活性污泥法—人工湿地联合处理城市污水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国南方城市污水有机污染物浓度偏低,氮磷含量相对较高,水质、水量随季节变化的特点,采用活性污泥法与人工湿地相结合的联合处理工艺,分别在100m~3/d规模的生产性试验和10000m~3/d规模的示范工程中,以实际城市污水为处理对象进行研究。试验重点考察了原水水质水量特征、污染物存在形态及去除规律、不同工艺条件下碳源分配情况,确定了高效生物反应器在不同季节时段的运行模式;研究了不同构型人工湿地中污染物的去除效率及池型、填料、负荷、温度、植物对其的影响,计算了反应动力学参数,确定了适宜的湿地构型及负荷调控方法;在此基础上提出了基于q-t曲线图的双向输入/输出联合调控模式,确定了活性污泥法-人工湿地联合处理工艺及负荷分配。示范工程依据试验结果,针对实际水质变动情况灵活调控,考察了工程规模的联合处理工艺对各种污染物质的去除情况。
     试验原污水平均COD、NH_4~+-N、TN、TP为129mg/L、25.6mg/L、31.5mg/L、3.38mg/L,C/N值和C/P值为4.3和39.5,脱氮除磷所需碳源严重不足。在不同的季节,原水水质有较大变化,雨季原水污染物浓度只有旱季浓度60%左右,春、夏季暴雨时原水污染物浓度接近排放标准。因此,生物反应器需要根据水温的变化、水质的波动、降雨的多寡采用不同的运行模式,才能在有限碳源条件下实现最大限度的脱氮除磷。
     通过不同季节多种工艺的比较,确定了高效生物反应器运行模式:春季时段采用改良型A~2/O工艺,夏季晴天/小雨时段采用预缺氧+倒置A~2/O工艺,夏季连续暴雨时段采用多点进水工艺,秋季时段采用低氧/常氧交替运行的倒置A~2/O工艺,冬季时段采用常规倒置A~2/O工艺。通过分析各种工艺中有机物、氮、磷的去除规律,比较其碳源分配情况,说明碳源能否合理分配及充分利用是评价工艺优劣的重要标准。
     人工湿地系统对COD、NH_4~+-N、TN、TP的去除效率受负荷明显影响,随着水力负荷和面积负荷增加,湿地对污染物的去除效率呈下降趋势,同时污染物面积去除量的增量随着面积负荷的增加逐渐减少。另外,随着水温的升高,湿地对NH_4~+-N、TN的去除效率明显上升,模拟小试试验还证明,湿地系统总氮面积去除量与进水硝态氮的比例成正的线性关系,提高进水中硝态氮比例有利于总氮的去除。生物量大的湿地植物对污染物的吸收总量最高,单位干重的氮磷含量不能作为评价植物污染物吸收能力的主要指标。在较低污染物浓度水平条件下,湿地对污染物的去除可以用一级推流动力学模型近似模拟。
     在相同负荷条件下,潜流湿地对COD和TP的去除效率高于表面流湿地及潜流/表面流组合湿地,页岩和钢渣的应用明显提高了湿地对磷的去除能力。表面流湿地对NH_4~+-N的去除效率高于潜流湿地和组合流湿地,在硝态氮比例大于0.25时,潜流湿地对总氮的去除优于表面流湿地。组合流湿地的优势在于其去除效率受温度的影响最小。整体来说,采用页岩和钢渣作为基质的潜流湿地最适宜于城市污水的深度处理,其COD、NH_4~+-N、TN、TP的面积反应速率常数分别为0.32m/d、0.065m/d、0.176m/d、0.29m/d。
     根据试验结果,总结了活性污泥法/人工湿地联合处理的方法和原则,利用q-t曲线图进行设计和调控,提出了双向输入/输出的活性污泥法-人工湿地联合调控模式,并进行了实例分析。示范工程生物反应器通过改良型A~2/O工艺、预缺氧+倒置A~2/O工艺、局部低氧倒置A~2/O工艺的切换运行,使出水水质稳定达到《城镇污水处理厂污染物排放标准》一级B标准,部分指标达到一级A标准。在水力负荷为0.3m/d~0.35m/d条件下,示范工程人工湿地系统出水COD、BOD、NH_4~+-N、TP可以达到《地表水环境质量标准》,TN浓度可以下降到7mg/L左右。
There are some difficulties in treating municipal wastewater in Southern Chinabecause of the weak carbon concentration, comparative strong nitrogen andphosphorus concentration, seasonal changing quality and quantity. To solve theproblem the activated sludge process-constructed wetland combinative technologywas invented. The research focus on real municipal wastewater treatment in a pilotscale system with capacity of 100m~3/d and a demonstrating plant with capacity of10000m~3/d. In the pilot scale experiment the study involves the influent quality andquantity, the pollutant form and removal efficiency, the COD distribution in differentprocesses. With these studies the operating modes of the interactive reactor indifferent seasons were confirmed. Meanwhile the pollutant removal efficiency andkinetic constants in different types of constructed wetland were investigated and theeffecting factors such as packing medium, load, temperature and plant species werealso researched. Thereout the appropriate type and load of constructed wetland can beconfirmed. Further more the bidirectional input/output adjusting mode forbiological-ecological comnination based on q-t figure was proposed as well as theload distribution. In the full scale experiment the demonstrating reactor was adjustedwith the fluctuating influent quality and the polluent removal efficiency wasinvestigated.
