多波长光纤光源及其腔外电调谐技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多波长光纤光源广泛应用于光纤通信、光纤传感、微波光子学等领域。本文研究基于半导体光放大器(SOA)的多波长光纤光源,着重对光源的线宽优化、功率谱平坦化进行了研究。同时,提出利用腔外电调谐技术实现多波长整体调谐的方案,并对此进行了理论分析和初步实验研究。本文的主要内容如下:
     一、多波长光纤光源的理论研究
     1、建立了多波长光源的基本数学模型。采用SOA有源区分段法对不同SOA驱动电流下多波长光源的稳态输出结果进行了数值模拟。
     2、模拟了高双折射(Hi-Bi)光纤环形镜的滤波原理;分析了未泵浦掺铒光纤(EDF)环形镜的窄化线宽原理;研究了多纵模和单纵模激光线宽的测量方法。
     3、理论分析了无源和有源反馈机制对多波长光源输出功率谱平坦化的原理。
     二、基于SOA的多波长光纤光源的实验研究
     1、分别利用Hi-Bi环形镜与窄线宽梳状滤波器作为滤波装置构建了多波长光纤光源,分析比较了不同的多波长输出结果。
     2、利用不同长度的未泵浦EDF构建环形镜对多波长光源进行线宽窄化实验,并测得激光线宽为199MHz。
     3、对多波长光源的功率谱平坦化进行了实验研究。分别采用无源反馈机制、有源反馈机制、不同SOA级联方法,实现了功率差±3dB以内频率间隔100GHz的31个、36个和38个多波长输出;SOA级联并结合无源反馈机制实现了功率差±1.5dB范围内频率间隔100GHz的32个多波长输出。
     三、多波长光纤光源的腔外电调谐技术研究
     1、理论分析了单边带(SSB)调制器的工作原理。提出利用射频源驱动SSB调制器实现波长调谐的实验方案。
     2、对利用SSB调制器实现单一波长移频进行了实验研究。分别得到移频量为8GHz、10GHz以及12GHz的结果,边带抑制比达20dB。
     3、对利用腔外电调谐法实现多波长整体调谐进行了实验研究。在不影响多波长输出频率间隔、线宽大小、功率谱稳定性的情况下,多波长可以整体实现10MHz~12GHz的调谐频率范围,调谐精度由多波长线宽和射频信号精度决定。实验测量了调谐量在8GHz、10GHz以及12GHz时的多波长整体调谐结果。
Multi-wavelength fiber lasers are widely used in front areas, such as fiber optical communication, fiber optical sensor, microwave photonics. A multi-wavelength fiber laser based on semiconductor optical amplifier (SOA) is ulteriorly optimized on aspects of linewidth-narrowed and output power-equalized in this thesis. Meanwhile, a novel mechanism of external electrical tuning for multi-wavelength fiber laser is proposed. The preliminary theories and experiment studies on the wavelength tuning technology are carried on. The main contents are summarized as follows:
     1. The theory studies on multi-wavelength fiber laser.
     1) A basic mathematical model for the multi-wavelength fiber laser is constructed. The steady-state output results with different injected currents of SOA are numerical simulated by the segmentation model of the SOA’s active area.
     2) The comb filter and linewidth-narrowed mechanism with un-pumped EDF are theoretically analysed. The methods to measure linewidth of single and multi longitudinal mode lasers are demonstrated.
     3) Power-equalized mechanisms with passive optiacal feedback and active optival feedback are discussed respectively.
     2. The experiment investigations on multi-wavelength fiber laser.
     1) Narrow linewidth F-P filter and a high birefringence fiber loop mirror (Hi-Bi FLM) are used as the filtering devices in the multi-wavelength fiber laser. The differences between them are compared.
     2) Different lengths of un-pumped EDF are used as the linewidth-narrowed mechanism in the multi-wavelength fiber laser. The laser linewidth is narrowed to 199MHz using this mechanism.
     3) The passive-feedback mechanism, active-feedback mechanism and cascaded SOAs technique are proposed to improve the output channel power equalization. And the output 31, 36 and 38 wavelengths spacing on 100GHz within±3dB are obtained respectively. Furthermore, the output 32 wavelengths spacing on 100GHz within±1.5dB are achieved using the passive-feedback mechanism and cascaded SOAs.
