感性材料与结构化学—力学耦合行为分析模型及多尺度计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含羞草、向日葵和捕蝇草等高等植物根据外界不定向刺激产生明显而迅速的局部运动称为感性运动。在此运动中,植物结构内部的细胞通过细胞膜的离子传输通道将化学能转化为细胞间的膨压运动所需要的机械能,起着天然的作动器作用。利用植物的感性运动的作动机理,可仿生合成一类新型智能形状自适应材料——感性材料(nastic material)。实验表明该类智能材料可提供均衡的促动力、位置和频带宽度,且具有较高的能量密度。感性材料在研究高性能形状自适应智能作动器以及靶向药物载体等方面具有重要的应用价值。目前,国内外针对仿生植物运动的感性材料的研究正处于起步阶段。因此,相关的研究具有重要的学术意义和工程应用前景。
     本文首先建立感性材料与结构化学与力学相结合的多物理场耦合分析模型。感性材料由基体材料夹杂封闭液体腔组成,液体腔壁上包含人工合成的细胞膜,该膜上嵌有负责各类物质的跨膜传输的离子传输通道,如离子泵、离子通道、离子协运机制等。本研究先从感性运动机理出发,从单个胞元的感性结构角度,研究感性材料响应过程中内部离子分布以及结构的力学响应,以验证本文所采用的膜离子传输模型结合基体结构的力学模型的多场耦合模型的有效性,并通过调节离子传输模型的模型参数以及其它初始环境参数如溶质浓度等,讨论这些参数对感性结构瞬态响应的影响。在此基础上,建立多感性胞元相互作用的耦合分析模型,并给出了计算结果。
     由于感性胞元尺度小、数量多,造成感性材料与结构具有多尺度特征。这类多尺度材料在预测其性能方面往往面临着实验分析或者数值模拟上的困难。鉴于此,本文针对感性材料中作动单元周期性分布的特点,建立感性材料与结构分析的两尺度模型,求解带有液体腔膨胀特征的感性胞元等效力学参数;在此基础上,结合细胞膜生物离子传输模型,建立了感性材料与结构的耦合两尺度计算方法。
     其次,本文提出含液闭合多孔材料力学分析的二维扩展多尺度有限元法。含液闭孔材料是指包括感性材料在内由闭合多孔液体腔微结构组合而成的多功能材料。研究工作发现,由于液体的不可压缩特性,采用普通四节点矩形粗网格单元的扩展多尺度有限元方法计算含液闭孔材料时,往往会出现较强的单元边界效应,从而造成计算结果误差较大。为解决此类问题,本文发展了高阶粗网格单元及其数值基函数构造方法,可有效提高扩展多尺度有限元的计算精度。为进一步提升精度,本文提出周期边界条件来构造粗网格的数值基函数,并设计一致性检测方法验证该边界条件的合理及有效性。检测结果表明,采用周期性边界条件求解数值基函数可使扩展多尺度有限元方法和常规数值均匀化方法保持良好的一致性。
     进一步,本文提出感性材料与结构力学分析的三维扩展多尺度有限元法,并发展三维高阶粗网格技术及与之对应的二次周期边界条件基函数构造方法。在此基础上,结合生物离子传输模型,发展了感性材料与结构的耦合三维扩展多尺度有限元方法,以同时求解膜离子传输过程和结构瞬态变形响应。数值算例表明,本文发展的耦合扩展多尺度有限元方法具有很高的计算精度和效率,能有效地预测感性材料的各性能参数实时变化情况,且能方便进行降尺度分析,求解感性材料细观尺度上的结构瞬态响应。
     此外,本文提出基于非规则多边形粗网格单元的扩展多尺度有限元法。该方法消除了传统的多尺度有限元方法中仅能采用规则单元作为粗网格单元的局限性;同时,根据材料的细观微尺度特征将非均质材料区域划成多边形粗网格单元,有利于提高多尺度有限元法模拟该类非均质问题的精度。在此方法中,首先采用线性边界条件求解多边形粗单元的数值基函数;其次,结合常规有限元中的多边形单元有理形函数技术,发展了基于有理函数的超样本边界条件技术用于提高多边形扩展多尺度有限元的计算精度。在此基础上,本文发展了混合扩展多尺度有限元方法,即将常规有限元和多边形扩展多尺度有限元方法结合到同一个计算模型中。该方法对结构内部具有多尺度特征的局域采用扩展多尺度有限元网格处理,而对于边界非规则区域以及需要额外关注点,如应力集中点等,直接采用细尺度有限元方法进行网格划分,兼顾了计算效率和精度。
     最后,本文基于扩展多尺度有限元方法提出含液闭孔结构多尺度优化设计方法,以研究含液闭孔胞元尺寸、布局以及内部液体腔体积膨胀值分布对整体含液闭孔结构力学性能的影响。首先提出了含液闭孔材料的结构形状及载荷一体化多尺度优化算法。该多尺度优化算法以结构中含液胞元的细观上尺寸如液体腔半径和载荷(液腔中液体体积增量)为设计变量,以结构的宏观力学响应为目标进行优化。进一步,本文发展了含液闭孔结构的多尺度拓扑优化方法。该多尺度拓扑优化方法首先以结构最小柔顺性为优化目标,采用类似SIMP模型对结构的宏观粗网格等效刚度阵进行插值,建立含液闭孔结构柔顺性的拓扑优化列式:最后,针对含液闭孔材料能够利用胞体内部液体腔体积增量产生结果变形的特性,提出含液闭孔材料柔性机构的设计方法,以结构指定位置方向输出位移为目标,建立液体体积膨胀作用下的含液闭孔柔性机构多尺度拓扑优化数学模型。基于自主软件平台SiPESC完成了相关程序研发,并数值验证了本文发展的多尺度优化方法的有效性。
In the natural world, some plants like the Mimosa, Sunflower and venus Flytrap, can generate localized movements in response to external environmental stimuli through a biological process named nastic motion. In this motion, the biolocical ion transport makes the water to flow into or out of the motor cells imbedded in the structure, which can be regard as the muscles of the biological system. With these inspirations, a novel biomimetic smart material, i.e. a nastic material, has been developed to design advanced actuators in recent year. The nastic materials are considerd to be high energy density actuators that convert chemical energy stored in bio-fuels to generate mechanical forces. Researches indicate that the nastic materials can not be only ultisized to design high-performance shape adaptive smart actuators, but also be ideal for biomedical application such as targeted vaccine delivery. Howerver, nastic materials are still a new phenomenon, and the accessible literatures about nastic materials are still sparse. So, the related investigations will be of great importance for theoretical procgress and engineering applications.