     The influent concentratons of COD, NH_4~+-N, TN and TP of pilot system were129mg/L、25.6mg/L、31.5mg/L、3.38mg/L respectly. The needed carbon for nitrogenand phosphorus removal was lacking because of the low C/N and C/P ratios. Theinfluent quality fluctuates with the alternation of season and the pollutantconcentration in rainy weather was about 60% of that in dry weather. Even thepollutant concentration was so weak that close to the discharge standard in rainy dayin spring and summer. So the biological reactor must be adjusted accoding to thechanges of temperature, influent quality and precipitation for making the most ofnitrogen and phosphorus removal with the limited carbon resource.
     By comparing different processes in the same period, following operting modeof interactive reactor was recommend: enhanced A~2/O process fits on spring period,pre-anoxic inverted A~2/O process was recommend in dry/mizzle weather in summerperiod, step aeration process was adopted in rainy weather in summer period,alternating oxygen concentration inverted A~2/O process was appropriate in autumnperiod, and normal inverted A~2/O process was better in winter period. The analysis ofthe organic matter, nitrogen and phosphorus removal rule and the carbon resourcedistribution shows that the preferable process can betterly distribute and utilize thelimited carbon resource.
     The removal efficiencies of COD, NH_4~+-N, TN and TP in constructed wetlandwrer remarkably affected by loading. The removal efficiencies were decreased withthe increasing hydraulic loading and areal loading. The increment of areal removalmass was reduced with the increasing areal loading. Otherwise the removalefficiencies of NH_4~+-N and TN were observably increased with the climbingtemperature. The lab-scale experiment shows that the TN areal removal mass waslinearly related to the NO_x~--N/TN ratio. So increasing the NO_x~--N/TN ratio canimprove the TN removal. The aquatic plants with bigger biomass have strongercapacity to assimilating the pollutant so the concentrations of nitrogen andphosphorus in dry plant should not be the exponent for evaluating assimilatedpollutant by plant. On the condition of low influent concentration the pollutantremoval rules in constructed wetland can be simulated by first-order K-C model.
     The removal efficiencies of COD and TP in subsurface flow wetland (SSFW)were higher than that in surface flow wetland (SFW) and SSFW/SFW combinedwetland with the same loading. Using shale and slag as medium can enhance theremoval of phosphorus. The removal efficiency of NH_4~+-N in SFW was higher thanthat in SSFW and SSFW/SFW combined wetland. When the NO_x~--N/TN ratio wasmore than 0.25 the removal efficiencies of TN in SSFW was higher than that in SFW.The advantage of SSFW/SFW combined wetland was less infection by lowtemperature. Eventually the shale/slag filled SSFW was recommended for advancedtreating municipal wastewater and the first-order areal rate constants of COD,NH_4~+-N, TN and TP were 0.32m/d, 0.065m/d, 0.176m/d and 0.29m/d respectly.
     Accoding to the pilot experiment results the guidelines of biological-ecologicalcombination was proposed for managing the demonstrating plant. And thebidirectional input/output adjusting mode for biological-ecological comnination basedon q-t figure was builted. A case for the adjusting mode focus on the pilot scalesystem was analyzed. The operation modes of demonstrating reactor were switchedby using enhanced A~2/O process, pre-anoxic inverted A~2/O process and partialy lowoxygen concentration inverted A~2/O process. The effluence quality of demonstratinginteractive reactor can reach the standard of grade B, class one in Discharge Standardof Pollutants for Municipal Wastewater Treatment Plant. Some of them can reach thegrade A standard. When the hydraulic loading of demonstrating SSFW was about0.3m/d to 0.35m/d the effluence concentration of COD, BOD, NH_4~+-N and TP canreach the Environmental quality standards for surface water, the effluenceconcentration of TN can be declined to 7mg/L.
