一类随机非线性系统控制设计算法及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实际控制工程中,由于建模误差、环境干扰等因素的影响,完全的确定性系统是不存在的,研究不确定非线性系统的控制问题具有重要的理论意义和实际应用价值。随机非线性系统是一类带有随机动态特征的非线性系统,是近年来非线性控制理论研究的热点方向之一。本文基于自适应鲁棒控制理论、神经网络逼近理论、随机微分方程稳定性理论、时滞泛函微分方程稳定性理论,探讨了一类随机非线性系统的控制问题。主要研究工作如下:
     第一,针对带随机扰动和内动态的不确定非仿射非线性系统,提出一种基于高增益观测器和神经网络的自适应输出反馈控制器。在假设系统零动态稳定的条件下,将确定性系统控制方法扩展到随机系统,并利用神经网络的泛化学习能力,对非仿射非线性系统进行了自适应估计和鲁棒控制器设计。应用Lyapunov稳定性及随机系统稳定性理论证明闭环系统信号是依概率有界的,且跟踪误差收敛于原点的可调节邻域内。
     第二,针对一类含有不确定非线性函数的随机系统,提出一种自适应观测器设计算法。所讨论的系统的不确定非线性函数包含未知状态而非仅仅包含系统输出,是一类更加宽泛的不确定随机系统。通过构建一个含有参数自适应律的观测器来重构状态,有效地解决具有非仿射不确定性的随机系统的状态估计问题。应用Lyapunov稳定性理论和Ito随机微分理论给出严格的稳定性分析,证明该观测器是依概率有界的,并且它的界可以通过选取适当的参数进行调节。
     第三,研究一类带有未知时滞的不确定随机非线性系统控制设计问题。针对带未知时滞的非参数不确定随机非线性系统,提出一种与时滞无关的自适应控制算法;进一步,针对同时带有未知时滞、不确定参数和不确定非线性函数的随机非线性系统,提出一种基于神经网络的自适应滤波反步控制算法。利用滤波反步法代替传统反步法,以避免传统反步法设计中固有的“explosion of complexity”问题。控制结果使得闭环系统信号是依概率有界的,且跟踪误差均方收敛于原点的小的可调节邻域内。
     第四,针对高速、高精度宏/微定位平台的动态特性,提出基于自适应Kalman滤波器的非线性输出反馈控制设计算法。自适应Kalman滤波器用于补偿宏动定位平台的系统振动及外界噪声干扰。针对压电陶瓷驱动的微动平台系统固有的迟滞非线性特性,提出基于高增益观测器的智能自适应输出反馈控制设计算法。该算法利用神经网络模拟不确定非线性迟滞特性,同时包含一个鲁棒控制项,用于补偿神经网络逼近误差及观测器的观测误差。
     第五,针对多AUV协作作业时相互通信中不可避免的信息包丢失问题,提出一种基于观测预报器的最优估值器。观测预报器设计为所有已知历史观测信息的加权值,改进了传统的利用最近接收到的信息代替当前丢失信息的方法,可以充分有效地利用有用的历史信息来补偿通信过程中随机丢失的信息。进而基于补偿后的观测信息值,应用新息分析方法来设计AUV通信预报器、滤波器及平滑器。
Because of the influence of environmental interference and the modeling error, thecompletely deterministic system is not exist in the real word. Hence, the researches on thecontrol of uncertain nonlinear systems have both theoretical and practical interests. Stochasticnonlinear systems are a class of nonlinear systems with stochastic dynamic characterstics, andthe one of the hot research direction of nonlinear control theory. In this paper, based on theadaptive robust nonlinear control theory, the neural network approximation theory, thestability of stochastic differential equation and the stability of delay differential equation, theproblems of control for a class of stochastic nonlinear systems are investigate. The maincontributions of are outlined as follows:
     Firstly, based on the high gain observer and neural-network(NN), an adaptiveoutput-feedback control is addressed for a class of nonaffine uncertain nonlinear systems withstochastic disturbance and internal dynamics. Under the assumption that zero dynamics of thesystem is stable, the obtained results extend the existing methodology from deterministicsystems to stochastic systems. Using the generalization learn ability of the neural network, anadaptive estimation and robust control law are addressed for the nonaffine nonlinear systems.Using Lyapunov theorem, it is shown that all the signals of the closed-loop system arebounded in probability, and the tracking error converges to an adjustable neighborhood of theorigin.