     Firstly, a coupled Chemo-mechanical model is developed to simulate the mechanical and biological response of the nastic materials and structure. The nastic material considered is composed of closed liquid cell structures and synthetic membranes. Many types of biological channels, such as the ion pumps, ion channels and ion cotransporters, are embedded within the membrane to transport the species across it. Based on the theory of the nastic movement, we firstly study the mechanical response of the matric and the whole process of the ion transporting of the membrane based on a single nastic actuator. The aim is to validate the effectiveness of the coupled multiphysical model developed. Furthermore, we studied the sensitivities of the various input parameters, such as the initial solute concentrations, which have a big influence on the deformation and response time of the nastic actuators. At last, we developed a new coupled model to perform the mechanical analysis of the nastic structures with multi-actuators, and some numerical results are given to validate the models developed.
     Due to the fact that the nastic mateirals generally consist of a large number of micro actuators, it is always a difficult task to perform the multiphysical simulation of the nastic structures by the general numerical methods or the classic experiments. To overcome these difficulties, we establish a two-scale model to calculate the nastic structures with microcapsules periodically distributed inside in. The effective coefficients of the nastic unit cells with closed fluid inclusion inside, such as the effective elastic constants and the effective bending properties, is numerically calculated with the homogenization analysis. With these coefficients, we developed a coupled two-scale model (CTSM), which combining the two-scale model with the biological ion transport model mentioned above, to simulate the transient multiphical response of the nastic structures with multiscale features.
     Secondly, an extended multiscale finite element method (EMsFEM) is proposed for the mechanical analysis of the closed liquid cell materials. This tpye of functional materials contained microscopic fluid filled inclusions and the nastic materials are a special case of them. Due to the fact that the fluid inside the close cells general imcompressible, the strong boundary effects will be indueced and the errors of the results will become larger when the conventional four-node quadrilateral coarse-grid elements are utlized in the EMsFEM. Thus, a type of higher order coarse-grid elements which are more reasonable and can predicate the structural deformation more accurately of the closed liquid cells are developed. Moreover, the periodic boundary conditions (PBCs), which are inspired by the PBCs used in the homogenization method (the RVE method), are proposed to constructe the numerical base functions of the coarse-grid elements. A consistency test is carried out to validate the new boundary conditions, and the numerical results indicate that a good consistency can be obtained between the macroscopic coarse element constructed by the MEsFEMs with PBCs and the element generated by the conventional homogenization method.
     Furthermore, a3D extended multiscale finite element method (3D-EMsFEM), is developed to perform the mechanical analysis of nastic structures which periodically consists of the microcapsules. Accordingly, the techniques of the high order coarse-grid element and the corresponding high order PBCs, are introduced for the construction of the numerical base functions and improve the accuracy of the3D-EMsFEM.. Furthermore, a Coupled EMsFEM (CEMsFEM) which combines the ion transport model is proposed to predicate the active response of the nastic structures. The results indicate that the coupled method developed not only can track the reactions of the ion transporters of the active membrane, but also can calculate the transient mechanical response on the fine scale with the downscaling computation.
     On the other hand, an EMsFEM is developed to solve the mechanical behaviours of heterogeneous materials with randomly distributed polygonal microstructure. To improve the accuracy of the method, a type of rational oversampling technique is imposed to calculate the oscillatory boundary conditions for the construction of multiscale base functions. A mixed extended multiscale finite element method, which combines the EMsFEM and the standard FEM into a same model, is developed. In the method, the regions with multiscale features are modeled by the multiscale coarse-grid, while the region without multiscale features or the domains that need a high-precision computation are directly meshed by the general finite elements.
     At last, a new multiscale shape and topology optimization method is presented to design the closed liquid cell materials based on the EMsFEM. The multiscale optimization method firstly focuses on seeking the optimum geometrical parameters of the closed liquid cells at the microscale in terms of maximize the macroscale mechanical response of the structure. Moreover, based on the EMsFEM, a multiscale topology optimization method is further developed to optimize the distributions of closed liquid cells with objective on minimize system compliance. In this topology optimization method, the design domain is discretized by the multiscale coarse elements, while a SIMP-based density approach is employed to interpolate the equivalent stiffness matrix of the coarse-grid element. Ultimately, due to the fact that non-uniform volume expansions of the fluid in cells can induce the elastic action, the multiscale topology optimization method is extended to design biomimetic compliant actuators of the closed liquid cell materials. The multiscale optimization methods developed are implemented in the FE-package SiPESC, and numerical examples are carried out to validate the accuracy of these methods.