引文
[1] 周彤.污水回用是解决城市缺水的有效途径.给水排水,2001,27(11):1-6
    [2] 国家环保局,2005年中国环境状况公报,北京:2006
    [3] 吴舜泽,夏青,刘鸿亮.中国流域水污染分析.环境科学与技术,2000,2:1-6
    [4] 郝晓地.欧洲水环境控磷策略与污水除磷技术(上).给水排水,1998,24(8):69-73
    [5] 李军,杨秀山,彭永臻.微生物与水处理工程.北京:化学工业出版社,2002
    [6] 顾夏声.废水生物处理数学模式.北京:清华大学出版社,1992
    [7] 徐亚同.废水中氮磷的处理.上海:华东师范大学出版社,1996
    [8] 郑兴灿,李亚新.污水除磷脱氮技术.北京:中国建筑工业出版社,1998
    [9] 郝晓地,汪慧贞,钱易,Mark van Loosdrecht.欧洲城市污水处理技术新概念——可持续生物除磷脱氮工艺(上).给水排水,2002,28(6):6-11
    [10] Toerien, D.F., Gerber, A., et al.Enhanced biological phosphorus removal in activated sludge systems. Adv. Microb. Ecol., 1990, (11): 173-230
    [11] Kortstee Gerard J.J. Biology polyphosphate-accumulating bacteria involved in enhanced biological phosphorus removal. FEMS Microbiology Review. 1994,15:137-153
    [12] Suresh, N., Warburg, R., et al. New strategies for the isolation of microorganisms responsible for phosphate accumulation. Wat. Sci. Tech., 1985, 17:99-111
    [13] Buchan, L., Possible biological mechanism of phosphorus removal. Wat. Sci. Tech., 1983, 15: 87-103
    [14] Deinema, M.H., van Loosdrecht, M., et al., Some physiological characteristics of Acinetobacter spp. accumulating large amounts of phosphate. Wat. Sci. Tech., 1985, 17: 119-125
    [15] Gersberg, R.M. and Allen, D.W. Phosphorus uptake by Klebsiella pneumoniae and Acinetobacter calcoaceticus. Wat. Sci. Tech., 1985, 17:113-118
    [16] Kerdachi, D.A. and Roberts, M.R. Full scale phosphate removal experiences in the Umhlatuzana Works at different sludge ages. Wat. Sci. Tech., 1983, 15:261-281
    [17] Lee N., Jansen Ia Cour, Aspegren H., et al. Population dynamics in wastewater treatment plants with enhanced biological phosphorus removal operated with and without nitrogen removal. Wat. Sci. Tech., 2002, 46(1-2): 163-170
    [18] Beacham, A,M., Seviour, R.J., et al., Genospecies diversity of Acinetobacter isolates obtained from a biological nutrient removal pilot plant of a modified U.C.T. configuration. War. ges. 1990, 24:23-29
    [19] Bond Philip L., Kelle, Jurg, Blackall Linda L. Characterization of enhanced biological phosphorus removal activated sludge with dissimilar phosphorus removal performances. Wat. Sci. Tech., 1998, 37(4-5): 567-571
    [20] Streichan M., Goleckii J.R., et al., Polyphosphate-accumulating bacteria from sewage plants with different processes for biological phosphorus removal. FEMS Microbiol. Eclo., 1990, 73:113-124
    [21] Barnard J. L., Stenens G. M. and Leslie P. L Design strategies for nutrient removal plant. War. Sci. Tech., 1985, 17:233-242
    [22] Oldhan W. K. Full scale optimation of biological phosphorus removal at Kelowna, Canada. Wat. Sci. Tech., 1985, 17:243-257
    [23] Ketchum L. H., Irmine R. L. Jr, Breyfogle R. E. and Manuing J. F. Jr. A comparison of biological and chemical phosphorus removals in continuous and sequencing batch reactors. Journal WPCF, 1987, 59:13-18
    [24] Pitman A. R., Trim B. C. and van Dalsen L. Operating experience with biological nutrient removal at the Johannesburg Bushkoppie Works. Wat. Sci. Tech., 1988, 20(4-5): 51-61
    [25] 钱易,米详友主编.现代废水处理新技术.北京:中国科学技术出版社,1993
    [26] 严煦世主编.水与废水技术研究.北京:中国建筑工业出版社,1992:457-486
    [27]Metcalf & Eddy,Inc.Wastewater Engineering:Treatment and Reuse(Fourth Edition).北京:清华大学出版社,2003
    [28] 任洁,顾国维,杨海真.改良型A2/O工艺处理城市污水的中试研究.给水排水,2000,26(6):7-10
