用户名: 密码: 验证码:
四塔单索面宽幅脊梁矮塔斜拉桥设计关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矮塔斜拉桥由于优越的结构性能、良好的经济指标及优美的桥梁造型,在200m左右跨径领域,具有极强的竞争能力。近年来,我国矮塔斜拉桥虽发展迅速,但日益发展的工程实践和相对较少的基础研究之间存在矛盾。现有研究多集中于中小跨径的窄幅结构,以工程归纳形成的构造共识和分析理论难以有效解决大跨、宽幅和长联矮塔斜拉桥工程中的实际问题。本文以江肇西江大桥为依托,围绕多塔宽幅单索面矮塔斜拉桥设计关键技术展开研究。通过理论归纳和仿真分析验证,本文主要研究成果和创新点如下:
     (1)针对大跨、长联工况,创新性提出墩、塔、梁固结体系多塔单索面矮塔斜拉桥桥型方案,有效解决多塔结构塔顶位移和结构刚度等核心技术问题。
     (2)为弱化超宽截面自重效应,创新性提出宽幅脊梁断面,通过采用长翼板加劲肋桥面体系和后浇段工序措施,有效改善主梁剪轴力滞效应;通过边中腹板差异设计,以适应边中腹板受力的不均匀性。
     (3)系统研究矮塔斜拉桥整体参数变化敏感性,为塔高、边中跨无索区长度和边中跨比等关键参数拟定提供理据,由研究结论可知,高塔型矮塔斜拉桥是发展方向,跨中无索区长度趋于减少,边中跨比取0.6时结构整体受力较优。
     (4)创新性提出预应力配合比概念,系统研究斜拉索和体内预应力敏感度比值,综合考虑二者造价因素、抵抗竖向荷载效应和平抑主梁应力效率的不同,提出斜拉索和体内预应力的最优配置比例。
     (5)为使墩、塔、梁固结体系多塔矮塔斜拉桥成桥后期处于合理受力状态,对混凝土徐变、基础模拟刚度和混凝土自重荷载效应进行敏感性分析可知,徐变对墩身影响最为显著,其值可达30%,其他两项同样不可忽略。
     (6)针对宽幅脊梁纵、横向空间受力特征和后浇加劲桥面系复杂的受力机理,原有以纵向分析为主的桥梁设计方法存在局限,本文创新性提出能兼顾纵横的空间设计方法。在此基础上,通过桥梁仿真分析,系统研究不同阶段、不同梁段剪轴力滞效应,为合理配束和设置后浇带提供理据;系统研究边中腹板受力不均匀性,提出不均性系数为1.3左右,据此精当拟定脊梁断面腹板厚度;明晰加劲肋桥面系受力机理,明确横向剪力滞系数和后浇带滞后浇筑可行时域。
     (7)通过动力特性分析可知,矮塔斜拉桥动力特性较接近于连续梁桥,振型主要由主梁刚度控制,主塔刚度只对主塔自身振动有影响。抗风和抗震对结构设计制约较少。
     (8)系统研究矮塔斜拉桥景观设计和斜拉索耐久性设计,在设计之初即采取有效措施,确保超大吨位拉索的可养护性和可更换性。换索研究表明,在不中断交通的条件下,考虑到荷载的不确定性,建议每次只能更换一对斜拉索。
     在无成熟工程经验可资借鉴的情况下,因无相关规范提供技术指导,江肇西江大桥实现了多项技术上创新,本文的研究成果对大桥的设计提供了可靠依据,也为类似工程的设计提供了有价值的参考。
Low-pylon cable bridge has strong competitiveness in the field of 200m span because of its excellent structural performance, good economic indicators and beautiful bridge shape. In recent years, our country's low-pylon cable bridge has developed rapidly, but there is conflict between growing engineering practice and relatively few basic research. At present, most researches are focus on narrow structures of middle-small span. The consensus and analysis theory based on construction can not effectively solve practical problems of large-span, wide-range and continuous girder low-pylon cable bridge. This paper takes Xijiang Bridge of Jiangmen to Zhaoqing Highway as example, and does research on key techniques of multi-pylon wide ridge single plane low-pylon cable bridge design. By summarizing theories and vivificating simulation analysis, the paper generalizes research findings and innovations as follow:
     (1) Innovatively proposes bridge plans of pier, tower and beam consolidation system multi-tower single plane low-pylon cable-stayed bridge in light of large span and long continuous bridge. It effectively solves core techniques problems of tower top displacement of multi-tower structure and structural stiffness.