引文
[1]姚康德,成国祥.智能材料[M].北京:化学工业出版社.
    [2]Paradies R, Herwig M, Elspass W J. Shape control of an adaptive mirror at different angles of inclination [J]. Journal of Intelligent Material Systems and Structure,1996, 7:203-210.
    [3]Agrawal B N, Elshafei M A, Song GB. Adaptive antenna shape control using piezoelectric actuators [J]. ACTA Astronautica,1997,40:821-826.
    [4]Angelino M, Washington G N. Design and construction of a piezoelectric point actuated aperture antenna [J]. Journal of Intelligent Material Systems and Structure,2002,13: 125-137.
    [5]Redeker G, Wichmann G, Oelker H C. Aerodynamic investigations toward an adaptive airfoil for transonic transport aircraft [J]. Journal of Aircraft,1986,23:398-405.
    [6]Austin F, Rossi M J, Nostrand W V, et al. Static shape control for adaptive wings [J]. AIAA Journal,1994,32:1895-1901.
    [7]Fielding J P, Vaziry-Zanjany M A F. Reliability, maintainability and development cost implications of variable camber wings [J]. Aeronautical Journal,1996,100:183-195.
    [8]Chopra I. Review of state of art of smart structure and integrated systems [J]. AIAA Journal,2002,40:2145-2187.
    [9]Bartley-Cho J D, Wang D P, Martin C A, et al. Development of high-rate, adaptive trailing edge control surface for the smart wing Phase 2 Wind tunnel model [J]. Journal of Intelligent Material Systems and Structure,2004,15:279-291.
    [10]Kudva J N. Overview of the DARPA Smart Wing Project [J]. Journal of Intelligent Material Systems and Structure,2004,15:261-268.
    [11]Lockyer A J, Martin C A, Lindner D K, et al. Power systems and requirements for integration of smart structures into aircraft [J]. Journal of Intelligent Material Systems and Structures,2004,15:305-315.
    [12]王剑,赵国忠,戴磊.热压电桁架结构屈曲稳定性有限元分析[J].计算力学学报,2008,25(1):85-90.
    [13]裘进浩,边义祥,季宏丽,等.智能材料结构在航空领域中的应用[J].航空制造技术,2009,3:26-29.
    [14]Wu C W, Kong X Q, Wu Diane. Micronanostructures of the scales on a mosquito's legs and their role in weight support [J]. Physical Review E,2007,76:017301.
    [15]房岩,孙刚,丛茜,等.仿生材料学研究进展[J].农业机械学报,2006,37(11):163-167.
    [16]Autumn K, Dittmore A, Santos D, Spenko M, et al. Frictional adhesion:a new angle on gecko attachment [J].The Journal of Experimental Biology,2006,209:3569-3579
    [17]陈少华,苏爱嘉.生物猫附与仿生猫附力学的进展[J].力学与实践,2007,29(2):9-17
    [18]Alexander R M. Exploring Biomechanics:Animals in Motion [M]. NewYork:Scientific American Library,1992.
    [19]Stahlberg R, Taya M. Nastic Structures:the enacting and mimicking of plant movements [C]//Biomimetics:biologically inspired technologies. Bar-Cohen Y, ed. Boca Raton:CRC Press,2000:473-493.
    [20]王金发.细胞生物学[M].北京:科学出版社,2003.
    [21]Asada T, Collings D. Molecular motors in higher plants [J]. Trends in Plant Science, 1997,2:29-36.
    [22]Shimmen T, Ridge R W, Lamb iris I, et al. Plant myosins [J]. Protoplasma,2000:214:1-10.
    [23]Meidner H, Sheriff D W. Water and Plants [M]. New York:Wiley,1976.
    [24]Brauner L, Bukatsch F. Daskleine pflanzenphysiologische Praktikum [M]. Jena:Gustav Fischer Verlag,1980.
    [25]Larson L A. The effect soaking pea seeds with or without seed coats has on seedling growth [J]. Plant Physiology,1968,43:255-259.
    [26]Philen M K, Shan Y, Prakash P, et al. Fibrillar Network Adaptive Structure with Ion-transport Actuation [J]. Journal of intelligent material system and structure,2007, 323-334.
    [27]Taya M, Stahlberg R, F H L, Zhao Y. Sensors and actuators inherent in biological species [C]. Proceedings of SPIE, San Diego, California,2007,652902-1-11.
    [28]张洪武,吕军.感性材料与结构分析的基本模型[J].计算力学学报,2010,182-188.
    [29]Giurgiutiu V, Matthews L, Leo D J, et al. Concepts for power and energy analysis in nastic structures [C]. Proceedings of ASME-IMECE. International Mechanical Engineering Conference and Exposition, Orlando, Florida,2005.
    [30]Freeman E, Weiland L M. High energy density nastic materials:parameters for tailoring active response [J]. Journal of Intelligent Material Systems and Structures,2009, 20(2):233-243.
    [31]DARPA Defense Sciences Office Future Areas of Interest:Nastic Structures [C/OL]. [2004 12]. http://www.darpa.mil/dso/future/nastic.htm
    [32]Giurgiutiu V, Leo D, Sundaresan V B, et al. Concepts for energy and power analysis in nastic structures [C]. Proceedings of ASME. International Mechanical Engineering Conference & Exposition, Orlando, Florida,2005.