    [29] 周斌.改良型A2/O工艺的除磷脱氮运行效果.中国给水排水,2001,17(7):46-48
    [30] 王建龙.生物脱氮新工艺及其技术原理.中国给水排水,2000,16(2):25-28
    [31] 周少奇,周吉林.生物脱氮新技术研究进展.环境污染治理技术与设备,2000,1(6):11-19
    [32] van Loosdrecht M.C.M., Jitten M.S.M. Microbiological conversions in nitrogen removal.Wat. Sci. Tech., 1998, 38(1): 1-7
    [33] Elisabeth V Munch et al. (1996). Simultaneous nitrification and denitrification in bench-scale sequencing batch reactor. Wat. Res., 1996, 30(2): 277-284
    [34] Hyungseok Yoo, Kyu-Hong Aim. (1999). Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification(SND) vis nitrite in an intermittently-aerated reactor. Wat. Res., 1999, 33(1): 145-154
    [35] Zhao H W, Donald S Mavinic, William K Oldham. (1999). Controlling factors for simultaneous nitrification and denitdfication in a two-stage intermittent aeration process treating domestic sewage. Wat. Res., 1999, 33(4): 971-978
    [36] Klangduen Pochana, Jurg Keller. (1999). Study of factors affecting simultaneous nitrification and denitrification(SND). Wat. Sci. Tech., 1999, 39(6): 61-68
    [37] Daigger G.T.,Littleton H.X..Orbal氧化沟同时硝化/反硝化及生物除磷的机理研究.中国给水排水,1995,15(3):1-7
    [38] Rittman B. E., Langeland W. E.. Simultaneous denitrification with nitrification in single-channel oxidation ditches. Journal WPCF, 1985, 57(4): 300-308
    [39] 高廷耀,周增炎,朱晓君.生物脱氮工艺中的同步硝化反硝化现象.给水排水,1998, 24(12):6-9
    [40] 曹国民,赵庆祥,张彤.单级生物脱氮技术的进展.中国给水排水,2000,16(2):20-24.
    [41] Turk O., Mavinic D. S.. Maintaining nitrite build-up in a system acclimated to free ammonia. Wat. Res., 1989, 23(11): 1383-1388
    [42] Hanaki K., Wantawin C., Ohgaki S.. Nitrification at low levels of dissolved oxygen with organic loading in a suspended-growth reactor. Wat. Res., 1990, 24(3): 297-302
    [43] Villaverde S., FDZ-POLANCO, Garcia P. A.. Nitrifying biofilm acclimation to free ammonia in submerged biofilters: Start-up influence. Wat. Res., 2000, 34(2): 602-610
    [44] Van Benthum W. A. J. et al.. Nitrogen removal using nitrifying biofilm growth and denitrifying suspended growth in a biofilm airlift suapension reactor coupled with a chemostat. Wat. Res., 1998, 32(7): 2009-2018
    [45] 王志盈,袁林江,彭党聪等.内循环生物流化床硝化过程的选择性研究.中国给水排水,2000,16(4):1-4
    [46] 袁林江,彭党聪,王志盈.短程硝化-反硝化生物脱氮.中国给水排水,2000,16(2):29-31
    [47] 郝晓地,汪慧贞,钱易,Mark van Loosdrecht.欧洲城市污水处理技术新概念——可持续生物除磷脱氮工艺(下).给水排水,2002,28(7):5-8
    [48] 郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术.北京:科学出版社,2004.
    [49] Mulder A., Van de Graaf A. A., Robertson L. A. and Kuenen J. G.. Anaerobic ammonia oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol., 1995, 16:177-184
    [50] Van de Graaf A. A., Mulder A., Bruijn P. de, Jetten M. S. M., Robertson L. A. and Kuenen J. G. Anaerobic oxidation of ammonia is a biologically mediated process. Appl. Environ. Microbiol., 1995, 61 (4): 1246-1251
    [51] Straous M. et al. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (ANAMMOX) process in different configurations. Wat. Res., 1997, 31(8): 1955-1962
    [52] Jeeten M.S.M., et al. Towards a more sustainable municipal wastewater treatment system. Wat. Sci. Tech., 1997, 35(9): 178-180
    [53] Van Dongen U., Jeeten M.S.M., van Loosdrecht M.C.M. The Sharon-Anammox process for treatment of ammonium rich wastewater. Wat. Sci. Tech., 2001, 44(1): 153-160.