     Secondly, the problem of adaptive observer design is investigated for a class ofstochastic nonlinear systems with nonparametric uncertainties. Different from the existingresults, the uncertain parameters of the systems not only contain output variable. Through thedesign of a nonlinear observer with an adaptive law of parameters to reconstruct the systemstates, the adaptive observer can solve the state estimation problem of the uncertaintynonaffine stochastic nonlinear systems effectively. Application of Lyapunov theorem andIto stochastic differential theory show that the observation error convergences toneighborhood of the origin, whose size can be adjusted by observer parameters.
     Thirdly, the control design problem is studied for a class of uncertain stochasticnonlinear system with unknown time delays. For a class of uncertain stochastic nonlinearsystem with unknown time delays and uncertain nonlinear function, a delay-independentadaptive control is proposed. Furthermore, for a class of uncertain stochastic nonlinear system with unknown time delays, uncertain parameters and uncertain nonlinear functions, anadaptive filtered backstepping controller is designed based on neural network. Using thefiltered backstepping instead of the traditional backstepping to avoid the inherent problem of“explosion of complexity” in the traditional baskstepping design. It is proved that theproposed adaptive control is able to guarantee boundedness in probability of all the signals inthe closed-loop system and the tracking error is proven to converge to a small adjustableneighborhood.
     Fourthly, based on the adaptive Kalman filter (AKF), a nonlinear output-feedbackcontrol scheme is proposed for macro-micro dual-drive positioning stage with highacceleration and high precision. AKF is used to compensate VCM vibration and the externalnoise. For the inherent hysteresis of Piezoactuator-driven stage, an adaptive output-feedbackcontrol is proposed based on the high-gain observer. The control scheme uses a neuralnetwork to simulate the uncertain nonlinear hysteresis, and a robust control is designed tocompensate the neural network approximation error and observer error.
     Fifthly, for the problem of the inevitable stochastic communication packet dropouts in themulti-AUV cooperation, an optimal estimation is proposed based on a measurement predictor.The estimated measurement values for the lost information are obtained by using all theweighted known measurement values instead of the latest one, improved the traditionalmethods. Based on the estimated measurement values, the optimal estimators including filter,predictor and smoother are developed via an innovation analysis approach for multiple packetdropouts systems.
引文
[1] K.S.Narendra, A.M Annaswamy. Stable adaptive systems[M]. Englewood Cliffs,NJ:Prentice Hall,1989.
    [2] P.A.Ioannou, A.Datta. Robust adaptive control: a unified approach[J]. IEEETransaction on Automatic Control,1991,79(12):1736-1767.
    [3] P A. Ioallllou and EV. Kokotovic. Instability analysis and the improvement ofrobustness of adaptive control[J]. Automatica,1984,20(5):583-594.
    [4] A.Astolfi, L.Hsu, M.Netto and R.Ortega. Two solutions to the adaptive visualservoing problem[J]. IEEE Transaction on Robotics Automation,2002.
    [5] A.Loh, A.Annaswmay and ESkantze. Adaption in the presence of general nonlinearparameterization: an error model approach[J]. IEEE Transaction on Automatic Control,1999,44:1634-1652.
    [6] V.I.Utkin. Sliding mode control design principles and application to electric drives[J].IEEE Transaction on Industrial Electronics,1993,40(1):23-36.
    [7]梅生伟,申铁龙,刘志康.现代鲁棒控制理论与应用[M].清华大学出版社,2003.
    [8]李士勇.模糊控制、神经控制和智能控制论[M].哈尔滨工业大学出版社,1996.
    [9] S.S.Ge,C.C.Hang and T.Zhang. Nonlinear adaptive control using neural networksand its application to CSTR systems[J]. Journal of Process Control,1998,9:313-323.
    [10] J.-H.Park, and S.-H.Kim.Direct adaptive output-feedback fuzzy controller for anon-affine nonlinear system[J].IEE Proceedings of Control Theory and Appl.2004,151(1):65-72.
    [11] T. Zhao. RBFN-based decentralized adaptive control of a class of large-scalenon-affine nonlinear systems[J]. Neural Computing and Applications,Springer London,2008,17:357-364.
    [12]陈海通,姜长生.非线性不确定系统的模糊自适应H∞输出反馈跟踪[J].中国科学院研究生院学报,2006,23(6):822-826.
    [13]李树荣,杨青,郭淑会.基于神经网络的一类非仿射非线性系统自适应控制[J].系统科学与数学,2007,27(2):161-169.
    [14]刘春生,胡寿松.基于状态观测器的非仿射非线性系统鲁棒自适应H∞跟踪控制[J].信息与控制,2006,35(6):726-731.
