低碳源污水同步脱氮除磷工艺应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着居民生活水平的提高与工业、经济的发展,进入城市污水处理厂的污水N、P含量不断增加,从而成为较难满足传统生物脱氮除磷工艺处理的低碳源污水。同时,我国大中型城市污水处理厂大多存在建设标准低,多数无脱氮与除磷功能等特点。而国家法规和政策对大中城市污水处理厂又提出了更严格的氮磷排放要求。因此研究低碳源污水同步脱氮除磷工艺具有重要意义。
     本文研究了污水同步脱氮除磷工艺的发展与变化,探讨了A~2/O工艺同步脱氮除磷的矛盾与问题,并对A~2/O工艺的改良进行了研究。以某污水处理厂二期改扩建工程改良A-A~2/O工艺为模拟对象,并以污水处理厂实际污水作为试验用水。试验实际进水水质:CODcr在244-641 mg/L、BOD_5在145-355 mg/L、NH_4~+-N在40.5-87.6 mg/L、TN在50-105 mg/L、TP在2.5-9 mg/L,BOD_5/TN均值在3左右,BOD_5/TP均值在35左右。进水BOD_5/TN<4的城市污水即称之为低碳源污水。
     试验采用100%的污泥回流量和混合液回流量,研究了溶解氧、污泥龄、运行工艺和进水方式的影响。得出以下结论:
     1.对低碳源污水(C/N为3)的同步脱氮除磷工艺,较高的溶解氧可以抵抗进水氨氮负荷的冲击,保证出水小于1mg/L,但容易使活性污泥老化和自溶。溶解氧的合理调控,可以提高总氮去除率。
     2.除碳和脱氮率基本不受污泥龄(12<SRT<20d)的影响,但较高的污泥龄有助于抵抗进水TN负荷的冲击;泥龄越低,总磷去除率越高。
     3.由于进水碳源较少(C/N为3),使同时脱氮和除磷存在碳源竞争问题。在相同的工艺参数、影响因素和进水水质下,采用倒置A~2/O工艺对于总氮的去除优于A~2/O工艺,出水总氮浓度比A~2/O工艺普遍低5mg/L,但出水总磷浓度比A~2/O工艺略高;
     4.流量比为1/2的进水方式,对倒置A~2/O工艺和A~2/O工艺的除碳、脱氨影响不大。多点进水的A~2/O工艺,出水总氮可降低5 mg/L,但对总磷去除帮助不大。多点进水的倒置A~2/O工艺,对总氮去除影响不大,出水总氮比单点进水降低2-3 mg/L,但可提高系统抗TN负荷的冲击;总磷的去除率提高较多,出水总磷均为0.5-1.0 mg/L之间。
     本试验研究对于当前传统二级生物处理工艺污水处理厂的升级改造,具有借鉴和指导作用,并为同种类型污水处理厂的设计提供相应依据。
In recent years,with the improvement of living standards and industrial and economic development,municipal wastewater have also taken place in a corresponding change,in which N,P concentrations increased,making it more difficult to meet the traditional process of biological nitrogen and phosphorus removal.At the same time,most of Chinese large and medium-sized municipal wastewater treatment plant are low standard,and the majority of them have non-functional,such as nitrogen and phosphorus removal characteristics.On the other hand,the national laws,regulations and the policy proposed the stricter nitrogen phosphorus emission standard to the large and medium-sized municipal wastewater treatment plant.So it is important to study the nitrogen and phosphorus removal simultaneously process for low-carbon sources of sewage.
     This paper studies the development and change of nitrogen and phosphorus removal simultaneously process,explores the contradictions and problems of nitrogen and phosphorus removal simultaneously in A~2/O process and summed up the improvement of A~2/O process.We use the improved A-A~2/O process of one sewage treatment plant as a simulation object and use actual sewage water of the other sewage treatment plant as a pilot. The actual water quality tests:CODcr 244-641 mg/L,BOD_5 145-355 mg/L,NH_4~+-N 40.5-87.6 mg/L,TN 50-105 mg/L,TP 2.5-9 mg/L,BOD_5/TN≈3,BOD_5/TP≈35.It is called the low-carbon sources of municipal wastewater because of the BOD_5/TN<4.