    [33]Matthews L, Sundaresan V B, Giurgiutiu V, Leo D J. Bioenergetics and Mechanical Actuation Analysis with Membrane Transport Experiments for Use in Biomimetic Nastic Structures [J]. Journal of Materials Research,2006,21(8):2058-2067.
    [34]Homison C. Coupled transport/hyperelastic model for high energy density nastic materials [D]. Pittsburgh:University of Pittsburgh,2006.
    [35]David C, Tim S, Frank U, et al. Morphing inflatable wing development for compact package unmanned aerial vehicles [C]. Proceeding of the 45th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Palm Springs, California,2004.
    [36]DeVita R, Stewart I W, Leo D J. Pressure effects on the equilibrium configurations of bilayer lipid membranes [J]. Journal of Physics A:Mathematical and Theoretical,2007, 40:113179-13196.
    [37]Hopkinson D P, DeVita R, Leo D J. Failure pressure of bilayer lipid membranes [C]. Proceedings of SPIE Conference for Smart Structures & Materials/NDE, San Diego, California,2006.
    [38]Paris 0, Burgert I, Fratzl P. Biomimetics and biotemplating of natural materials [J]. MRS Bulletin,2010,35:219-225.
    [39]Piyasena M E, Newby R, Miller T J, et al. Electroosmotically driven microfluidic actuators [J]. Sensors and Actuators B:Chemical,2009,141:263-269.
    [40]Freeman E, Wei land L M, Meng W S. Application of proteins in burst delivery systems [J]. Smart Materials and Structrues,2010,19:094015.
    [41]Stephen A S, Leo D J. Tailored current-voltage relationships of droplet-interface bilayers using biomolecules and external feedback control [J]. Journal of intelligent material systems and structures,2009,1-14.
    [42]汪真观.含羞草及其他植物的膨压变化运动[J].生物学通报,1954,12:20-22.
    [43]Williams S E, Bennett A B. Leaf closure in the venus flytrap:an acid growth response. Science [J],1982,218(4577):1120-1122.
    [44]Hill B S, Findlay G P. The power of movement in plants:the role of osmotic machines [J]. Quarterly Reviews of Biophysics,1981,14 (2):173-222.
    [45]Brown W H. The mechanism of movement and the duration of the effect of stimulation in the leaves of dionaea [J]. American Journal of Botany,1916:3(2):68-90.
    [46]Morillon R, Lienard D, Chrispeels M J, et al. Rapid movements of plants organs require solute-water cotransporters or contractile proteins [J]. Plant Physiology,2001, 127(3):720-723.
    [47]Forterre Y, Skotheim J M, Dumais J, et al. How the venus flytrap snaps [J]. Nature, 2005,433:421-425.
    [48]Holmes D P, Crosby A J. Snapping surfaces [J]. Advanced Materials,2007,19(21): 3589-3593.
    [49]Sundaresan, V B, Akle B, Leo D J. Investigation on Micro-Patterned Gold-Plated Polymer Substrate for a Micro Hydraulic Actuator [C]. Proceedings of SPIE, volume 6170, Smart Structures and Materials:Active Materials:Behavior and Mechanics, San Diego, CA, 2006.
    [50]Piyasena ME, Shapiro B, Smela E. A New EAP Based on Electroosmotic Flow:Nastic Actuators [C]. Proceedings of SPIE, San Diego, CA,2009.
    [51]Leo D J, Sundaresan V B, Tan H, Cuppoletti J. Investigation on high energy density materials utilizing biological transport mechanisms [C]. Proceedings of ASME International Mechanical Engineering Conference & Exposition, Anaheim, CA,2004.
    [52]Sundaresan V B, Leo D J. Experimental investigation for chemomechanical actuation using biological transport mechanisms [C]. Proceedings of IMECE-2005, American Society of Mechanical Engineers, ASME, Orlando, FL,2005.
    [53]Sundaresan V B, Leo D J. Chemo-Mechanical Model for Actuation Based on Biological Membranes [J]. Journal of Intelligent Material Systems and Structures,2006,17: 863-870.
    [54]Sundaresan V B, Leo D J. Actuation using protein transporters driven by proton gradients [C]. Proceedings of 1MECE-2006, American Society of Mechanical Engineers, ASME, Chicago, IL,2006.
    [55]Matthews L, Giurgiutiu V. Modeling Actuation Forces and Strains in Nastic Structures [C]. Proceedings of SPIE,13th International Symposium on Smart Structures and Materials and 11th International Symposium on NDE for Health Monitoring and Diagnostics, San Diego, CA,2006,6172-62.
    [56]Sundaresan V B, Leo D J. Protein-based Microhydraulic Transport for Controllable Actuation [C]. Proceedings of SPIE, Smart Structures and Materials:Electroactive Polymers and Devices, San Diego, CA,2006.
    [57]Sundaresan V B, Leo D J. Microhydraulic Actuation Using Biological Ion Transporters Reconstituted on Artificial BLM [C]. Proceedings of MRS, San Francisco, CA,2006.
    [58]Sundaresan V B, Leo D J. Controlled Fluid Transport Using ATP-Powered Protein Pumps [J]. Smart Materials and Structures,2007,16(2):S207-S213.
    [59]Sundaresan V B, Sarles S A, Leo D J. Chemoelectrical Energy Conversion of Adenosine Triphosphate [C]. Proceedings SPIE Smart Structures Conference,2007,65250P.
    [60]Sundaresan V B, Sarles S A, Leo D J, Goode B J. Chemo-Electrical Energy Conversion of Adenosine Triphosphate in a Biological Ion Transporter [C]. Proceedings of MRS, Boston, MA,2006.