    [15]葛友,李春文.基于非仿射非线性模型的静止无功补偿控制器设计[J].电力系统自动化,2001,3(25):9-11.
    [16] R. Z. Has’minskii. Stochastic Stability of Differential Equations[M]. Rockville,Maryland:S&N International publisher.1980.
    [17] H. J. Kushner.Stochastic Stability and Control[M].New York:Academic Press,1967.
    [18] R. A. Gihman, A. V. Skorohod.Stochastic Differential Equations[M]. New York:Springer-Verlag,1972.
    [19]胡宣达.随机微分方程稳定性理论[M].南京大学出版社,1986.
    [20] Z. G. Pan, T. Basar. Adaptive controller design for tracking and disturbance attenuationin parametric-feedback nonlinear systems[J]. IEEE Transactions on Automatic Control,1998,43:1066-1083.
    [21] Z. G. Pan, T. Basar.Backstepping controller design for nonlinear stochastic systemsunder a risk-sensitive cost criterion[J].SIAM Journal of Control and Optimization,1999,37:957-995.
    [22] Z. G. Pan, Y. G. Liu, S.Shi.Output feedback stabilization for stochastic nonlinearsystems in observer canonical form with stable zero-dynamics[J]. Science inChina(Series F),2001,44:292-308.
    [23] Z. G. Pan, K. Ezal, A.Krener, P. V. Kokotovic. Backstepping design with localoptimality matching[J]. IEEE Transactions on Automatic Control,2001,46:1014-1027.
    [24] Y. G. Liu, Z. G. Pan, S. Shi.Output feedback control design for strict-feedbackstochastic nonlinear systems under a risk-sensitive cost[J]. IEEE Transactions onAutomatic Control,2003,48(3):509-513.
    [25] Y. G. Liu, J. F. Zhang. Reduced-order observer-based control design for nonlinearstochastic systems[J]. System and Control Letters,2004,52:123-135.
    [26] Y. G. Liu, J. F. Zhang.Minimal-order observer and output-feedback stabilizationcontrol design of stochastic nonlinear systems[J]. Science in China(Ser.F),2004,47:527-544.
    [27] Y. G. Liu, J. F. Zhang.Practical output-feedback risk-sensitive control for stochasticnonlinear systems with stable zero-dynamics[J]. SIAM Journal of Control andOptimization,2006,45:885-926.
    [28] Y. G. Liu, J. F. Zhang, Z. G. Pan. Design of satisfaction output feedback controls forstochastic nonlinear systems under quadratic tracking risk-sensitive index[J].Science inChina(Ser.F),2003,46:126-145.
    [29] H. Deng, M. Krstic.Stochastic nonlinear stabilization part I: a backstepping design[J].System and Control Letters,1997,32:143-150.
    [30] H.Deng, M.Krstic. Stochastic nonlinear stabilization part II: inverse optimality[J].System and Control Letters,1997,32:151-159.
    [31] H.Deng,M.Krstic.Output-feedback stochastic nonlinear stabilization [J]. IEEETransactions on Automatic Control,1999,44:328-333.
    [32] H.Deng,M.Krstic.Output-feedback stabilization of stochastic nonlinear systemsdriven by noise of unknown covariance[J].System and Control Letters,2000,39:173-182.
    [33] H.Deng, M.Krstic, R.Williiams. Stabilization of stochastic nonlinear driven by noiseof unknown covariance[J]. IEEE Transaction on Automatic Control,2001,46:1237-1253.
    [34] M.Krstic,H.Deng.Stability of Nonlinear Uncertain Systems[M].New York:Springer-Verlag,1998.
    [35] Z.J.Wu,X.J.Xie,S.Y.Zhang.Stochastic adaptive backstepping controllerdesign by introducing dynamic signal and changing supply function[J].InternationalJournal of Control,2006,79(12):1635-1646.
    [36] Z.J.Wu, X.J.Xie. Adaptive backstepping controller design using stochasticsmall-gain theorem[J]. Automatica,2007,43(4):608-620.
    [37] Shu-Jun Liu, Zhong-Ping Jiang.Decentralized adaptive output-feedback stabilizationfor large-scale stochastic nonlinear systems[J].Automatica,2007,43(2):238-251.
    [38] Shu-Jun Liu, Zhong-Ping Jiang and Ji-Feng Zhang. Global output-feedbackstabilization for a class of stochastic non-minimum-phase nonlinear systems[J].Automatica,2008,44:1944-1957.
    [39] Y. Li, S. Qiang, X. Zhung, and O. Kaynak. Robust and adaptive backstepping controlfor nonlinear systems using RBF neural networks[J]. IEEE Trans. Neural Netw.,2004,15(3):693-701.