     We,using 100%of the sludge and mixture return flow,mainly study the impacts of DO, SRT,Running processes and influent way in reaches.And have following conclusions:
     1.For nitrogen and phosphorus removal simultaneously process of the low-carbon sources sewage,a higher DO can resist the impact of influent ammonia load to ensure that the effluent is less than 1mg / L.However,activated sludge is easy for the aging and autolysis.Reasonable DO will help us to improve nitrogen removal rate.
     2.SRT(12<SRT<20d) does not affect the rate of carbon and ammonia removal,but a higher SRT can resist the impact of influent TN load.the lower SRT,the higher TP removal rates.
     3.As the water less carbon(C/N of 3),there are carbon competition in the Nitrogen and phosphorus removal simultaneously process.In the same process parameters,influencing factors and water quality,the effluent TN of inverted A~2/O process is better than it of A~2/O process.Effluent TN concentrations is generally low-5mg/L than the A~2/O process,but the effluent total phosphorus concentration than the A~2/O process is slightly higher.
     4.In addition to carbon,the removal of ammonia is not affected by 1/2 influent way in the A~2/O process and inverted A~2/O process.For the multi-point water A~2/O process,the effluent TN can reduce 5 mg/L,but it has little help to the TP removal.It has little effect on TN removal,reduces the total nitrogen 2-3 mg/L and resists the impact of influent TN load for using multi-point water inverted A~2/O process.Also we found that the TP removal rate increases more,and the effluent TP is 0.5-1.0 mg/L.
     This study has the role of reference and guidance for conventional secondary biological treatment process of sewage treatment plant upgrade,and provides the appropriate basis for the same types of sewage treatment plants.
引文
[1]周少奇,周吉林,范家林.同时硝化反硝化生物脱氮技术研究进展[J].环境技术,2002,6:159-163.
    [2]上海市环保局.废水生化处理[M].上海,同济大学出版社:1999.1.
    [3]U.S.EPA(1993).Manual Nitrogen Control,EPA/625/R-93/010,office of Research and Development,U.S.Environmental Protection Agency,Washington,DC.
    [4]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2003,7:381.
    [5]Okabe S.,Oozawa Y.,Hirata K.and Watanabe Y.Relationship between population Dynamics of Nitrifies in Biofilms and Reactor Performance at Verious C/N Ratios,Water Research,vol.30,pp.1563-1572
    [6]C.F.Ouyang,C.T.Juan.A Study of a Modified Process for the Intermittent Cycle Extended Aeration System[J].Water Seience Technology,vol.31,pp.173-180.
    [7]Van Groenestijn J.W.,Denema M.H.,Zehnder A.J.B.ATP Production from Polyphosphate in acinetobacter Strain 210A.Archetechture Microbiology,1987,vol.148,pp.14-19.
    [8]Van Groenestijn J.W.,Bentvelsen M.M.,Deinema M.H.,et al.Polyphosphate degrading Enzymes in aecinetobacter spp.and Activates sludge[J].Applied Environmental Microbiology,1989,vol.55,PP.219-223.
    [9]Van Veen H.W.,Abee T.,Kortstee G.J.J.Characterization of Two Phosphate Transport tSystems in Acinetobaeter Johnsouii 210A[J].Bactirial,1993,vol.175,PP.200-206
    [10]Erdal U.G.,Erdal Z.K.,Randal.The Competition between PA0s and GAOs in EBPR systems at different Temperatures and the Effects on system Performance[J].Water Science technology,2003,vol.47,pp.1-8.
    [11]Smolder,D.J.F.,et al.Model of the Anaerobic Metabolism of the Biological Phosphorus Removal process[J].Biologieal Technology,1994,vol.43,pp.461-470
    [12]Liu Wen-tso,T.Mino,T.Matsuo.Biological Phosphorus Removal Process:Effect of PH on Anaerobic Substrate Metabolism[J].Water Science and Technology,1996,vol.34,pp.25-32.
    [13]Griffiths P.C.,Stratton H.M.,Seviour R.J.Environmental Factors Contribute to the 'G Bacteria'Population in Full-scale EBPR Plants[J].Water Science and Technology,2002,vol.46,pp.185-182.
    [14]Gerber,A.,et al.Interactions between Phosphate,Nitrogen and Organics Substrate in Biological Nitrogen Removal Process[J].Water Science and Technology,1987,vol.19,pp.183-194.
    [15]沈耀良.废水生物脱氮除磷工艺设计和运行中需考虑的几个问题.环境科学与技术,1996,vol.2:36-40.