    [61]Sundaresan V B, Sarles, S A, Leo D J. Stack of BioCell Converting ATP to Electrical Power and Possible Applications [C]. Proceedings of MRS, Boston, MA,2006.
    [62]Sundaresan V B, Leo D J. Modeling and Characterization of a Chemomechanical Actuator Using Protein Transporter [J]. Sensors and Actuators B:Chemical,2008,131:384-393.
    [63]Jeeragea K M, Noblea R D. Koval C A. Investigat ion of an aqueous lithium iodide/triiodide electrolyte for dual-chamber electrochemical actuators [J]. Sensors and Actuators B: Chemical,2009,125(1):180-188.
    [64]Freeman E. Appl ications of biologically inspired membranes [D]. Pittsburgh:University of Pittsburgh,2009.
    [65]Sundaresan V B, Leo D J, Homison C, Wei land L M. Biological Transport Processes for Microhydraulic Actuation [J]. Sensors and Actuators B:Chemical,2007,123:685-695.
    [66]Endresen L P, Hall K, H(?)ye J S, Myrheim J. A theory for the membrane potential of living cells [J]. European Biophysics Journal,2000,29:90-103.
    [67]郑晓霞,郑锡涛,缑林虎.多尺度方法在复合材料力学分析中的研究进展[J].力学进展,2010,40(1):41-52.
    [68]Voigt W. Ober die Beziehung zwischen den beiden Elastizitatskonstanten isotroper Korper [J]. Wied Ann,1889,38:573-587.
    [69]Reuss A. Berechnung del Fliessgrenze von Mischkristallen auf Grund der Plastizitatbedingung fur Einkristalle [J]. Z Angew Math Mech,1929,9:49-58.
    [70]Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion and related problem [C]. Proceedings of the Royal Society of London,1957, A241:376-396.
    [71]Hashin Z. The elastic moduli of heterogeneous materials [J]. Journal of Applied Mechanics,1962,29:143-150.
    [72]Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions [J]. Acta Metallurgicaet Materialia,1973,21:571-574.
    [73]Hill R. A self-consistent mechanics of composite materials [J]. Journal of the Mechanics and Physics of Solids,1965,13(4):213-222.
    [74]Budiansky B. On the elastic moduli of some heterogeneous materials [J]. Journal of the Mechanics and Physics of Solids,1965,13:223-227.
    [75]Kanoute P, Boso D P, Chaboche J L, Schrefler B A. Multiscale methods for composites: a review [J]. Archives of Computational Methods in Engineering,2009,16:31-75.
    [76]Schrefler B A. Multiscale modeling [M]//Zienkiewicz 0 C, Taylor R L. The Finite Element Method for Solid and Structural Mechanics. Amsterdam:Elsevier,2005.
    [77]Kalamkarov A L, Andrianov I V, Danishevs'kyy V V. Asymptotic homogenization of composite materials and structures [J]. Applied Mechanics Reviews,2009,62(3): 030802-1-030802-20.
    [78]Geers M G D, Kouznetsova V G, Brekelmans W A M. Multi-scale computational homogenization: Trends and challenges [J]. Journal of Computational and Applied Mathematics,2010,234: 2175-2182.
    [79]Feyel F. Multiscale FE2 elastoviscoplastic analysis of composite structures [J]. Computational Materials Science,1999,16:344-354.
    [80]Feyel F, Chaboche J L. FE2 multiscale approach for modeling the elastoviscoplastic behaviour of long fiber SiC/Ti composite materials [J]. Computer Methods Applied Mechanics and Engineering,2000,183:309-330.
    [81]Feyel F, Chaboche J L. A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua [J]. Computer Methods in Applied Mechanics and Engineering,2003,192:3233-3244.
    [82]Ghosh S, Lee K, Moorthy S. Multiple scale analysis of heterogeneous elastic structures using homogenisation theory and Voronoi cell finite element method [J]. International Journal of Solids and Structure,1995,32:27-62.
    [83]Zhang H W, Wang H. Parametric variational principle based elastic-plastic analysis of heterogeneous materials with Voronoi finite element method [J]. Applied Mathematics and Mechanics,2006,27(8):1037-1047.
    [84]Weinan E, Engquist B, Li X, Weiqing R, Vanden-Ei jnden E. The heterogeneous multiscale method:a review [J]. Communications in Computational Physics,2007,2(3):367-450.
    [85]Weinan E, Engquist B. The heterogeneous multi-scale method for homogenization problems [J]. Lecture Notes in Computational Science and Engineering:Multiscale Methods in Science and Engineering,2006,44:89-110.
    [86]Abdulle A. Heterogeneous multiscale methods with quadrilateral finite elements [J]. Numerical Mathematics and Advance Applications,2007,20:743-51.
    [87]Chen Z X. On the heterogeneous multisca]e method with various macroscopic solvers [J]. Nonlinear Analysis,2009, doi:10.1016/j. na.2009.01.22.
    [88]Babuska I, Osborn E. Generalized finite element methods:Their performance and their relation to mixed methods [J]. SIAM Journal of Numerical Analysis,1983,20:510-536.
    [89]Strouboulis T, Babuska I, Copps K. The generalized finite element method:an example of its implementation and illustration of its performance [J]. International Journal for Numerical Methods in Engineering,2000,47:1401-1417.
    [90]Babuska I, Nistor V, Tarfulea N. Generalized finite element method for second order elliptic operators with Dirichlet boundary conditions [J]. Journal of Computational and Applied Mathematics,2008,218(1):175-183.