    [40] Pan, Z. G., Basar, T. Adaptive controller design for tracking and disturbance attenuationin parametric-feedback nonlinear systems[J]. IEEE Transactions on Automatic Control,1998,43(8):1066-1083.
    [41] Pan, Z. G., Liu, Y. G., Shi, S. J.. Output feedback stabilization for stochastic nonlinearsystems in observer canonical form with stable zero-dynamics[J]. Science in China(Series F),2001,44(4):292-308.
    [42] F. L. Lewis, A. Yesildirek, and K. Liu. Multilayes neural-net robot controller withguaranteed tracking performance[J]. IEEE Trans. Neural Networks,1996,7(2):388-399.
    [43] B.-J. Yang, A. J. Calise. Adaptive control of a class of nonaffine systems using neuralnetworks[J]. IEEE Trans. Neural Net.2007,18(4):1149-1159.
    [44] S.J. Liu, J.F. Zhang, Z.P.Jiang. Decentralized adaptive output-feedback stabilization forlarge-scale stochastic nonlinear systems[J]. Automatica,2007,34(2):238-251.
    [45] S.J.Liu, J.F.Zhang. Global output feedback stabilization for stochastic nonlinearsystems with stochastic input-to-state stable zero-dynamics[C]. Proceedings of the24thChinese Control Conference, Guangzhou,2005:93-98.
    [46] Z.J.Wu, X.J. Xie, S.Y.Zhang. Adaptive backstepping controller design using stochasticsmall-gain theorem[J]. Automatica,2007,43(4):608-620.
    [47] S.J. Liu, J.F. Zhang. Output-feedback control of a class of stochastic nonlinear systemswith linearly bounded unmeasurable states[J]. International Journal of Robust andNonlinear Control,2007,18(6):665-687.
    [48] Marino, R., Tomei, P.. Dynamic output feedback linearization and globalstabilization[J]. Systems and Control Letters,1999,17(2):115-121.
    [49] Shu-Jun Liu, Zhong-Ping Jiang and Ji-Feng Zhang. Global output-feedbackstabilization for a class of stochastic non-minimum-phase nonlinear systems[J].Automatica,2008,44:1944-1957.
    [50] F. L. Lewis, K. Liu, and A. Yesildirek. Neural net robot controller with guaranteedtracking performance[J]. IEEE Trans. Neural Networks,1995,6(3):703-715.
    [51] B.-J. Yang, A. J. Calise. Adaptive control of a calss of nonaffine systems using neuralnetworks[J]. IEEE Trans. Neural Netw.,2007,18(4):1149-1159.
    [52] S. J. Liu, J. F. Zhang. Global output feedback stabilization for stochastic nonlinearsystems with stochastic input-to-state stable zero-dynamics[C]. Proceedings of the24thChinese Control Conference, Guangzhou,2005,93-98.
    [53] Z. J. Wu, X.J. Xie, S. Y. Zhang. Adaptive backstepping controller design usingstochastic small-gain theorem[J]. Automatica,2007,43(4):608-620.
    [54] N. Hovakimyan, F. Nardi, and A. J. Calise. A novel error observer-based adaptiveoutput feedback approach for control of uncertain systems[J]. IEEE Transactions onAutomatic Control,2002,47(8):1310-1314.
    [55] L. C. K. Liau and B. S. C. Chen. Process optimization of gold stud bumpmanufacturing using artificial neural networks[J]. Expert Systems with Applications,2005,29:264-271.
    [56] X. F. Ang, et al. Temperature and pressure dependence in thermocompression gold studbonding. Thin Solid Films,2006,504:379-383.
    [57] S. J. Hong, et al. The behavior of FAB (Free Air Ball) and HAZ (Heat Affected Zone)in fine gold wire[C]. Proc. International Symposium on Electronic Materials andPackaging, Korea,2001:52-55.
    [58]何中伟. IC芯片钉头金凸点的制作研究技术[J].电子工艺技术,2005,26(1):13-16.
    [59]李军辉等.热声键合界面的微观结构特性[J].中国机械工程,2005,16(4):341-345.
    [60]隆志力等.不同温度对热超声键合工艺连接强度的影响[J].焊接学报,2005,26(8):23-26.
    [61]隆志力等.热超声键合PZT阻抗和功率动态特性研究[J].中国机械工程,2006,17(4):396-400.
    [62]广明安,韩雷.超声键合过程中键合压力特性的实验研究[J].半导体技术,2006,31(8):607-611.
