镜煤逐级抽提超临界吸附响应及其机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用有机溶剂抽提与超声振荡相结合的技术方法,选用CS2、苯、丙酮、和四氢呋喃做为抽提溶剂,对黔西—滇东5套不同煤级镜煤样品进行逐级抽提实验,并分析了原煤、抽提物和抽余物的物理性质、物质组成和物质结构,由此进一步开展了平衡水条件下镜煤及其抽余物的等温吸附/解吸实验,目的是研究镜煤逐级抽提超临界吸附响应及其作用机理。
     通过研究,较为系统地探讨了不同煤级镜煤在有机溶剂逐级抽提作用下抽提率、抽提物族组成和抽余物“微晶”结构的演化特征,分析了它们随抽提级数和煤级的变化规律。初步揭示了逐级抽提过程中镜煤孔隙结构随煤级的演化规律,提出了液氮孔隙结构的自然分类方法,探讨了抽提前后孔隙及其连通性的演化特征,分析了原煤及其抽余物表面ζ电位的变化规律和影响因素。
     同时,描述了超临界条件下煤及其抽余物吸附甲烷特征,发现传统的等温吸附模型能够拟合煤储层条件下甲烷吸附等温曲线。计算了它们在30℃条件下吸附甲烷的表面自由能、吸附势和特征吸附能,根据吸附势理论吸附特征曲线唯一性特征对不同温度条件下原煤及其抽余物吸附甲烷量及其表面自由能进行了预测。应用热力学原理阐释了原煤及其抽余物吸附甲烷能力的差异,分析了原煤及其抽余物吸附能力与地层环境条件和煤储层物性之间的关系。
There have been step-extraction-experiments on the 5 sets of coals collected from western Guizhou and Eastern Yunnan. The main experiment methods are traditional organic solvent extraction method and ultrasonic oscillations technology, in which CS2, benzene, acetone and tetrahydrofuran are used as extraction solvents. The physical characteristics, composition and structure of raw coal, extract and extracted residue are analyzed. The isothermal adsorption and desorption experiment of vitrain and extracted residue are completed under the equilibrium water condition in order to show the supercritical adsorption response of vitrain step-extraction and its mechanism.
     The extraction yield, group component of extract and evolution characteristics of extracted residues micro-crystallite structure of different solvents for different rank coals are discussed, and the evolution with different extraction yield and coal rank are analyzed. The relationship between extraction yeild and pore structure of vitrain are preliminarily discosed. The natural classification of pore structure tested by fluid nitrogen are put forward. The pore and connectivity are dicussed from extraction start to finish. The change and effect factor ofζelectric potential of raw coals and their extracted residues are analyzed.
    
     On the basis of these, the methane adsorption of raw coals and their extracted residues under supercritical condition are described. It is discovered that traditional isothermal adsorption equation can be used to fit methane isothermal adsorption curve under reservoir conditions. The free energy, adsorption potential and adsorption energy of theirs are calculated under 30℃. The volume of methane adsorped and free energy of raw coals and their extracted residues are predicted according to the characteristics that the adsorption character curve is single. The difference of adsorption ability of raw coals and their extracted residues are explained with thermodynamics theory. The relationship between raw coals and their extracted residues and strata setting and coal permeability are analyzed. There are 218 maps, 21 tables, and 130 references in this paper.
引文
[1] Ades H F, Subbaswamy K R. 1996. Theoretical modeling of coliquefaction reaction of coal and polymers[J]. Fuel Processing Technology, 49:207-217.
    [2] Alexeev A D, Ulyanova E V, Starikov G P, et al. 2004a. Latent methane in fossil coals[J]. Fuel, 83(10): 1407-1411.
    [3] Alexeev A D, Vasilenko T A, Ulyanova E V. 2004b. Phase state of methane in fossil coals[J]. Solid State communications, 130(10): 669-673.
    [4] Amankwah K A G, Schwarz J A. 1995. A modified approach for estimating pseeudovapour pressure in the application of the Dubinin-Astskhove Qeuation[J]. Carbon, 33(9): 1313-1319.
    [5] Bose T K, Chahine R, Machildon L. 1987. New dielectric method for measurement of physical adsorption of gases at high pressure[J]. Rev. Sci. Instrum, 58(12): 2279-2283.
    [6] Brenner D. 1984. Microscopic in-situ studies of the solvent-included swelling of their section of cole. Fuel, 63:1324-1328.
    [7] Busch A, Gensterblum Y, Krooss B M, et al. 2004. Methane and carbon dioxide adsorption-diffusion experiments on coal: Upscaling and modeling[J]. International Journal of Coal Geology, 60(2-4): 151-168.
    [8] Bustin R M, Clarkson C R. 1998. Geological controls on coalbed methane reservoir capacity and gas content[J]. International Journal of Coal Geology, 38(1-2): 3-26.
    [9] Chen Haokan, Miura Kouichi, Li Baoqing, et al. 2003. Adsorption and swelling behaviors of coal in pyridine containing binary solvent mixtures[J]. Joural of Fuel Chemistry and Technology, 31(1): 6-11.
    [10] Clarkson G A. 1992. Computer simulation of the molecular structure of bituminous coal[J]. Energy Fuels, 6: 771-778.
    [11] Clarkson C R, Bustion R M. 1996. Variation in micropore capacity and size distribution with composition in bituminous coal of the Western Canadian Sedimentary Basin: Implications for coalbed methane potential[J]. Fuel, 13(10): 1483-1498.