     (2) In order to weaken the dead weight effect of overwide section, innovatively proposes the section of wide ridge section, it effectively improves the shear lag effect by measures of post-cast operation and bridge deck system of long wing panel stiffener. Diversity design is used for mid-web plate to fit non-uniformity of stressed mid-web plate.
     (3) Innovatively studies the sensitivity of low-pylon cable-stayed bridge's parameters and provides theory for formulating key parameters of tower height, the length of side span and mid span without cable, and ratio optimization between side span and mid span. According to researches, we can see that high-pylon cable-stayed bridge is the trend of cable-stayed bridge's development. When the ratio optimization between side span and mid span is 0.6, the stress state is optimum.
     (4) Innovatively propses the concept of prestress allocation. Systematically studies sensitivity ratio of stayed cables and internal prestress. And it proposes the optimal allocation of stayed cables and internal prestress on the basis of cost, resistance to vertical load and stabilize the prestress efficiency of main beam.
     (5) In order to keep pier, tower, and beam consolidation system multi-tower cable-stayed bridge at reasonable stress state, analyzes concrete creep, basical simulated stiffness and sensitivity of concrete dead weight load. The analysis shown that creep has most significant effect on the pier, and its value is 30%. But the other two aslo can not be ignored.
     (6) According to stress characteristics of wide ridge's tovertical and transverse space, and mechanics of post-cast stiffener bridge deck, the paper innovatively proposes design with due consideration tovertical and transverse space, because there are some limits on original bridge design which is based on tovertical analysis. On the base of it, the paper systematically studies shear lag effect of different stages and different box girders by means of bridge simulation analysis. It provides evidence for reasonable tendon layout and post-cast band. It systematically studies non-uniformity of stressed mid-web plate and points out that the coefficient of non-uniformity is aroud 1.3. According to these, we can determine web plate's thickness of ridge section, mechanics of stiffener bridge deck, coefficient of shear lag and lagging-cast practicability of post-cast band.
     (7) Through the dynamic characteristics analysis, the dynamic characteristics of low-pylon cable-stayed bridge is closer to continuous bridge's. The stiffness of main mainly controls vibration mode. The stiffness of main tower only affects the vibration of main tower itself. Wind and seismic resistance have less constraints on structural design.
     (8) Study landscape design of low-pylon cable-stayed bridge and durability design of cables systematically. Effective measures should be taken in the early stage of design to ensure the conservation and raplacement of large tonnage cables. Researches of cable replacement have shown that without interrupting traffic, we can only change a pair of cables each time because of the uncertainty of load.
     Xiangjiang bridge of Jianmen to Zhaoqing highway makes a number of technique innovations, though there is no mature engineering experience and relevent specification for guidance. The research results of this paper provide reliable guidance for bridge's design and also provide valuable reference for similar projects.