    [54] 左剑恶,蒙爱红.一种新型生物脱氮工艺——SHARON-ANAMMOX组合工艺.给水排水,2001,27(10):22-28
    [55] Hippen A et al. Aerobic deammonification:a new experience in the ttreatment of wastewater. Wat. Sci. Tech., 1997, 35(10): 111-120
    [56] Kuba T., van Loosdrecht M. C. M. and Heijnen J. J. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in two-sludge systems. Wat. Res., 1996, 30(7): 1702-1710
    [57] Mino T, et al. Microbiology and biochemistry of the enhanced biological phosphorus removal process. Wat. Res., 1997, 32: 3193-3207
    [58] Hao X D, et al. Contribution of P-Bacteria in BNR process to overall effects on the environment. Wat. Sci. Tech., 2001, 44(1), 67-76
    [59] Kerrn-Jespersen J. P. and Henze M. Biological phosphorus uptake under anoxic and aerobic conditions. Wat. Res., 1993, 27(4): 617-624
    [60] Sorm R., Bortone G., Saltarelli R., Jenicek P., Wanner J. and Tilche A.. Phosphorus uptake under anoxic conditions and fixed-film nitrification in nutrient removal activated sludge system. Wat. Res., 1996, 30(7): 1573-1584
    [61] Barker P. S. and Dold P. L.. Denitrification behaviour in biological excess phosphorus removal activated sludge systems. Wat. Res., 1996, 30(4): 769-780
    [62] Wachtmcister A., Kuba T.. A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge. Wat. Res., 1997, 31(3): 471-478
    [63] 王亚宜,彭永臻,王淑莹,李勇智,潘绵立.反硝化除磷理论、工艺及影响因素.中国给水排水,2003,19(1):33-36
    [64] Sorm R., Bortonc G. Phosphate uptake under anoxic conditions and fixed-film nitrification in nutrient removal activated sludge system. Wat. Res., 1996, 3(7): 1573-1584
    [65] Wanner, J., Cech, J. S. and Kos, M.. New process design for biological nutrient removal, Wat. Sci. Tech., 1992, 25(4-5): 445-448
    [66] Bortone G, Saltarelli, R., Alonso, V., Sorm R., Wanner J. and Tilche A.. Biological anoxic phosphorus removal-the DEPHANOX Process, Wat. Sci, Tich., 1996, 34(1-2): 119-128
    [67] Jens Peter, Keren Jespersen, Mogen Henze. Biological phosphorus uptake under anoxic and aerobic conditions. Wat. Res., 1994, 28(5): 1253-125
    [68] Falkentofl C. M. Harremoses P. Combined denitrification and phosphorus removal in a biofilter. Wat. Sci. Tech., 2000, 41(4-5): 493-501
    [69] 孙铁珩,周启星,张凯松.污水生态处理技术体系及应用.水资源保护,2002,3:6-13
    [70] 张永泽,王烜.自然湿地生态恢复研究综述.生态学报,2001,21(2):309-314
    [71] 李禄康.湿地与湿地公约.世界林业研究,2001,14(1):1-7
    [72] Jos T. A Verhoevem. et. al. Wetlands for wastewater treatment: Opportunities and limitations. Ecological Engineering, 1999, 12: 5-12
    [73] 夏汉平.人工湿地处理污水机理与效率.生态学杂志,2002,2l(4):51-59
    [74] EPA. A hand book of constructed wetlands. USEPA. Cincinnati, Ohio, 1986: 1-5
    [75] 陈华癸.土壤微生物学.上海:上海科技出版社,1981
    [76] Brix H. Treatment of wastewater in the rhizosphere of the wetlans plants—the root zone method. Wat. Sci. Resh. 1987, 19(2): 107-118
    [77] Rogers, et al, Nirtogen removal in experimental wetland treatment system. JWPCF., 1991, 63(3): 934-941
    [78] 袁可能.植物营养元素的土壤化学.北京:科学出版社,1983:110-156
    [79] Clark, P. J. Project status report for the Moodna basin marsh/pond/overland flow pilot treatment plant.Engineers & Consaltants. Goshen, NY, 1981
    [80] 梁象秋,方纪组,杨和荃.水生生物学.北京:中国农业出版社,1996:10-21
    [81] Boyt, EL., Bayley et al. Removal of nutrients from treated municipal wastewater by wetland vegetation. Water Pollution Control Federation, 1977, 49(5): 789-799
    [82] Armstrong. Radial oxygen diffusion from the roots of some brith bog plants, Nature, 1964, 204(16): 801-805
    [83] Moorhead, Reddy. Oxygen Transport through selected aquatic macrophytes. J.Environ.Qual., 1988, 17(9): 94-952
    [84] Teal, et al. Gas transport in the marsh grass-saptia alterniflora. J.Exp.Bot., 1966, 17(9): 355-361
    [85] Teal, et al. Gas transport in the marsh grass—saptia alterniflora. J.Exp.Bot, 1966, 17(9): 355-361
    [86] Hall-Sponcer. Conservation issues relating to maerl beds as habitats for molunscs. J.CSE 1994, 2:271-286