    [63]杨文建等.超细间距引线键合第一键合点工艺参数优化试验研究[J].半导体技术,2005,30(4):20-28.
    [64]李元升.引线键合机工艺技术分析[J].电子工业专用设备,2004,(3):78-81.
    [65]韩为民.键合机中超声波的基本控制原理及方法[J].电子工业专用设备,2003,(5):21-26.
    [66]易辉等.全自动引线键合机校正系统设计与实现[J].电子工业专用设备,2005,(12):30-33.
    [67]赵兴玉,张胜泉,张大卫.基于音圈电机精密定位平台的控制系统设计与仿真[J].天津大学学报,2007年第40卷第二期:127-132页
    [68] Meng-Shiun Tsai, Jin-Shin Chen. Robust Tracking Control of a Piezoactuator Using aNew Approximate Hysteresis Model[J]. Journal of Dynamic Systems, Measurement,and Control,2003,125(1):96-102.
    [69]纪华伟.压电陶瓷驱动的微位移工作台建模与控制技术研究[D].浙江大学博士论文,2006.
    [70]吴博达等.压电驱动与控制技术的发展与应用[J].机械工程学报,2003,39(10)
    [71] A. Sharon, N. Hogan, D. Hardt. Enhancement of robot accuracy using endpointfeedback and macro-micro manipulator system[C]. America Control Conference Proc,San Digo, California, June,1984:1836~1842.
    [72] A. Sharon, N. Hogan, D. Hardt. High Bandwidth Force and Inertia Reduction Using aMacro/Micro Manipulator System[C]. In Proc IEEE Int. Conf on Robotics andAutomation,1985:126~132.
    [73] A. Sharon, N. Hogan, D. The Macro/Micro-Manipulator: an Improved Architecture forRobot Control[J]. Robotics&Computer-Integrated Manufacturing.1993,(10):209-221.
    [74] Sangjoo K, Wan K C, Youngil Y. On the Coarse/Fine Dual-stage Manipulators withPerturbation Compensator[C]. In the2001IEEE International Conference on Robotics&Automation, Seoul, Korea,2001,121-126.
    [75] D. Croft, G. Shed, and S. Devasia. Creep, hysteresis, and vibration compensation forpiezoactuators: Atomic force microscopy application[J]. Trans. ASME, J. Dyn. Syst.Meas. Control,2001,123(1):35-43.
    [76] C. Natale, F. Velardi, and C. Visone. Identification and compensation of Preisachhysteresis models for magnetostrictive actuators[J]. Physica B,2001,306(1):161-165.
    [77] K. Kuhnen. Modeling, Identification and Compensation of Complex HystereticNonlinearities A modified Prandtl-Ishlinskii Approach[J]. European Journal of Control,2003,9(4):407-418.
    [78] S. O. R. Moheimani and B. J. G. Vautier. Resonant control of structural vibration usingcharge-driven piezoelectric actuators[J]. IEEE Trans. Control Syst. Technol.,2005,13(6):1021-1035.
    [79] Al-Bender F, Lampaert V, Swevers J. The generalized Maxwell-slip model: a novelmodel for friction simulation and compensation[J]. IEEE Transactions on AutomaticControl,2005,50(11):1883-1887.
    [80] Xin long Zhao, Yonghong Tan. Neural adaptive control of dynamic sandwich systemswith hysteresis[C].IEEE International Conference on Control Applications,2006:82-87.
    [81] Xuan ju Dang, Yong hong Tan. Neural networks dynamic hysteresis model forpiezoceramic actuator bases on hysteresis operator of first-order differential equation[J].Physica B-Condensed Matter,2005:173-184.
    [82] Xinkai Chen and Takeshi Hisayama. Adaptive sliding-mode position control forpiezo-actuated stage[J]. IEEE transactions on industrial electronics.2008,55(11):3927-3934.
    [83] Hsin-Jang Shieh, Po-Kai Huang. Trajectory Tracking of Piezoelectric PositioningStages Using a Dynamic Sliding-Mode Control[J]. IEEE Transactions on Ultrasonics,Ferroelectrics, and Frequency Control,2006,53(10):1872-1882.
    [84] Hsin-jang Shieh, Chia-Hsiang Hsu. An Adaptive Approximator-Based BacksteppingControl Approach for Piezoactuator-Driven Stages[J]. IEEE Transactions on IndustrialElectronics,2008,55(4):1729-1738.
    [85] H.E. Psillakis and A.T. Alexandridis. Adaptive tracking control for stochastic uncertainnonlinear systems satisfying short-and long-term cost criteria[J]. International Journalof Control,2006,79(2):107-118.