引文
[1]何新平.矮塔斜拉桥的设计[J].公路交通科技,2004,(4):66-72
    [2]臧华,刘钊.部分斜拉桥的应用和发展[J].中国市政工程,2004,(3):29-31
    [3]陈从春,周海智,肖汝诚.矮塔斜拉桥研究的新进展[J].世界桥梁,2006,(1):70-73
    [4]何红丽,黄侨,郑一峰.部分斜拉桥承载能力的理论研究和数值分析[C].中国公路学会2005年学术年会论文集,2005,262-267
    [5]王海战.矮塔部分斜拉桥主桥施工技术[J].铁道标准设计,2006,(2):71-73
    [6]李晓莉,肖汝诚.矮塔斜拉桥的力学行为分析与设计实践[J].结构工程师,2005,21(4):7-9
    [7]严国敏.日本木曾川桥—主跨275m的4塔混合梁部分斜拉桥[J].国外桥梁,1997,(2):1-5
    [8]刘岚,严国敏.3跨连续部分斜拉PC箱梁桥—蟹泽大桥[J].国外桥梁,1996,(2):18-20
    [9]陈从春,肖汝诚.矮塔斜拉桥几个问题的探讨及发展展望[C],中国公路学会桥梁和结构工程分会2005年全国桥梁学术会议论文集,2005,287-292
    [10]顾安邦,徐君兰.矮塔斜拉桥[C].中国公路学会桥梁和结构工程学会2001年桥梁学术讨论会论文集,2001,131-134
    [11]陈宝春,彭桂瀚.部分斜拉桥发展综述[C].中国公路学会桥梁和结构工程分会2004年全国桥梁学术会议论文集,2004,263-272
    [12]马修·韦尔斯著,张慧、黎楠译.世界著名桥梁设计[M].北京:中国建筑工业出版社,2003
    [13]金增洪.矮塔斜拉桥的设计与施工—日本新东明高速公路上的京川桥[J].中外公路,2004,24(1):14-16
    [14]Massaru Nishmura, Hidetugu Mochizuki. Design and Construction of sntanigawa. proceedings of the 1st FIB Congress, Session2:35-44
    [15]Norio Terda, Toshiaki Mochizuki. The Design and Construction of the Niyakodawa Bridge in the 2nd Tomei Expressway, proceedings of the 1st FIB Congress, Session2:71-80
    [16]Virlogeux M.Design and Construction of Normandy Bridge. Proceedings of the international Symposium for Innovation in Cable-Stayed Bridges. Fukuoka.1991,123-141
    [17]Lang A. Current and Future Bridge Cable Options. Proceedings of the International Bridge Conference: Bridges into the 21st Century.Hongkong.,1995,126-133
    [18]陈亨锦,王凯,李承根.浅谈部分斜拉桥[J].桥梁建设,2002,(1):44-47
    [19]陈宝春,黄玲,吴庆雄.波形钢腹板部分斜拉桥[J].世界桥梁,2004,(4):5-8
    [20]蔺鹏臻,刘凤奎,周世军,刘世忠.部分斜拉桥的力学性能及其界定[J].铁道学报,2007,29(2):136-139
    [21]张宏伟,郑海东,郑一峰.部分斜拉桥构造设计[J].公路,2005,(5):52-56
    [22]郑一峰,,黄侨,张连振.部分斜拉桥结构参数分析[J].公路交通科技,2006,23(6):60-65
    [23]M.Ito, Y.Fujino, T.Miyata, N.Narita. Cable-Stayed Bridges: Recent Developments and their Future. Elsevier Science Publishers B.V.,1991,258-260
    [24]蔡国宏.国外桥梁建设与发展的新动态[J].国外公路,1998,18(2):9-15
    [25]严国敏.再论部分斜拉桥,兼论多塔斜拉桥[M].中国公路学会桥梁与结构工程学会.第十三届全国桥梁学术会议论文集.上海:同济大学出版社,1998,178-182.
    [26]Christian Menn. Prestressing of Curved Bridge. Analysis and Design of Bridges.Martinus Nijhoff Publishers[J],1984, (1):26-30
    [27]杨云蓉.离石高架桥设计[J].公路,2003,(11):38-40
    [28]王俊义.国内第一座部分斜拉桥—漳州战备大桥设计[J].华东公路,2003,(1)1:13-15
    [29]张国泉.京杭运河宿迁南二环大桥工程总体设计[J].中外公路,2004,24(2):41-44
    [30]陈亨锦,王凯,李承根.浅谈部分斜拉桥[J].桥梁建设,2002,(1):44-47
    [31]高飞,陈淮,杨磊,王艳.部分斜拉桥力学性能分析[J].郑州大学学报(工学版),2005,26(1):54-56
    [32]林元培,斜拉桥[M].北京:人民交通出版社,1995,5-11
    [33]Torilk, Ikeda, Study of the optimum Design Method for cable stayed bridge, International Conference on cable-stayed Bridge,1987
    [34]M.S.Troisky, Cable-stayed Bridge Theory and Design,1988
    [35]W.Pododlny, Construction and Design of Cable-stayed Bridge, John Weley and SONS,1976
    [36]Bernard Houriet, Walrnar Isler, Pierre Moia, Cable-stayed Bridge, Thomas Telford House, London.1988
    [37]Simoes, L.M.C., and Negrao, J.H.J.O. Optimization of cable-stayed bridges with box-girder decks[J].Adv.Eng.Software.2000, (31):417-423
    [38]刘凤奎,蔺鹏臻,陈权,甘燕燕,楼松庆.矮塔斜拉桥拉索初张力优化[J].兰州铁道学院学报(自然科学版),2003,22(4):64-67.