     3. Studies on external electrical tuning of multi-wavelength fiber laser.
     1) The principle of single-sideband (SSB) modulator is analysed theoretically. A novel experimental method to achieve tunable wavelength fiber laser using SSB modulator with radio frequency (RF) resource is proposed.
     2) The experimental studies on single-wavelength shifting by SSB modulator are carried out. Optical SSB modulations of 8GHz, 10GHz and 12GHz single-tuning wavelength with side mode suppression ratio (SMSR) more than 20dB are experimentally obtained.
     3) The experiment studies on external electrical tuning are carried out. Experiments indicate that the effects of tuning are equal for each wavelength. The frequency tuning range is from 10MHz to12GHz, and the tuning precision is decided by the linewidth of multi-wavelength fiber laser and RF singal frequency tuning precision. Optical SSB modulations of 8GHz, 10GHz and 12GHz overall-tuning wavelengths with side mode suppression ratio (SMSR) more than 20 dB are experimentally obtained.
引文
[1] T.Numai, Fundamentals of semiconductor lasers. 2004,New York: Springer.
    [2] M.G.Littman, H.J.Metcalf, Spectrally narrow pulsed dye laser without beam expa nder. Applied Optics,1978, 17(4):2224-2227.
    [3] R.J.Mears, L.Reekie, I.M.Jauncey, et al. Low-noise Erbium-doped fibre amplifier at 1.54μm, Electronics Letters, 1987, 23: 1026-1027.
    [4] E.Snitzer, Optical laser action of Nd+3 in a barium crown glass. Physics Review Letters, 1961, 7(12): 444-446.
    [5] S.B.Poole, D.N.Payne, M.E.Fermann, Fabrication of low-loss optical fibers containing rare-earth ions. IEEE Electronics Letters, 1985,21(17):730-732.
    [6]I.P.Alcock, A.C.Tropper, I.Ferguson. Q-switched operation of a Neodymium-doped monomode fibre laser. IEEE Electronics Letters, 1986,22(2):84-85.
    [7]王仕康,薛彬,张江波,声光调Q准连续YAG倍频光泵浦下的燃料激光器研究,中国激光:1987,14(6):340-345
    [8] E. Snitzer, E.Po, F.Hakimi, Double clad, offset core Nd fiber laser. in Optical Fiber Sensors, 1988,paper PD5:533-535.
    [9]J.D.Kafka, T.Baer, Mode-locked erbium-doped fiber laser with soliton pulse shaping. OPTICS LETTERS, 1989, 14(22):1269-1270.
    [10]王俊毅,160Gb/s高速OTDM系统及其传输性能的研究,[硕士学位论文],湖北:华中科技大学,2007
    [11]高存孝,朱少岚,冯莉,用于分布式光纤传感的全光纤激光器,中国激光,2010,37(6),1501-1504.
    [12] www.oequest.com.
    [13]Shutaro Ishida, Norihiko Nishizawa, Takefumi Ohta, et al. Ultrahigh-resolution optical coherence tomography in 1.7μm region with fiber laser supercontinuum in low-water absorption samples. Applied Physics Express, 2011, 4: 052501.
    [14] Chuan Wang, Guohua Shi, Yudong Zhang. All-fiber ring-cavity based frequency swept laser source for frequency domain OCT. Chinese Optics Letters, 2010, 8(2):202-205.
    [15]陈国杰,ROF系统中光学产生毫米波及相关技术的研究,[博士学位论文],湖北:华中科技大学,2009.
    [16] Jun-ichi Kani, Katsumi Iwatsuki. A Wavelength-Tunable Optical Transmitter Using Semiconductor Optical Amplifiers and an Optical Tunable Filter for Metro/Access DWDM Applications. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005,23(3):1164-1169.
    [17] Xiaopeng Dong, Yong Chen. Novel discretely tunable narrow linewidth f iber laser with uniform wavelength spacing. Chinese Optics Letters, 2007, 5(4):218-210.