    [91]Hou T Y, Wu X H. A multiscale finite element method for elliptic problems in composite materials and porous media [J]. Journal of Computational Physics,1997,134:169-89.
    [92]Hou T Y, Wu X H, Cai Z Q. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients [J]. Mathematics of Computation,1999, 68:913-943.
    [93]Yuan Z, Fish J. Toward realization of computational homogenization in practice [J]. International Journal for Numerical Methods in Engineering,2008,73:361-380.
    [94]周强.基于离散元方法的颗粒材料热传导研究[D].大连:大连理工大学,2010.
    [95]Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behavior of multiphase materials [J]. Journal of the Mechanics and Physics of Sol ids,1963,11(2): 127-140.
    [96]Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behavior of polycrystals [J]. Journal of the Mechanics and Physics of Solids,1962,10(4): 335-342.
    [97]Hill R. Elastic properties of reinforced solids:some theoretical principles [J]. Journal of the Mechanics and Physics of Solids,1963,11(5):357-372.
    [98]Suquet P M. Local and global aspects in the mathematical theory of plasticity [M]// Sawczuk A, Bianchi G. Plasticity today:modelling, methods and applications, London: Elsevier Applied Science Publishers,1985:279-310.
    [99]Hazanov S, Huet C. Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume [J]. Journal of the Mechanics and Physics of Solids,1994,42:1995-2011.
    [100]Berger H, et al. An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites [J]. International Journal of Solids and Structures,2005,5692-5714.
    [101]Pecullan S, Gibiansky L V, Torquato S. Scale effects on the elastic behavior of periodic and hierarchical two-dimensional composites [J]. Journal of the Mechanics and Physics of Solids,1999,47:1509-1542.
    [102]Kouznetsova V, Geers M G D, Brekelmans W A M. Multi-scale constitutive modeling of heterogeneous materials with a gradient-enhanced computational homogenization scheme [J]. International Journal for Numerical Methods in Engineering,2002,54:1235-1260.
    [103]Terada K, Hori M, Kyoya T, Kikuchi N. Simulation of the multi-scale convergence in computational homogenization approaches [J]. International Journal of Solids and Structures,2000,37(16):2285-2311.
    [104]Temizer I, Zohdi T I. A numerical method for homogenization in non-linear elasticity [J]. Computer Mechanics,2007,40(2):281-298.
    [105]胡更开,郑泉水,黄筑平.复合材料有效弹性性质分析方法[J].力学进展,2001,31(3)361-393.
    [106]王新峰,周光明,周储伟,等.基于周期性边界条件的机织复合材料多尺度分析[J].南京航空航天大学学报,2005,37(2):730-737.
    [107]刘岭,阎军,程耿东.考虑内部胞元能量等效的代表体元法[J].固体力学学报,2007,28(3):275-280.
    [108]苏文政,刘书田,张永存.桁架板等效刚度分析[J].计算力学学报,2007,24(6):763-767.
    [109]张洪武,王鲲鹏.弹塑性复合材料多尺度计算的模型与算法研究[J].复合材料学报,2003,20(1):60-66.
    [110]张洪武,余志兵,王鲲鹏.复合材料弹塑性多尺度分析模型与算法[J].固体力学学报,2007,28(1):7-12.
    [111]张洪武.弹性接触颗粒状周期性结构材料力学分析的均匀化方法(Ⅰ)-局部RVE分析;(Ⅱ)一宏观均匀化分析[J].复合材料学报,2001,18(4):93-102.
    [112]Sigmund 0. Materials with prescribed constitutive parameters:An inverse homogenization problem [J]. International Journal of Solids and structures,1994, 31(17):2313-2329.
    [113]Sigmund 0. Design of material structures using topology optimization [D]. Lyngby: Technical University of Denmark,1994.
    [114]Hyun S, Torquato S. Desiging composite microstructures with targeted properties [J]. Journal of Materials Research,2001,16(1):280-285.
    [115]Neves M M, Rodrigues H, Guedes J M. Optima design of periodic linear elastic microstructures [J]. Computers & Structures,2000,76(1-3):421-429.
    [116]Guo X, Cheng G D. Recent development in structural design and optimization [J]. Acta Mechanica Sinica,2010,26:807-823.
    [117]Rodrigues H, Guedes J M, Bendsoe M P. Hierachical optimization of material and structure [J]. Structural and Multidisciplinary Optimization,2002,24:1-10.
    [118]Coelho P G, Fernandes P R, Guedes J M. A hierarchical model for concurrent material and topology optimization of three-dimensional structures [J]. Structural and Multidisciplinary Optimization,2008,35:107-115.
    [119]Liu L, Yan J, Cheng G D. Optimum structure with homogeneous optimum truss-like material [J]. Computers & Structures,2008,86:1417-1425.
    [120]Yan J, Cheng G D, Liu L. A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials [J]. International Journal for Simulation and Multidisciplinary Design Optimization.2008,2,259-266.
    [121]Liu S T, Su W Z. Topology optimization of couple-stress material structures [J]. Structural and Multidisciplinary Optimization,2010,40,319-327.
    [122]Niu B, Yan J, Cheng G D. Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency [J]. Structural and Multidisciplinary Optimization. 2009,39:115-132.
    [123]Fish J, Shek K, Pandheeradi M, Shephard M S. Computational plasticity for composite structures based on mathematical homogenization:theory and practice [J]. Computer Methods in Applied Mechanics and Engineering,1997,148:53-73.