    [87] Lopez E., Soto B., Arias M, et al. Adsorption properties of red mud and its use for waste water treatment. Wat.Res. 1998, 32(4): 1314-1322
    [88] Inglethorpe S.D. Measurement of selected physical properties of three samples submittd by SAC consultants. Brithish Geological Survey Technical Report, 1992, 17
    [89] Hingston, et al. Anion Adsorption by Goethite and Gibbsite I: The role of the proton in determining adsorption envelopes. J.Soil.Sci, 1972, 23(11):177-182
    [90] Breeuws A., Lyklema, Physical and Chemical Adsorption of Inos in the Electrical Double Layer on Hematite. J.Coll. Interface.Sci, 1973, 43(12):437-450
    [91] Parfitt, et al. The mechanism of phosphate fixation by iron oxides. Soil Sci., 1975, 39(7):837-851
    [92] Taylor. A mechanism of phosphate adsorption on soil and anion exchange resin surface. Soil Sci., 1978, 42(2):434-440
    [93] Harter R.D. Adsorption of phosphorus by lake sediment. Soil Sci., 1968, 32(5):514-530
    [94] 诸惠吕.新型废水处理工艺—人工湿地的设计方法.环境科学,1993,14(2):39-42
    [95] Srinivasan,N.,et al. Improvement of domestic wastewater quality by subsurface flow constructed wetlands. Bioresource Technol., 2000, 75(1): 19-25
    [96] Kadlec,H.R.et al. Treatment wetlands. FL: Lewis Publishers, 1990
    [97] 高拯民,李宪法.城市污水土地处理利用设计手册.北京:中国标准出版社,1991
    [98] USEPA. Design Manual: constructed wetland and aquatic plant systems for Municipal wastewater treatment. 1988:20-52
    [99] Andrew Wood. Construction wetlands in water pollution control: fundamentals to their understanding. Wat.Sci.Tech, 1995, 32(3): 21-29
    [100] Vyacheslav G, Magmedov, et al. The use of constructed wetlands for the treatment of run-off and Drainage Waters: the UK and UKRAINE experience. Wat. Sci. Tech., 1996, 33(4-5): 315-323
    [101] Michael Morris, Robert Hebert. The design and performance of a vertical flow reed bed for the treatment of high ammonial/low suspended solid organic effluents. IWA 5th international conferenance on wetland systems for water pollution control conferencence preprint book. Vienna, 1996
    [102] Reed S C, Brown D. Subsurface flow wetlands—a perfomance evaluation. Water Environ. Res., 1995, 67(2): 244-248
    [103] Lantzke I R, Hertiage A D, et al. Phosphorus removal rates in bucket size planted wetlands with a vertical hydraulic flow. Wat..Res., 1998, 32(6): 1888-1990
    [104] Peter F.breen, Alan J.Chick. Rootzone Dynamics in Constructed wetlands receving wastewater: a comparasion of vertical and horizontal flow systems. Wat.Sci.Tech., 1995, 32(3): 281-290
    [105] Cooper P F, et al. Construted wetlands for wastewater treatment. USA: Michigan Lewis Publishers, 1989:153-172
    [106] Kadlec, H.R. and Knight, L.R. Treatment wetland. USA, New York: CRC Lewis Publishers, 1996
    [107] Magmedov, V.G, Zakharchenko, M.A et al.The use of consturcted wetlands for the treatment of run-off and drainage waters: the UK and Ukraine experience. Wat. Sci. Tech., 1996, 33(4-5): 315-323
    [108] Koottatep T, Polprasert C, Oanh N T K, et al. Septage dewatering in vertical-flow constructed wetlands located in the tropics. War Sci Tech., 2000, 41 (2-3): 181-188
    [109] Dani vrhovsek, Vlasta kukanja, Tjasa bulc. Constructed wetland for industrial waste water treatment. War. Res., 1996, 30(10): 2287-229
    [110] Heather L Shepherd, Mark E Grismer, George Tchobanoglous. Treatment of high-strength winery wastewater using a subsurface flow constructed wetland. Water Environment Research, 2001, 73(4): 394-403
    [111] 籍国东,孙铁珩,常上俊等.自由表面流人工湿地处理超稠油废水.环境科学,2001, 22(4):83-87
    [112] Machate, T, Noll, H et al. Degration of phenanthrene and hydraulic characteristics in a consturcted wetland.Wat.Sci.Tech. 1997, 31(3): 554-560