    [39]张宏远.三塔矮塔斜拉桥结构体系的分析研究[J].城市道桥与防洪,2006,(6)
    [40]上官萍,房贞政,卓卫东.部分斜拉桥的结构体系及斜拉索索力影响分析[J].福建建筑,2005,(3):8-11.
    [41]Heny w.george. Cable-Stayed Bridge-Parametric study[J]. Joumal of Bridge Engineering/August 1998,148-150
    [42]Pao-Hsii Wang, Chiung-Guei Yang. Parametric studies on cable-stayed bridges[J]. Computers and Structures.1996,60(2):243-260
    [43]陈德伟,范立础,张权.独塔斜拉桥的总体布置和参数研究[J].士木工程学报,1999,32(3):34-40
    [44]魏春明,陈淮,王艳.矮塔斜拉桥参数敏感性分析[J].郑州大学学报(理学版),2007,39(3):178-182
    [45]刘凤奎,蔺鹏臻,孙红红.矮塔斜拉桥塔高优化[J].铁道工程学报,2003,(4):71-73
    [46]刘凤奎,蔺鹏臻,陈权,刘世忠.矮塔斜拉桥特征参数研究[J].工程力学,2004,21(2):199-203
    [47]M.C.Tamy, Analysis of Cable-Stayed Girder Bridge[J], ASCEJ.Structure Div.V97.NSTS,1971, (5)
    [48]N.Fujisawa, Cable Adjustment in the Erection of Stayed Bridges[J], Bridge and Fundation, 1984, (10)
    [49]David P.Billington, Aly Nazmy. History and Aesthetics of Cable-Stayed Bridges[J]. Journal of Structural Engineering.1990, (19):3103-3134
    [50]彭桂瀚,王卫涛,陈宝春.部分斜拉桥景观设计[J].福建建筑,2006,(3):39-40
    [51]刘钊,孟少平,臧华,张宇峰.矮塔斜拉桥索鞍区模型试验及设计探讨[J].东南大学学报(自然科学版),2007,37(2):291-295
    [52]蔡晓明,张立明,何欢.矮塔斜拉桥索鞍受力分析[J].公路交通科技,2006,23(3):53-59
    [53]郭成超,刘晓伟.部分斜拉桥的索鞍设计[J].河南科学,2004,22(2):232-234
    [54]郑杉,王戒躁.矮塔斜拉桥斜拉索抗滑移性能研究[J].桥梁建设,2001,(5):20-21
    [55]Chun S Cai, Mohsen Shahawy. Predicted and Measured Performance of Prestressed Concrete Bridges[J]. Journal of Bridge Engineering, ASCE,2004, (122):4-13
    [56]石雪飞,项海帆.斜拉桥施工控制方法的分类分析[J].同济大学学报(自然科学版),2001,29(1):55-59
    [57]孙建平.矮塔斜拉桥施工关键技术[J].铁道建筑,2005,(9):17-18
    [58]潘彪,郑凯锋.大跨矮塔斜拉桥合拢顶推力优化计算研究[J].山西建筑,2007,33(31):293-294
    [59]张善,卢明康,惠新,马恒,王建秋,张宇峰.单索面预应力混凝土部分斜拉桥施工控制技术及关键施工工艺的研究[J].公路,2004,(12):57-61
    [60]丁明波,张永亮,陈兴冲,张虹.部分斜拉桥横向应力试验及分析[J].兰州铁道学院学报(自然科学版),2003,22(3):53-55
    [61]Chang, S.T. Shear lag effect in simply supported prestressed concrete box-girder. Journal of bridge engineering,2004, (2):178-184
    [62]Wu, Y.P. Matrix analysis of shear lag and shear deformation in thin-walled box beams. Journal of computing in civil engineering,2003, (8):944-950
    [63]Luo Q.Z., Tang J.,Li Q.S. Finite segment method for shear lag analysis of cable-stayed bridges Journal of Structural Engineering,2002, (12):1617-1622
    [64]王应良,强十中,郝超.芜湖长江大桥桥面板的有效宽度分析[J].桥梁建设.1998,(3):13-15
    [65]郭金琼,房贞政,罗孝登.箱形梁桥剪力滞效应分析[J].土木工程学报.1983,16(1):1-13
    [66]魏丽娜,方放,余大庆等.变截面箱形梁桥剪力滞效应的近似计算方法[J].土木工程学报,1995,28(4):3-14