    [18]Daru Chen, Shan Qin, Ying Gao. Wavelength-Spacing tunable multi-wavelength fiber laser based on hybrid gain medium and Mach-Zehnder Interferrometer.
    [19] Min Yong Jeon, Namje Kim, Jaeheon Shin, et al. Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation. OPTICS EXPRESS, 2010,18(12):12291-12297.
    [20]H.Takahashi, H.Toba, Y.Inoue. Multiwavelength ring laser composed of EDFAs and arrayed-waveguide wavelength multiplexer. ELECTRONICS LETTERS, 1944,30(1):44-45.
    [21] S.Yamashita, K.Hotate. Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen. ELECTRONICS LETTERS, 1996,32(14):1298-1299.
    [22] Antoine Bellemare, Miroslav Karasek, Martin Rochette, et al. Room temperature multifrequency Erbium-doped fiber lasers anchored on the ITU frequency grid. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2000,18(6):825-831.
    [23] Kejiang Zhou, Dongyun Zhou, Fengzhong Dong, et al. Room-temperature multi-wavelength erbium-doped fiber ring laser employing sinusoidal phase-modulation deedback. OPTICS LETTERS, 2003,28(11):893-895.
    [24] Young-Geun Han, Sang Bae Lee. Flexibly tunable multiwavelength erbium-doped fiber laser based on four-wave mixing effect in dispersion-shifted fibers. OPTICS EXPRESS, 2005, 13(25):10134-10139.
    [25] F.Koch, P.C.Reeves-Hall, S.V.Chernikov, et al. CW Multiple wavelength room temperature Raman fiber ring laser with external 19 channel 10GHz pulse generation in a single electro-absorption modulator. WDD7-1,2001.
    [26]Young-Geun Han, Chang-Seok Kim, Jin U.Kang, et al. Multi-wavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings. IEEE Photonics Technology Letters, 2003,15(3):383-385.
    [27] Xinyong Dong, P.Shum, N.Q.Ngo. Multi-wavelength Raman fiber laser with a continuously-tunable spacing. OPTICS EXPRESS, 2006, 14(8):3288-3293.
    [28] B. A. Yu, D. H. Kim and B. Lee, Multiwavelength generation in semiconductor fiber ring laser using a sampled fiber grating, Opt. Commun., 2001, 200:343-347
    [29] B. A. Yu, J. Kwon, S. Chung,et al. Multiwavelength-switchable SOA-fibre ring laser using sampled Hi-Bi fibre grating. Electron. Lett. 2003,39(8):649~650.
    [30] Y. W. Lee, J. Jung, and B. Lee. Multiwavelength-switchable SOA-fiber ring laser based on polarization maintaining fiber loop mirror and polarization beam splitter. IEEE Photon. Technol. Lett. 2004,16(1):54~56.
    [31]F.W.Tong, W.Jin, D.N.Wang, et al. Multi-wavelength fiber laser with wavelength selectable from 1590 to 1654nm. Electron. Lett., 2004,40(10):594-595.
    [32]Dae Seung Moon, Bok Hyeon Kim, Aoxiang Lin, et al. Tunable multi-wavelengthSOA fiber laser based on a Sagnac loop mirror using an elliptical core side-hole fiber. OPTICS EXPRESS, 2007,15(13):8371-8376.
    [33] S.Tanaka, H.Somatomo, K.Inamoto, et al. Triple wavelength SOA-based fiber r ing laser for use in wavelength-division multiplexed FBG vibration sensor array. Proc.of SPIE, 2008,7004:70040F-1.
    [34]Z.Chen, S.Ma, N.K.Dutta, Multiwavelength fiber ring laser based on a semiconductor and fiber gain medium, Optic Express,2009,17(3):1234~1239.
    [35]Fei Wang, Xinliang Zhang, Yu Yu, et al. 82-channel multi-wavelength comb generation in a SOA fiber ring laser. Optics & Laser Technology, 2010,42:285-288.
    [36] M.A.Ummy, N.Madamopoulos, A.Joyo, et al. Tunable multi-wavelength SOA based linear cavity dual-output port fiber laser using Lyot-Sagnac loop mirror. OPTICS EXPRSS, 2011,19(4):3202-3211.