    [113] Tanner, C. C, Sukias, J.P.S and Upsdell, M.P. Sustratum phosphorus accumulation duing maturation of gravel-bed constructed wetlands. Wat.Sci.Tech., 1999, 40(3): 147-154
    [114] 朱彤,李华.白泥坑人工湿地污水处理系统运行管理研究报告.华南环境科学研究所,1992
    [115] 朱彤,蔡信德.湿地植物群落之建立-有关问题及技术.华南环境科学研究所,1992
    [116] 唐运平,米瑞兰等.芦苇湿地处理滤床处理城市污水的研究.环境工程,1992,10(2):1-5
    [117] Gersberg, R. M, V. Eldkins et al. Role of aquatic plants in wastewater treatment by artificial wetland. Wat.Res., 1988, 20(3): 363-368
    [118] 彭江燕,刘忠翰.不同水生植物影响污水处理效果的主要参数比较.云南环境科学,1998,17(2):47-51
    [119] 高吉喜,叶春,杜娟等.水生植物对面源污水净化效率研究.中国环境科学,1997,17(3):247-251
    [120] Thammarat, Chongrak. Role of plant uptake on nitrogen removal in constructed wetlands located in the tropics. Wat.Sci.Tech., 1997, 36(12): 1-8
    [121] Drizo, A., Frost, C.A. et al. Phosphous and ammonium removal by constructed wetlands with horizontal subsurface flow using shale as a substratum. Wat.Sci.Tech., 1997, 35(5): 95-102
    [122] Drizo, A., Frost, C.A et al. Physico-chemical screening of phosphate remaining substrate for use in constructed wetland system.. Wat..Res., 1990, 33(17): 3595-3602
    [123] Mann R.A., Bavor H. J. Phosphorus removal in construted wetlands using gravea and industrial waste substrata. Wat.Sci.Tech., 1993, 27(1): 107-113
    [124] Shalla Gray, John Kinross et al. The nutrient assimilative capacity of marel as a substrate in constructed wetland systems for waste treatment. Wat.Res. 2000, 34(8): 2183-2190
    [125] S.E.Mng, J.H.Y.Katima. Pumice soils: a potential substrate in constructed wetland tratment systems. Wat.Sci.Tech., 2002, 33(9): 134-148
    [126] Mildas Scholz, et al. Performance prediction of experimental wetlands with different filletr Media and Miklas Scholz. Wat.Sci.Tech, 2002, 18(12): 251-356
    [127] Reddy K.R., Connor G A.O., Gale P. M. Phosphorus sorpotion capacities of wetland soils and stream sediments impacted by dairy effluent. Jouranal of Enovironmental Quality, 1998, 27:438-447
    [128] Sakadevan K. and Bavor H. J. Phosphate adsorption characteristics of soils,slags and zeolite to be used as substrates in constructed wetland systems. Water Research, 1998, 32(2): 393-399
    [129] Zhu T., Jenssen P.D., Maehlum T., Krogstad T. Phosphorus sorption and chemical characteristics of light weight aggregates(lwa)—potential filter media in treatment wetlands. Wat.soi.Tech. 1997, 35(5): 103-108
    [130] Koichi FUJIE, Hong-Ying HU, Hajime TANAKA, et al. Analysis of Respiratory Quinone Profile in Soil for Characterization of Microbiota. Soil Science and Plant Nutrition, 1998,44(3): 393-404
    [131] Hong-Ying Hu, Naohiro Goto and Koichi Fujie. Statistical analyses of operating conditions and power consumption characteristics in small-scale conventional activated sludge plants for sewage treatment. Environmental Technology, 2000, 21(10): 1167-1172
    [132] 王晓娟,张荣社.人工湿地微生物硝化和反硝化强度对比研究.环境科学学报,2006,26(2):225-229
    [133] 胡洪营,童中华.微生物醌指纹法在环境微生物群体结构研究中的应用,微生物学通报,2002,29(4):95-98
    [134] 周巧红,吴振斌,付贵萍等.人工湿地基质中酶活性和细菌生理群的时空动态特征.环境科学,2005,26(2):108-112
    [135] 吴振斌,粱威,成水平等.人工湿地植物根区土壤酶活性与污水净化效果及其相关分析. 环境科学学报,2001,21(5):622-624
    [136] Mitechell, D. S., Chick, A. J., Rasin, G. W. The use of wetlands for water pollution control in Australia: an ecological perspective. Wat. Sci. Tech., 1995, 32(3): 65-373
    [137] Breen, P. F. The performance of vertical flow experimental wetland under a range of operational formats and environmental conditions. Wat. Sci. Tech., 1997, 35(5): 167-174
    [138] Breen, P. F. A mass blance method for assesing the potential of artificial wetlands for wastewater treatment.Wat. Res., 1989, 24(6): 609-617
    [139] 付贵萍,吴振彬,任明迅等.复合垂直流湿地反应动力学及水流流态的研究.中国环境科学,2001,21(6):535-539
    [140] Leonard, K. M, Swanson, G. W. Comparison of operational design criteria for subsurface flow consturcted wetlands for wastewater treatment. Wat. Res., 2000, 35(6): 511-521.
