep methods for nonlinear neutral delay differential equations[J],Applied Mathematics and Computation,2009,211(1):95-101.
    [74]Yu Yue xin,Wen Liping and Li Shoufu,Nonlinear stability of Runge-Kutta methods for neutral delay integro-differential equations[J],Appl.Math.Comput.,2007,191(2):543-549.
    [75]余越昕、李寿佛,非线性中立型延迟积分微分方程Runge-Kutta方法的稳定性[J],中国科学,2006,36(12):1343-1354。
    [76]王晚生,非线性中立型泛函微分方程数值分析膊士毕业论文],湘潭:湘潭大学,2008.
    [77]Wen Liping,Wang Wansheng and Yu Yuexin,Dissipativity of θ-methods for a class of nonlinear neutral differential equations[J],Appl.Math.Comput.,2008,202:780-786.
    [78]Wang Wansheng,Li Shoufu,Dissipativity of Runge-Kutta methods for neutral delay differential equations with piecewise constant delay[J],Appl.Math.Lett.,2008,21:983-991.
    [79]Gan Siqing,Dissipativity of θ-methods for nonlinear delay differential equations of neutral type[J],Applied Numerical Mathematics,2009,59(6):1354-1365.
    [80]陈宝林,最优化理论与算法[M],清华大学出版社,1998.
    [81]文立平、黄乘明,一族多步二阶导数方法的收缩性[J],计算数学,2001,23(3):265-270。
    [82]李寿佛、苏凯,stiff微分方程的高效算法[J],湘潭大学自然科学学报,1997,4:1-6。
    [83]黄云清、舒适、陈艳萍、金继承、文立平,数值计算方法[M],科学出版社,2009。
    [84]Jackiewicz Z.,One-step methods of any order for neutral functional differential equations[J].SIAM J Numer Anal,1984,21:486-511.
    [85]Enright W.H.,Hu M,Continuous Runge-Kutta methods for neutral Volterra integro-differential equations with delay[J],Appl Numer Math,1997,24:175-190.
    [86]Brunner H.,Vermiglio R.,Stability of solutions of neutral functional integrodifferential equations and their discretization[J],Computing,2003,71:229-245.
    [87]Zhang Chengjian,Nonlinear stability of one-leg methods for neutral delay integrodifferential equations[J],Appl.Numer.Math.,2007,191:543-549.
    [88]Dahlquist G.,Error analysis for a class of methods for stiff nonlinear initial value problems[C].Numer.Anal.Dundee,1975,Lect.Notes in Math.,506,Berlin:Springer-Verlag,1976,60-74.
    [89]Dahlquist G.,G-stability is equivalent to A-stability[J],BIT,1978,18:384-401.
    [90]李寿佛,单支方法及线性多步法的稳定性准则[J],湘潭大学自然科学学报,1987,9(4):21-27.
    [91]余越听,非线性延迟积分微分方程线性多步法的渐近稳定性,2009,已投稿。
    [92]Huang Chengming,Asymptotic stability of multistep methods for nonlinear delay differential equations[J],Appl.Math.Comput.,2008,203:908-912.
    [93]Bocharov,G.,Hadeler,K.P.,Structured population models,conservation laws,and delay equations[J],J.Differential Equations,2000,168:212-237.
    [94]Hale Jack,Theory of functional differential equations[M],New York:springerverlag,1977.
    [95]秦元勋、刘永清、王联、郑祖庥,带有时滞的动力系统的运动稳定性(第2版)[M],科学出版社,北京,1989.
    [96]Wang Wansheng,Li Shoufu,On the one-leg θ-methods for solving nonlinear neutral functional differential equations[J],Appl.Math.Comp.,2007,193:285-301.
    [97]Wang Wansheng,Li Shoufu,Stability analysis of θ-methods for nonlinear neutral functional differential equations[J],SIAM J.Sci.Comp.,2008,30:2181-2205.
    [98]Wang Wansheng,Preserving stability implicit Euler method for nonlinear Volterra and neutral functional differential equations in Banach space,submitted.
    [99]文立平,抽象空间中非线性Volterra泛函微分方程的数值稳定性分析[博士学位论文],湘潭大学,2005。
    [100]Wen Liping,Li Shoufu,Nonlinear stability of linear multistep methods for stiff delay differential equations in Banach spaces[J],Appl.Math.Comput.,2005,168:1031-1044.
    [101]Wen Liping,Wang Wansheng,Yu Yuexin and Li Shoufu,Nonlinear stability and asymptotic stability of implicit Euler method for stiff Volterra functional differential equations in Banach spaces[J],Appl.Math.Comput.,2008,198:582-591.
    [102]Wang Wansheng,Wen Liping and Li Shoufu,Nonlinear stability of θ-methods for neutral differential equations in Banach space[J],Appl.Math.Comput.,2008,198:742-753.
    [103]Wang Wansheng,Wen Liping and Li Shoufu,Nonlinear stability of explicit and diagonally implicit Runge-Kutta methods for neutral delay differential equations in Banach space[J],Appl.Math.Comput.,2008,199:787-803.
    [104]Kolmanovskii,V.B.,Myshkis,A.,Introduction to the theory and applications of functional differential equations[M],Kluwer Academy,Dordrecht,1999.
    [105]Gil',M.I.,Stability of finite and infinite dimensional systems[M],Kluwer Academic Publishers,Boston,1998.
    [106]Li Shoufu,B-theory of Runge-Kutta methods for stiff Volterra functional differential equations[J],Science in China(Series A),2003,46:662-674.
    [107]Wen Liping,Yu Yuexin and Li Shoufu,Stability of explicit and diagonal implicit Runge-Kutta methods for nonlinear Volterra functional differential equations in Banach spaces[J],Appl.Math.Comput.,2006,183:68-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700