    [37]徐帆,SOA环形腔激光器应用的理论与实验研究,[硕士学位论文],武汉:华中科技大学光电子工程系,2006
    [38]郭政华,半导体光放大器静态和动态模型及仿真技术研究,[硕士学位论文],北京:北京交通大学,2006
    [39]张蕾,C+L带多波长光纤激光器的研究,[硕士学位论文],天津:天津大学,2009
    [40]王永福,基于半导体光放大器的多波长光纤激光器的研究,[硕士学位论文],天津:天津大学,2008
    [41] Liu X S, Zhan L, Hu X. Multiwavelengt-h erbium-doped fiber laser based on nonlinear polarization rotation assisted by four-wave-mixing. Optic Communications, 2009, 282:2914.
    [42] Z. Y. Wang, Z. Y. Li, C. F. Ge,et al. Widely tunable all-optical wavelength converter based on four-wave mixing using two orthogonally polarized pumps, Chinese Optics Letters, 2004, 2(6):351-353.
    [43]俞本立,钱景仁,杨瀛海,窄线宽激光的零拍测量法,中国激光,28(4),351-355
    [44]贾豫东,欧攀,杨远洪,短光纤延时自外差法测量窄线宽激光器线宽,北京航空航天大学学报,2008,34(5),568-571
    [45]孙学慧,单纵模光纤激光器及其线宽的测量,[硕士学位论文],北京:北京交通大学,2009
    [46]王沁泉,光外差法产生微波(毫米波)信号的研究,[硕士学位论文],成都:电子科技大学,2009
    [47]陈璐,黄永清,任晓敏,基于三频光外差法产生毫米波的研究,光通信技术,2010,3:13
    [48]A.R.Reisinger, C.D.David, Coherence of a room-temperature CW GaAs/GaAlAs injection laser. IEEE Journal of Quantum Electronics, 1979,15(12):1382-1390.
    [49] Okoshi T,Kikuchi K,Nakayama A. Novel method for high resolution measurement of laser output spectrum. ElectronLett (S0013-5194),1980,16 (16):630-631.
    [50]肖华菊,王翔,马云,基于DSHI的窄线宽光纤激光器线宽测量,光电工程,2010,37(8):58-62
    [51]Philippe B.Gallion, Guy Debarge, Quantum phase noise and field correlation in single frequency semiconductor laser systems. IEEE Journal of Quantum Electronics, 1984, 20 (4):344-351.
    [52] Wang Zhaoying et al, Research on C+L band multiwavelength fiber laser, SPIE-OSA-IEEE PA2010,7847-76.
    [53] Y. W. Lee, J. Jung, and B. Lee, Multiwavelength-switchable SOA-fiber ring laser based on polarization maintaining fiber loop mirror and polarization beam splitter, IEEE Photon. Technol. Lett. 2004,16(1):54~56.
    [54]陈达如,先进光纤激光器技术及其在光传感、光学微波产生的应用,[硕士学位论文],浙江:浙江大学,2009
    [55]孙兵,陈达如,高士明,波长间隔可调谐多波长光纤光学参量振荡器,中国激光,2011,38(2):1-4
    [56] Feng Tian, Xiaoguang Zhang, Jianping Li,et al, Generation of 50 stable frequency-locked optical carriers for Tb/s multi-carrier optical transmission using a recirculating frequency shifter. Journal Of Lightwave Technology, 2011, 29 (8):1085-1091.
    [57] Yang Tianxin et al., Novel WDM to OTDM wavelength conversion system for transmission of discrete sampling spectrum in single wavelength channel, SPIE vol.7936
    [58]杨天新,光纤传感网中单光纤环路波分复用转时分复用装置,发明专利申请号:201010246466.1
    [59]Tetsuya Kawanishi, Masayuki Izutsu, Linear single-sideband modulation for high-SNR wavelength conversion. IEEE Photonics Technology Letters, 2004, 16 (6):1534-1536.
    [60]Jianping Li, Xiaoguang Zhang, Feng Tian, Theoretical and experimental study on generation of stable and high-quality multi-carrier source based on re-circulating frequency shifter used for Tb/s optical transmission. Optics Express, 2011, 19 (2):848-860.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700