    [86] H.E. Psillakis and A.T. Alexandridis. Adaptive neural motion control of n-link robotmanipulators subject to unknown disturbances and stochastic perturbations[J]. IEEEProc.-Control Theory Appl.,2006,153(2):127-138.
    [87] H. E. Psillakis and A. T. Alexandridis. NN-based Adaptive Tracking Control ofUncertain Nonlinear Systems Disturbed by Unknown Covariance Noise[J]. IEEETransactions on neural networks,2007,18(6):1830-1835.
    [88] Hsin-Jang Shieh, Po-Kai Huang. Trajectory Tracking of Piezoelectric PositioningStages Using a Dynamic Sliding-Mode Control[J]. IEEE Transactions on Ultrasonics,Ferroelectrics, and Frequency Control,2006,53(10):1872-1882.
    [89] Hsin-jang Shieh, Chia-Hsiang Hsu. An Adaptive Approximator-Based BacksteppingControl Approach for Piezoactuator-Driven Stages[J]. IEEE Transactions on IndustrialElectronics,2008,55(4):1729-1738.
    [90]蒋新松,封锡盛,王棣棠.水下机器人[M].辽宁科学技术出版社,2002:1-303.
    [91]谭民,王硕,曹志强.多机器人系统[M].清华大学出版社,2005:1-140.
    [92]张纯刚,习裕庚.基于滚动窗口的多机器人路径协调规划[J].模式识别与人工智能,2002(1):1-5.
    [93]刘海涛.多智能体机器人系统中的若干通信技术研究[D].哈尔滨工业大学博士学位论文,2007:1-134.
    [94]刘淑华.复杂动态环境下多机器人的运动协调研究[D].吉林大学博士学位论文,2005:1-139.
    [95]段清娟.基于任务划分的多机器人协调与跟踪控制研究[D].西北工业大学博士学位论文,2006:1-125.
    [96] J. M. Hespanha, O. A. Yakimenko, I. I. Kaminer, A. M. Pascoal. Linear parametricallyvarying systems with brief instabilities: an application to vision/inertial navigation[J].IEEE Trans. Aerospace Electron. Systems,2004,40:889-900.
    [97] R. Ghabcheloo, A. Aguiar, A. Pascoal, C. Silvestre. Synchronization in multi-agentsystems with switching topologies and non-homogeneous communication delays[C]. InProceedings of the46th IEEE Conference on Decision and Control,2007:2327-2332.
    [98] A. Jadbabaie, J. Lin, A. S. Morse. Coordination of groups of mobile autonomous agentsusing nearest neighbor rules[J]. IEEE Trans. Automat. Control,2003,48:988-1001.
    [99] J. N. Tsitsiklis, M. Athans. Convergence and asymptotic agreement in distributeddecision problems[J]. IEEE Trans. Automat. Control,1984,29:42-50.
    [100] W. J. Rugh. Linear System Theory[M]. Prentice-Hall, Englewood Cliffs, NJ,1993:87-88.
    [101]余琨,徐国华,肖治琥,申雄.多AUV协作系统研究现状与发展综述[J].船海工程,2009,38(5):134-137.
    [102] Reza Ghabcheloo, Antonio Pascoal, Carlos Silvestre. Nonlinear coordinated pathfollowing control of multiple wheeled robots with communication constraints[C]. The12th International Conference on Advanced Robotics,2005:657-664.
    [103] Randal W Beard, Jonathan Lawton, Fred Y Hadaegh. A coordination architecture forspacecraft formation control[J]. IEEE Transactions on Control System Techonology,2001,9(6):777-790.
    [104] Lewis M A, Tan K H. High precision formation control of mobile robots using virtualstructures[J]. Autonomous robots,1997,4(4):387-403.
    [105]向先波.二阶非完整性水下机器人的路径跟踪与协调控制研究[D].华中科技大学博士学位论文,2010:1-138.
    [106] Hale J K, Verduyn Lunel S M. Introduction to functional differential equatins[M].London: Springer,1993.
    [107]孙增圻.智能控制理论与技术[M].清华大学出版社,1997:125-239.
    [108]焦晓红,关新平.非线性系统分析与设计[M].电子工业出版社,2008:48-92.
    [109] N. Hovakimyan, F. Nardi, A. J. Calise, N. Kim. Adaptive output feedback control ofuncertain nonlinear systems using single-hidden-layer neural networks[J]. IEEE Trans.Neural Netw.,2002,13(6):1420-1431.