    [16]Stephens,H.L.,Stensel.Effects of operating Conditions on Biological Phosphorus Removal.Water Environmental Research Journal,1998,vol.71,pp.454-458.
    [17]张自杰,林荣忱,金儒霖.排水工程下册[M].北京:中国建筑工业出版社,2000,第四版,312.
    [18]Ludzack F.J.,Ettinger M.B.,Controlling operation to minimize activated sludge effluent nitrogen [J].Water Pollut.Cont.Fed,1962,34:920-931.
    [19]张杰,臧景红,杨宏,刘俊良.A~2/O工艺的固有缺欠和对策研究[J].给水排水,2003,29(3):22-26.
    [20]Porcella D.B.,Comprehensive management of phosphorus water pollution.Socioeconomic environmental studies series,office of research and development[M].U.S.Environmental Protection Agency,1974.
    [21]徐洪斌,吕锡武.生物法脱氮除磷技术及其研究进展[J].城市环境与城市生态,2003,16(6):195-197.
    [22]任洁,顾国维,杨海真.改良型A~2/O工艺处理城市污水的中试研究[J].给水排水,2000,6(6):7-10.
    [23]周斌.改良型A~2/O工艺的除磷脱氮运行效果[J].中国给水排水,2001,17(7):46-48.
    [24]K.Φstgaard,M.Christensson,E.Lie,et al.Anoxic biological phosphorus removal in a full-scale UCT process[J].Water Research,1997,31(11):2719-2726.
    [25]国家环境保护总局.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002,12.
    [26]张波,高廷耀.生物脱氮除磷工艺厌氧/缺氧环境倒置效应[J].中国给水排水,1997,13(3):7-10.
    [27]李楠,王秀衡,任南琪,张坤,亢涵.我国城镇污水处理厂脱氮除磷工艺的应用现状[J].给水排水,2008,34(3):39-42.
    [28]沈耀良,王宝贞.废水生物处理新技术理论与应用[M].北京:中国环境科学出版社,2006:201
    [29]郑元景,沈光范,邬扬善,等.生物膜法处理污水[M].北京:中国建筑工业出版社,1983:171-178.
    [30]张波.城市污水生物脱氮除磷工艺与机理研究[D].上海:同济大学,1996.
    [31]毕学军,赵桂芹,毕海峰.污水生物除磷原理及其生化反应机制研究进展[J].青岛理工大学学报,2006,27(2):9-13.
    [32]A.Carucci,M.Kuhni,R.Brun,et al.Microbial competition for the organic substrates and its impact on Ebpr system under conditions of changing carbon feed[J].Wat.Sci.Tech,1997,36(12):19-27.
    [33]A.Gerber,R.H.Villiers,et al.Interactions between phosphate,nitrate and organic substrate in biological nutrient removal processes[J].Wat.Sci.Tech,1987,19:183-194.
    [34]Kuba T,Van Loosdrecht M.C.M,Heijnen J.J.Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system[J].Wat.Res,1996,30(7):1702-1710.
    [35]李捷,熊必永,张树德,等.亚硝酸盐对聚磷菌吸磷效果影响[J].环境科学,2006,27(4):701-703.
    [36]张杰,臧景红,杨宏,刘俊良.A~2/O工艺的固有缺欠和对策研究[J].给水排水,2003,29(3):22-26.
    [37]万年红,A~2/O工艺的改良与设计应用[J].中国给水排水,2003,19(8):81-83.
    [38]高俊发,吕平海,高伟等.改良倒置A~2/O工艺设计[J].环境工程,2006,24(1):33-35.
    [39]张立东,冯丽娟.同步硝化反硝化技术研究进展[J].工业安全与环保,2006,32(3):22-25.
    [40]王建龙,彭永臻,王淑莹.污泥龄对A~2/O工艺脱氮除磷效果的影响[J].环境工程,2007,25(1):16-19.
    [41]刘长青,张峰,毕学军,张波.倒置A~2/O与改良A~2/O工艺生产性试验比较[J].水处理技术,2008,34(5):53-56.
    [42]傅钢,董滨,周增炎,高廷耀.倒置AAO工艺的设计特点与运行参数[J].中国给水排水,2004,20(9):53-55.
    [43]张波,高廷耀.倒置A~2/O工艺的原理与特点研究.中国给水排水,2000,16(7):11-15.