    [124]Zhang H W, Boso D P, Schrefler B A. Homogeneous analysis of periodic assemblies of elastoplastic disks in contact [J], International Journal for Multiscale Computational Engineering,2003,1(4):349-370.
    [125]Babuska I, Caloz G, Osborn E. Special finite element methods for a class of second order elliptic problems with rough coefficients [J]. SIAM Journal of Numerical Analysis, 1994,31:945-981.
    [126]Hou T Y. Multiscale modelling and computation of fluid flow [J]. International Journal for Numerical Methods in Fluids,2005,47:707-19.
    [127]Efendiev Y, Ginting V, Hou T Y, Ewing R. Accurate multiscale finite element methods for two-phase flow simulations [J]. Journal of Computational Physics,2006,220: 155-74.
    [128]Aarnes J E. On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation [J]. Multiscale Modeling and Simulation,2004,2:421-439.
    [129]Aarnes J E, Krogstad S, Lie K A. A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids [J]. Multiscale Modeling and Simulation,2006,2:421-439.
    [130]Efendiev Y, Hou T, Ginting V. Multiscale finite element methods for nonlinear problems and their applications [J]. Communications in Mathematical Sciences,2004,2:553-589.
    [131]Jenny P, Lee S H, Tchelepi H A. Multi-scale finite volume method for elliptic problems in subsurface flow simulation [J]. Journal of Computational Physics,2003,187:47-67.
    [132]He X, Ren L. Finite volume multiscale finite element method for solving the groundwater flow problems in heterogeneous porous media [J]. Water Resources Research,2005,41, W10417 doi:10.1029/2004WR003934.
    [133]Zhang H W, Fu Z D, Wu J K. Coupling multiscale finite element method for consolidation analysis of heterogeneous saturated porous media [J]. Advances in Water Resources,2009, 32:268-279.
    [134]Zhang H W, Wu J K, Fu Z D. Extended multiscale finite element method formechanical analysis of periodic lattice truss materials [J]. International Journal for Multiscale Computational Engineering,2009,8(6):597-613.
    [135]张洪武,吴敬凯,刘辉,等.扩展的多尺度有限元法基本原理[J].计算机辅助工程,2010,19(2):3-9.
    [136]Zhang H W, Wu J K, Fu Z D. Extended multiscale finite element method for elasto-plastic analysis of 2D periodic lattice truss materials [J]. Computational Mechanics,2010, 45:623-635.
    [137]Zhang H W, Wu J K, Lv J, Fu Z D. Extended Multiscale Finite Element Method for Mechanical Analysis of Heterogeneous Materials [J]. Acta Mechanica Sinica,2010,26:899-920.
    [138]Zhang H W, Zhou Q, Zheng Y G. A multi-scale method for thermal conduction simulation in granular materials [J]. Computational Materials Science,2011,2750-2758.
    [139]Mullins L. A mechanism for Na/Ca transport [J]. The Journal of General of Physiology, 1977,70:681-695.
    [140]Mullins L. Ion transport in heart [M]//Avenue of the Americas, New York:Raven Press, 1981,1340.
    [141]Bonting D P. Membrane transport-new comprehensive biochemistry, vol.2 [M]. Amsterdam: Elsevier/North-Holland Biomedical Press,1981.
    [142]Hodgkin A L, Huxley A F, Katz B. Measurement of Current-Voltage Relations in the Membrane of the Giant Axon of Loligo [J]. Journal of Physiology,1952,116:424-448.
    [143]Ken-ichiro M, Kozo 0, Masanori S. Finite element modeling of forming process of solid metal with liquid phase [J]. Journal of Materials Processing Technology,1991,27: 111-118.
    [144]Hairer E, N(?)rsett S P, Wanner G. Solving ordinary differential equations I [M]. New York:Springer-Verlag,1987.
    [145]ABAQUS Analysis User's Manual, Vol. Ⅱ, Ⅲ Ⅳ, and Ⅵ, ABAQUS, Inc., Providence, RI,2004.
    [146]Mauck L D, Lynch C S. Piezoelectric pump development [J]. Journal of Intelligent Material Systems and Structures,2000,11:758-764.
    [147]Suquet P M. Elements of homogenization theory for inelastic solid mechanics [M]// Sanchez-Palencia E, Zaoui A. Homogenization Techniques for Composite Media. Berlin: Springer-Verlag,1987,194-275.
    [148]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [149]Philen M, Shan Y, Bakis C E, et al. Variable Stiffness Adaptive Structures utilizing HydraulicallyPressurized Flexible Matrix Composites with Valve Control [C].47th AIAA/ASME/ASCE/AHS/ASC Structure, Structural Dynamics, and Materials Confere, Newport, Rhode Island,2006.
    [150]Mauck L D, Lynch C S. Piezoelectric hydraulic pump development [J]. Journal of Intelligent Material Systems and Structures,2000,11:758-764.
    [151]Widjojo N, Chung T S, Krantz W B. A morphological and structural study of Ultem/P84 copolyimide dual-layer hollow fiber membranes with delamination-free morphology [J]. Journal of Membrane Science,2007,294:132-146.
    [152]Rohan E. Modeling large-deformation-indeced microflow in soft biological tissues [J]. Theoretical and Computational Fluid Dynamics,20(4):251-276.
    [153]Zhang H W, Wu J K and Lv J. A new multiscale computational method for elasto-plast ic analysis of heterogeneous materials [J]. Computational Mechanics,2011,49(2): 149-169.
    [154]Efendiev Y, Hou T. Multiscale finite element methods. Theory and Applications [M]. New York:Springer,2009.