    [110] J. D. Boˇskovic′, L. Chen, and R. K. Mehra. Multivariable adaptive controller designfor a class of non-affine models arising in flight control[C]. In Proc. Conf. DecisionControl, Orlando, FL,2001:2442-2447.
    [111] S S Ge, and J. Zhang. Neural-network control of nonaffine nonlinear system with zerodynamics by state and output feedback[J]. IEEE Transactions on neural Networks,2003,14(4):900-918.
    [112]朱芳来,岑峰,董学平.一种基于全维和降维观测器的故障检测和重构方法[J].控制与决策.2011,26(2):258-262.
    [113]康军,戴冠中.具有状态观测器的网络化控制系统的设计[J].控制与决策.2010,25(6):943-947.
    [114]蔡俊伟,胡寿松.基于观测器的非线性系统H∞模糊可靠控制[J].控制与决策.2009,24(4):621-627.
    [115]张柯,姜斌,刘京津.基于自适应观测器控制系统的快速故障调节[J].控制与决策.2008,23(7):771-775.
    [116] Dong Ya-Li, Mei Sheng-Wei, Adaptive observer for a class of nonlinear systems[J].Acta Automatica Sinica,2007,33(10):1081-1084.
    [117] Yusheng Liu, Robust adaptive observer for nonlinear systems with unmodeleddynamics[J]. Automatica,2009(45):1891-1895.
    [118] HOVAKIMYAN N, CALISE A J, MADYASTHA V K. An adaptive observer designmethodology for bounded nonlinear processes[C]. Proceeding of the41stIEEEConference on Decision and Contro1, Piscataway, NJ:IEEE,2002,4:4700-4705.
    [119] Shu-Jun Liu, Zhong-Ping Jiang and Ji-Feng Zhang. Global output-feedbackstabilization for a class of stochastic non-minimum phase nonlinear systems[J].Automatica.2008,44(8),1944-1957.
    [120] Yugang Niu, Daniel W.C. Ho, Robust observer design for Ito stochastic time-delaysystems via sliding mode control[J]. System&Control Letter,2006(55):781-793.
    [121] Liu Yungang, Zhang Jifeng, Reduced-order observer based control design forstochastic nonlinear systems[J]. Systems Control Letter.2004,52(2),123-135.
    [122]刘允刚,张纪峰.随机非线性系统最小阶状态观测器及输出反馈镇定控制设计[J].中国科学E辑,信息科学,2004,34(4):416-432.
    [123] H.E. PSILLAKIS and A.T. ALEXANDRIDIS. Adaptive tracking control for stochasticuncertain nonlinear systems satisfying short-and long-term cost criteria[J].International Journal of control,2006,79(2):107-118.
    [124]吴立刚,王常虹,高会军,等.时延不确定随机系统基于参数依赖Lyapunov函数的稳定条件[J].控制理论与应用,2007,24(4):607-612.
    [125] Chen W, Guan Z, Lu X. Delay-dependent exponential stability of uncertain stochasticsystems with multiple delays: an LMI approach[J]. System&Control Letters,2005,54(6):547-555
    [126] Yusun Fu, Zouhua Tian, and Songjiao Shi. State feedback stabilization for a class ofstochastic time-delay nonlinear systems[J]. IEEE Transactions on Automatic Control,2003,48(2):282-286.
    [127] Sung Jin Yoo, Jin Bae Park, and Yoon Ho Choi. Adaptive dynamic surface control forstabilization of parametric strict-feedback nonlinear systems with unknown timedelays[J]. IEEE Transactions on Automatic Control,2007,52(12):2360-2365.
    [128] Sing Kiong Nguang. Robust stabilization of a class of time-delay nonlinear systems[J].IEEE Transactions on Automatic Control,2000,45(4):756-762.
    [129] M.-S. Koo, H.-L. Choi and J.-T. Lim. Stabilisation of feedback linearisable uncertainnonlinear systems with time delay using scaled slding surface [J]. IET Control Theoryand Applications.2008,2(11):974-979.
    [130] Jin-Quan Huang and F. L. Lewis. Neural-Network predictive control for nonlineardynamic systems with time-delay[J]. IEEE Transactions on Neural Networks,2003,14(2):377-389.
    [131] Shuzhi Sam Ge, Fan Hong, and Tong Heng Lee. Adaptive neural network control ofnonlinear systems with unknown time delays[J]. IEEE Transactions on AutomaticControl,2003,48(11):2004-2010.
    [132] W. Chen and J. Li. Adaptive control for a class of output feedback nonlinear time-delaysystems[J]. Control Theory&Applications,2004,21(5):844-847.