    [44]毕学军,张波.倒置A~2/O工艺生物脱氮除磷原理及其生产应用[J].环境工程,2006,24(3):29-32.
    [45]黄理辉,张波,毕学军,马鲁铭.倒置A~2/O工艺的生产性试验研究[J].中国给水排水,2004,20(6):12-15.
    [46]张波.生物脱氮除磷工艺系统的几个重要问题[J].青岛建筑工程学院学报,1998,19(1):1-6.
    [47]何文斌,周增炎.投料倒置A~2/O工艺在南桥污水处理厂改造中的应用[J].江苏环境科技,2007,20(2):35-36.
    [48]周斌.改良型A~2/O工艺的除磷脱氮运行效果[J].中国给水排水,2001.17(7):46-48
    [49]周雹,周丹.多点进出水倒置A~2/O工艺[J].给水排水,2002,28(1):39-42.
    [50]甘晓明,邢绍文.徐高田等。倒置A~2/O污水处理工艺的特点及应用实例[J].环境工程学报,2007,1(6):69-71.
    [51]徐伟锋,顾国维,陈银广.SRT对A~2/O工艺脱氮除磷的影响[J].水处理技术,2007,33(9):68-71.
    [52]张杰,臧景红,杨宏,刘俊良.A~2/O工艺的固有缺欠和对策研究[J].给水排水,2003,29(3):22-27.
    [53]李辉,祁佩时,王化可等.A~2/O工艺的矛盾关系及其改进[J].第七届全国磷化学化工暨第四届海峡 化学生物、生物技术与医药发展讨论会,中国,郑州,2006.4.
    [54]高岩,戴兴春,黄民生.A~2/O工艺的改进[J].上海化工,2007,32(7):1-5.
    [55]娄金生,谢水波.提高A~2/O工艺总体处理效果的措施[J].中国给水排水,1998,14(3):27-31.
    [56]仝恩丛,郭会杰,赵福欣等.保定市污水处理总厂A~2/O工艺运行管理[J].给水排水,26(2):6-10.
    [57]胡春萍.广州市大坦沙污水处理厂(三期)工程设计研究[D].天津大学环境科学与工程学院,2004,12.
    [58]韩绍瑜,任俊智.A~2/O系统运行规律研究[J].天津建设科技,2008增刊:104-109.
    [59]吕玉珍,王强,王玉军等.泰安市污水处理厂处理城市污水的研究[J].山东农业大学学报(自然科学版),2008,39(4):589-595.
    [60]李秀珍,陈宏平.山西省武乡县污水处理厂工艺设计[J].科技情报开发与经,2009,19(3):165-167.
    [61]魏新庆,王秀朵.多功效UCT处理工艺的工程应用[J].给水排水,2008,34(3):45-48
    [62]穆亚东,俞晶,穆瑞林.UCT工艺在污水处理工程设计中的应用[J].给水排水,2007,33(3):30-33.
    [63 王莉.改良型A~2/O工艺试运行实践[J].环境科学导刊,2008,27(2):52-53.
    [64]樊杰,张碧波,陶涛,游桂林.安庆市城东污水处理厂改良型A~2/O工艺的设计与运行[J].给水排水,2008,34(12):27-30.
    [65]岳晓勤,李慧君,田敏等.西安市污水处理厂改扩建工程工艺及其系统调试[J].西安建筑科技大学学报,2003,35(3):264-267.
    [66]武鹏岜,李煜华,许衍营等.青岛市团岛污水处理厂工艺设计和运行总结[J].青岛建筑工程学院学报,2002.23(4):64-66.
    [67]蒋玖璐,励建全,何文斌.南桥污水厂改造工程的设计[R].中小城镇市政污水处理工程技术工艺高级研讨会,204-207.
    [68]王锡清,谭云飞,高陆令等.郑州市王新庄污水处理厂改造工程设计[J].给水排水,2007,33(10):42-46.
    [69]谭云飞,王锡清.五龙口污水处理厂脱氮除磷工艺运行调试[J].给水排水,2008,34(3):43-44.
    [70]樊杰,陶涛,游桂林等.A-A~2/O工艺处理低浓度城市污水的效果分析[J].中国给水排水,2008,24(23):16-19.
    [71]金虎子,王韬,杨永哲等.西安市污水处理厂改良A~2/O工艺的运行效果分析[J].中国给水排水,2008,24(22):86-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700