    [67]彭大文,颜海.曲线脊骨箱梁的剪力滞效应分析[J].土木工程学报,1996,29(4):31-38
    [68]张启伟,张士铎.单索面斜拉桥箱梁恒载剪力滞效应分析[J].中国公路学报,1997,10(1):39-43
    [69]谢永彰,钟敏雄,高飞.矮塔斜拉桥索力在箱形主梁中分布规律研究[J].中南公路工程,2006,31(2):158-160
    [70]陈从春,傅工范,肖汝诚.矮塔斜拉桥箱形主梁空间应力分布研究[J].中南公路工程,2006,31(5):56-58
    [71]陈从春,夏巨华,肖汝诚,何鹏.独塔宽幅矮塔斜拉桥的设计与分析[J].公路,2005,31(5):57-60
    [72]Mohamed Elgaaly, Robert W. Hamilton, Anand Seshadri. Shear strength of beams with corrugated webs. Journal of structural engineering,1996, (4):390-398
    [73]R.Luo, B.Edlund. Ultimate Strength of Girders with Trapezoidaly Corrugated Webs Under Patch Loading. Thin-walled Structures,1996, (4):135-156
    [74]Reissner E. On the problem of stress distribution in wide flanged box beam. Journal Aero Sci. 1983,(5):295-299
    [75]Hambly. Bridge Deck Behaviour. London,1976,256-270
    [76]Clar. Concrete Slab. London,1982,324-334
    [77]李继东.超宽桥面矮塔斜拉桥设计及施工概况[J].铁道建筑,2006,(8):9-10
    [78]K.J.Bathe, Finite Element Procedure in engineering Analysis. Prentice Hall Ine,1982
    [79]Baran nicholasrn, Finite element analysis on microcomputer, New York MeGraw-Hill books company,1987
    [80]Zienkiiewecz, The finite elements method Vol.1, Basic formulation and linear Problems. London, MeGraw-Hill book co.1988
    [81]C.L.Chan, Y.A. Khalid. Finite element analysis of corrugated web beams under bending. Journal of constructional steel research,2002, (11):1391-1406
    [82]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005,236-246
    [83]江见鲸,贺小岗.工程结构计算机仿真分析[M].北京:清华大学出版社,1996,121-121
    [84]卫星,强士中.利用ANSYS实现斜拉桥非线性分析[J].四川建筑科学研究,2003,29(4):23-27
    [85]Reddy, P., Ghaboussi, J., and Hawkins, N.M. Nonlinear Analysis and simulation of construction of cable-stayed bridges.J. Bridge Eng.,1999, (4):249-257
    [86]O.C.Zeinkiewicz, The Finite Element Method(thbird edition). McGraw-Hil,1977,250-260
    [87]O.C.Zeinkiewicz, and R.L.Taylor. The Finite Element Method(Fourth edition). McGraw-Hill, 1989,231-261
    [88]Bathe K.J. Finite Element Procedure in Engineering Analysis. New York,1998,250-267
    [89]张晓壳,陈宁,王应良等.斜拉桥的数学建模[J].国外桥梁,1998,(2):52-56
    [90]黎耀,郑凯锋,陈力波.大跨矮塔斜拉桥塔墩梁固结部位应力计算分析[J].广东公路交通,2007,(3):14-16
    [91]Moshenko S P and Gere JM. Theory of Elastic Stability. Me Graw-HillCO. Inc.NewYork, 1963,250-270
    [92]葛耀君.索-塔-梁耦合作用下的斜拉桥侧倾稳定性[J].中国公路报,1995,(4):38-44
    [93]向中富,顾安邦.大跨斜拉桥的稳定分析[M].北京:人民交通出版社,2000,250-260