    [155]Efendiev Y, Hou T Y, Wu X H. Convergence of a nonconforming multiscale finite element method [J]. SIAM Journal on Numerical Analysis,2000,37,888-910.
    [156]Christman T, Needleman A, Suresh S. An experimental and numerical study of deformation in metal-ceramic composites [J]. Acta Metallurgica,1989,37(11):3029-3050.
    [157]Ltissenden C J, Arnold S M, Iyer S K. Flow/damage surfaces for fiber-reinforced metals having different periodic microstructures [J]. International Journal of Plasticity, 2000,16,1049-1074.
    [158]Legarth B N. Unit cell debonding analyses for arbitrary orientations of plastic anisotropy [J]. International Journal of Solids and Structures,2004,41(26): 7267-7285.
    [159]Tvergaard V. Fibre debonding and breakage in a whisker-reinforced metal [J]. Materials Science and Engineering,1995, A190,215-222.
    [160]Qing H, Mishnaevsky Jr L. A 3D multilevel model of damage and strength of wood:Analysis of microstructural effects [J]. Mechanics of Materials,2011,43:487-495.
    [161]Ghosh S. A material based finite element analysis of heterogeneous media involving Dirichlet tessellations [J]. Computer Methods in Applied Mechanics and Engineering, 1993,104(2):211-247.
    [162]Ghosh S, Mallett. R L. Voronoi cell finite elements [J]. Computers & Structures,1994, 50(1):33-46.
    [163]Ghosh S, Mukhopadhyay S N. A two-dimensional automatic mesh generator for finite element analysis of random composites [J]. Computers and Structures,1991,41:245-256.
    [164]张洪武,王辉.基于参数变分原理的含夹杂Voronoi单元法及非均质材料弹塑性计算[J].复合材料学报,2007,24(4):145-153.
    [165]Zhang H W, Wang H, Wang J B. Parametric variational principle based elastic-plastic analysis of materials with polygonal and Voronoi cell finite element methods [J]. Finite Elements in Analysis and Design,2007,43:206-217.
    [166]王兆清,冯伟.高度不规则网格多边形单元的有理函数插值格式[J].固体力学学报,2005,26(2):199-202.
    [167]钟万勰.计算结构力学微机程序设计[M].北京:水利电力出版社,1986.
    [168]Mishnaevsky Jr L, Qing H. Micromechanical modelling of mechanical behavior and strength of wood:State-of-the-art review [J]. Computational Materials Science,2008,44: 363-370.
    [169]Hofstetter K, Hellmich C h, Eberhardsteiner J. Development and experimental verification of a continuum micromechanics model for the elasticity of wood [J]. European Journal of Mechanics-A/Solids,2005,24:1030-1053.
    [170]Pagitz M, Lamacchia E, Hoi J M A M. Pressure-actuate cellular structures [J]. Bioinspiratiion & Biomimetics,2012,1(7):doi:10.1088/1748-3182/7/1/016007.
    [171]Bendsoe M, Sigmund 0. Topology Optimization. Theory, Methods, and Applications [M]. SpringerVerlag, New York,2003.
    [172]Pedersen C B W, Buhl T, Sigmund 0. Topology synthesis of large-displacement compliant mechanisms [J]. International Journal for Numerical Methods in Engineering,2001,50: 2683-2705.
    [173]Sigmund 0. Design of multiphysics actuators using topology optimization-Part 1: one-material structures [J]. Computer Methods in Applied Mechanics and Engineering, 2001,190:6577-6604.
    [174]左孔天,钱勤,赵雨东,陈立平.热固耦合结构的拓扑优化设计研究[J].固体力学学报,2005,26(4):447-452.
    [175]Zhen L, Tong L Y, Luo J Z, Wei P, Wang M Y. Design of piezoelectric actuators using a multiphase level set method of piecewise constants [J]. Journal of Computational Physics,2009,228:2643-2659.
    [176]陈飙松等.载人航天器结构优化设计的数值方法[J].载人航天,2009,4:26-31.
    [177]程耿东.工程结构优化设计基础[M].北京,水利电力出版设,1984.
    [178]杨春峰等.通用集成优化软件SiPESC. OPT的设计与实现[M].计算机辅助l:程,2011,20(4):42-48.
    [179]Andreassen E, Clausen A, Schevenels M, Lazarov B S, Sigmund 0. Efficient topology optimization in MATLAB using 88 lines of code [J]. Structural and Multidisciplinary Optimization,2011,43:1-16.
    [180]Sigmund 0. A 99 line topology optimization code written in Matlab [J]. Structural and Multidisciplinary Optimization,21,120-127.
    [181]Svanberg K. The method of moving asymptotes-a new method for structural optimization [J]. International Journal for Numerical Methods in Engineering,1987,24(2):359-373.
    [182]张晖,刘书田,张雄.考虑自重载荷作用的连续体结构拓扑优化[J].力学学报,2009,41(1):98-103.
    [183]Sigmund 0. Morphology-based black and white filters for topology optimization [J]. Structural and Multidisciplinary Optimization,2007,33(4):401-424.
    [184]李震.柔性结构拓扑优化方法及其在微机电系统中的应用[D].大连理工大学,2005.
    [185]张洪武,陈飙松,李云鹏,等.面向集成化CAE软件开发的SiPESC研发工作[J].计算机辅助工程,2011,20(2):39-49.
    [186]索洪超.基于SiPESC平台的对象流过滤框架设计与实现[D].大连:大连理工大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700