    [141] Bowmer, K. H. Nutrient removal from effluents by an artificial wetlands: influence of rhizosphere aeration and preferential flow studied using bromide and dye tracers. Wat. Res., 1987, 21(5): 591-599.
    [142] Wood, A. Constructed wetlands in water pollution control: fundmentals to their understanding. Wat. Sci. Tech., 1995, 32(3): 21-29
    [143] J. Huang et al. Nitrogen removal in constructed wetlands employed to treat domestic wastewater. Wat. Res., 2000, 34(9): 2582-2588
    [144] Otto R., Hook, Borden. Does batch operation enhance subsurface constructed wetland oxidation. IWA conference on wetland, 2002
    [145] 刘宝玲.A2/O工艺改善污水处理除磷脱氮的措施.污染防治技术,2003,16(2):65~67
    [146] 高大文,彭永臻.实时控制技术在污水生物处理中的研究进展.应用与环境生物学报,2004,10(6):821-825
    [147] 张代钧,卢培利,严晨敏等.活性污泥2号模型用于城市污水处理厂脱氮除磷改造的研究.环境科学学报,2003,23(3):332-337
    [148] C. P. Leslie Grady, Jr. Glen T. Daigger, Henry C. Biological Wastewater Treatment: Second Edition, American: Marcel Dekker, Inc, 1999
    [149] 邱兆富.交互式反应器处理低碳高氮磷城市污水试验研究:[博士学位论文].上海:同济大学环境科学与工程学院,2006
    [150] 武汉市水务局.2004年武汉市水资源公报,2005
    [151] 武汉市水务局.2005年武汉市水资源公报,2006
    [152] 侯洪娟.低碳高氮磷城市污水脱氮除磷研究:[博士学位论文].上海:同济大学环境科学与工程学院,2004
    [153] 国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法(第三版),北京:中国环境科学出版社,1989.5.
    [154] 南京土壤所.土壤农化分析方法,北京:中国农业科学出版社,1999
    [155] 刘瑾,高廷耀.生物除磷机理的研究.同济大学学报,1995,23(4):387-392
    [156] Carlsson H., Aspegren H., Lee N. et al. Calcium phosphate precipitation in biological phosphorus removal systems. Water Research, 1997, 31 (5): 1047-1050
    [157] Wentzel M.C., Ekama G.A., Loewenthal R.E. et al. Enhanced polyphosphate organisms in activated sludge system. Part Ⅰ: Enhanced culture development. Wat. SA., 1988, 14:81-92
    [158] Wentzel M.C., Ekama G.A., Loewenthal R.E. et al. Enhanced polyphosphate organisms in activated sludge system. Part Ⅱ: Experimental behaviour. War. SA.., 1989, 15:71-88
    [159] Wentzel M.C., Ekama G.A., Loewenthal R.E. et al. Enhanced polyphosphate organisms in activated sludge system. Part Ⅲ: Kinetic model. Wat. SA., 1990, 15:89-102
    [160] Carlsson H., Aspegren H., Hilmer A. Interactions between wastewater quality and phosphorus release in the anaerobic reactor of the EBPR process. Water Research, 1996, 30(6): 1517-1527
    [161] 李勇智.短程生物脱氮和反硝化除磷的基础研究,[哈尔滨工业大学博士论文].2003
    [162] Cooper PF, Job GD, Green MB, Shutes RBE. Reed beds and constructed wetlands for wastewater treatment. WRc Publications: Medmenham, Marlow, UK, 1996.
    [163] Tanner C C., Suldas J P S, Upsdell M P. Relationships between loading rates and pollutant removal during maturation of gravel-bed constructed wetlands. Environ. Qual., 1998b, 27: 448-458
    [164]谭洪新,周琪.湿地填料的磷吸附特性及潜流人工湿地除磷效果研究.农业环境科学学报,2005,24(2):353.356

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700