    [94]Wilson, J.C., Gravelle, W. Modelling of a cable-stayed bridge for dynamic analysis. Earthquake Engineering&Structural Dynamics,1991, (20):707-721
    [95]李世光.部分斜拉桥自振特性分析[J].建筑设计,2004,33(2):84
    [96]T Miyata, N Fujisawa, H Yamada. Long-Span Bridge and Aerodynamics Springer,1999. 225-228
    [97]李文勃、林志兴.斜拉桥拉索风雨激振的试验研究[J].郑州大学学报(工学版),2005,26(1):33-37
    [98]刘士林,梁智涛,侯金龙.斜拉桥.北京:人民交通出版社,2000,250-278
    [99]Walter Podolny and John B.Scalzi. Construction and Design of Cable-Stayed Bridges. John Wiley and Sons,1986,280-296
    [100]程进,肖汝诚,项海帆.大跨径桥梁静风稳定性分析方法的探讨与改进[J].中国公路学报,2001,14(2):30-32
    [101]方明山,项海帆,肖汝诚.超大跨径悬索桥空气静力非线性行为研究[J].重庆交通学院学报,1999,18(2):1-12
    [102]方明山,项海帆,肖汝诚.大跨径缆索承重桥梁非线性空气静力稳定理论[J].土木工程学报,2000,33(2):73-79
    [103]程进,肖汝诚,项海帆.大跨径斜拉桥非线性静风稳定性全过程分析[J].中国公路学报,2000,13(3):25-28
    [104]程进,肖汝诚,项海帆.大跨径悬索桥非线性静风稳定性全过程分析[J].同济大学学报,2000,28(6):717-720
    [105]陈偕民,刘青.考虑非线性效应的斜拉桥静力分析和自振特性分析[J].工程力学(增刊).1996,276-280
    [106]Fleming, J.F., Egeseli, E.A.Dynamic behavior of a cable-stayed bridge. Earthquake Engineering&Structural Dynamics,1982, (8):1-16
    [107]Li Chunxiang, Liu Yanxia.Active multiple tuned mass dampers for structures underthe ground acceleration. Earthquake Engineering and Structural Dynamics,2002, (5):1041-1452
    [108]American Institute of Steel Construction AISC. Seismic provisions for structural steel buildings, Chicago,2002,414-425
    [109]陈权,郑才富,欧阳永金等.厦门银湖大桥抗震分析[J].兰州铁道学院学报(自然科学版),2003,22(6):76-79
    [110]陈兴冲,虞庐松等.兰州市小西湖部分斜拉桥抗震分析[J].兰州铁道学院学报(自然科 学版),2003,22(3):42-44
    [111]川蔡鹏程.三跨预应力混凝士部分斜拉桥动力特性及地震反应特性研究[D].福州大学硕士学位论文,2005.12
    [112]亢战.斜拉桥参数共振问题的数值研究[J].士木工程学报,1998,31(4):14-22
    [113]汪志刚,孙炳楠.斜拉桥参数振动引起的拉索大幅振动[J].工程力学,2000,118(1):103-109
    [114]赵跃宁,王涛,康厚军.斜拉索主参数共振的稳定性分析[J].动力学与控制学报,2008,6(2):112-117
    [115]欧进萍,牛获涛,杜修力.设计用随机地震动的模型及其参数确定[J].地震工程与工程振动,1991,11(3):45-53
    [116]杜修力,陈厚群.地震动随机模拟及其参数确定[J].地震工程与工程振动,1994,14(4):1-5
    [117]史志利,李忠献.随机地震动场多点激励下大跨度桥梁地震反应分析方法[J].地震工程与工程振动,2003,23(4):124-130
    [118]全伟,李宏男.大跨结构多维多点输入抗震研究进展[J].防灾减灾工程学报,2006,26(3):343-351
    [119]张翠红,吕令毅.大跨度斜拉桥在多点随机地震激励作用下的响应分析[J].东南大学学报(自然科学版),2004,34(2):249-252
    [120]林家洁,张亚辉,赵岩.大跨度结构抗震分析方法及近期进展[J].力学进展,2001,31(3):350-360
    [121]王东升,翟桐,郭明珠.利用Push—over方法评价桥梁的抗震安全性[J].世界地震工程,2000,(2):47-51
    [122]江近仁,洪峰.功率谱与反应谱的转换和人造地震波[J].地震工程与工程振动,1984,4(3):1-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700