    [133] X. Zhang and Z. Cheng. State feedback stabilization for a class of time-delay nonlinearsystems. Acta Automatic Sinica,2005,31(2):287-290.
    [134]夏建伟,徐胜元,邹云.随机不确定时滞系统的鲁棒H∞控制[J].控制理论与应用,2008,25(5):943-946.
    [135]沈轶,廖晓昕,许晓东,李国宽.非线性随机时延系统的稳定性与应用[J].控制理论与应用,2000,17(1):19-22.
    [136] Weisheng Chen, Junmin Li. State feedback control for stochastic nonlinear systemswith unknown time delay[C]. Proceedings of the6thWorld Congress on IntelligentControl and Automation,2006, Dalian, China.
    [137] Xuejun Xie, Jie Tian. Adaptive state-feedback stabilization of high-order stochasticsystems with nonlinear parameterization [J]. Automatica,2009,45(1):126-133
    [138] Sung Jin Yoo, Jin Bae Park, and Yoon Ho Choi. Adaptive dynamic surface control forstabilization of parametric strict-feedback nonlinear systems with unknown timedelays[J]. IEEE Transactions on Automatic Control,2007,52(12):2360-2365.
    [139] W.S. Chen, L.C. Jiao, Z.B. Du. Output-feedback adaptive dynamic surface control ofstochastic non-linear systems using neural network[J]. IET Control Theory Appl.,2010,4(12):3012–3021.
    [140] W. Dong, J. A. Farrell, M. M. Polycarpou and M. Sharma. Command filtered adaptivebackstepping[C].2010American Control Conference, Marriott Waterfront, Baltimore,MD, USA.
    [141] Jay A. Farrell, Marios Polycarpou, Manu Sharma and Wenjie Dong. Command filteredbackstepping[J]. IEEE Transactions on Automatic Control,2009,54(6):1392-1395.
    [142] A. J. Fleming and S. O. Reza Moheimani. Control orientated synthesis ofhigh-performance piezoelectric shunt impedances for structural vibration control[J].IEEE Trans. Contr. Syst. Technol.,2005,13:98-112.
    [143] Yung-Tien Liu, Kuo-Ming Chang, Wen-Zen Li. Model reference adaptive control for apiezo-positioning system[J]. Precision Engineering,2010,34(1):62-69.
    [144] Yoshika wat, Hara dak, Matsa. Hybrid position/force control of macro/micromanipulator system[J]. IEEE Trans on Robotics and Automation, J.,1996,12(4):633-640.
    [145] Duk-Young Lee,Hyungsuch Cho. Precision force control via macro/micro actuator forsurface mounting system[C]. Proceedings of the2002IEEE Conference on IntelligentRobots and Systems.2002.
    [146]陈美勇,周昌翰,郭智玮.适应顺滑模型控制器于高精度定位平台之应用[C].Proceedings of the27thChinese Control Conference,2008.
    [147] Book, W. J., and Lee, S.-H.. Vibration control of a large flexible manipulator by a smallrobotic arm[C]. Proc. American Control Conference, Pittsburgh,1989:1377-1380.
    [148] Lew, J. Y., and Moon, S.-M.. Active damping control of compliant basemanipulators[C]. Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, IEEE,New York,1999:812-817.
    [149] George, L. E., and Book, W. J.. Inertial vibration damping control of a flexible basemanipulator[J]. IEEE/ASME Transactions on Mechatronics,2003,8(2):268-271.
    [150] Yu Zhang, Zengqi Sun, Tangwen Yang. Optimal motion generation of a flexiblemacro-micro manipulator system using genetic algorithm and neural network[C].Robotics, Automation and Mechatronics,2006IEEE Conference,2006.
    [151] Liu Yanjie, Li Teng, Sun Lining, Modeling and control of macro-micro dual-drive highacceleration and high precision positioning stage using for IC packaging[C]. IntelligentRobotics and Applications, in First International Conference,2008:269-278.
    [152]节德刚.宏/微驱动高速高精度定位系统的研究[D].哈尔滨工业大学博士学位论文,2006:24-31.
    [153]邓自立.自校正滤波理论及其应用[M].哈尔滨工业大学出版社,2003.
    [154] S. S. Ge, C. C. Hang, T. H. Lee and T. Zhang. Stable Adaptive Neural NetworkControl[M]. Boston, MA: Kluwer,2001.
    [155]孙尧,张强,万磊.基于自适应UKF算法的小型水下机器人导航系统[J].自动化学报,2011,37(3):342-353.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700