    [12] Clarkson C R, Bustion R M. 1999. Effect of pore structure and gas pressure upon the transport properties of coal: a laboratory and modeling study[J]. Fuel, 78(11): 1333-1362.
    [13] Crosdale P J, Beamish B B, Valix M. 1998. Coalbed methane sorption related to coal composition[J]. International Journal of Coal Geology, 35(1-4): 147-158.
    [14] Crowford R J, Mainwaring D E. 2001. The influence of suffactant adsorption on the surface characterization of Australian coals[J]. Fuel, 80: 313-320.
    [15] Cui X, Bustin R M, Dipple G. 2004. Selective transport of CO2, CH4, N2 in coals: Insights from modeling of experimental gas adsorption data[J]. Fuel, 83(3): 293-303.
    [16] Day S, Sakurovs R, Weir. 2008. Supercritical gas sorption on moist coals[J].International Journal of Coal Geology, 74(1-4): 203-214.
    [17] De Boer J H. 1958. The shape of capillaries[A].//In: Everet D H, Stone F S. The structure and properties of porous materials[C]. London:Butterworth.
    [18] Do D D. 1998. Adsorption Analysis: Equilibria and Kinetics, Imperial College Press.
    [19] Dubinin, M M. 1960. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces[J]. Chem Rev, 60:235-241
    [20] Dubinin M M. 1967. Adsorption in micropores[J]. Journal of colloid and interface science, 23u(4): 487-499.
    [21] Dubinin M M, Astakhov V A. 1971. Development of the concepts of vllume filling of micropores in the adsorption of gases and vapors by microporous adsorbents, Izvestiya Akademii Nauk SSSR, Seriya Khimi Cheskaya, (1): 5-11.
    [22] Ettinger I, Eremin I, Zimakov B et al. 1966. Natural factors influencing coal sorption properties: petrography and sorption properties of coals[J]. Fuel, 45: 267-275.
    [23] Fitzgerald J E, Sudibandriyo M, Pan Z, et al. 2003. Modeling the adsorption of pure gases on coals with the SLD model[J]. Carbon, 41(12): 2203-2216.
    [24] Franklin R F. 1950. The interpretation of diffuse X-ray diagrams of carbon. Acta Cryst, 3: 107-121.
    [25] Franklin R F. 1951. Crystallite growth in graphitizing and non=graphitizing carbons. Proc R Soc London, 1209(2): 196-218.
    [26] Given P H. 1960. The distribution of hydrogen in coals and its relation to coal structure[J]. Fuel, 39:147-153.
    [27] Gregg S J, Sing K S. 1982. Adsorption, Surface area and porosity(Second edition) [M]. New York: Coal Science Academic Press.
    [28] Haenel M W. 1992. Recent progress in coal structure research[J]. Fuel, 71(11):1211-1223.
    [29] Humayun R, David L. 2000. High-resolution adsorption isotherms of supercritical carbon dioxide on activated carbon[J]. AIChE Journal. 46(10): 2063-2075.
    [30] IUCPA. 1966. Tentative rules: Nomenclature of corrinoids[J]. Biochimica et Biophysica Acta, 117(2): 285-288.
    [31] Kadlec O. 2001. The history and present state of Dubinin’s theory of adsorption of vapous and gases on microporous solids. Adsorption Science and Technology,19(1):1-28.
    [32] Kaneko K, Murate K. 1997. An analytical method of micropore filling of a supercritical gas[J]. Adsorption, (3): 197-208.
    [33] Karacan C O, Okandan E. 2000. Assessment of energetic heterogeneity of coals for gas adsorption and its effect on mixture predictions for coalbed methane studies[J]. Fuel, 79(15): 1963-1974.
    [34] Krooss B M, Van Bergen F, Gensterblum Y, et al. 2002. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals[J]. International Journal of Coal Geology, 51(1): 69-92.
    [35] Laxminarayana C, Crosdale P J. 1999. Role of coal type and rank on methane sorptioncharacteristics of Bowen Basin, Australia coals[J]. International Journal of Coal Geology, 40(4): 309-325.
    [36] Laxminarayana C, Crosdale P J. 2002. Controls on methane sorption capacity of Indian coals[J]. AAPG Bulletin, 86(2): 201-212.
    [37] Levine J R, Davis A. 1989. The relationship of coal optical fabrics to Alleghanian tectonic deformation in the central appalachian fold and thrust belt, Pennsylvania. Geol Soc Am Bull, 101: 1333-1347.
    [38] Levy J H, Day S J, Killingley S J. 1997. Methane capacities of Bowen Basin coals related to coal properties[J]. Fuel, 76: 813-819.
    [39] Malbunot P, Vidal J D, Vermesse J, et al. 1997. Adsorption Helium density measurement and its effect on adsorption isotherms at high pressure[J]. Langmuir, 13: 539-544.
    [40] Mavor M J, Owen L B, Pratt T J. 1990. Measurement and evaluation of coal sorption isotherm data. SPE20728, pp.157-170.
    [41] Menon P G. 1968. Adsorption of gases at high pressure[J]. Chemical Review, 68: 277-293.
    [42] Nishioka M. 1992. The associated molecular nature of bituminous coal[J]. Fuel, 71(8): 941-948.
    [43] Nomura M, Muradani T, Murata S, et al. 1997. The chemical structure and thermal modification of low rank coals[J]. Amer. Chem. Soc. Div Fuel Chem. Preprints, 42: 168-171.
    [44] Ozawa S, Kusumi S, Ogino Y. 1976. Physical adsorption of gases at high pressure IV an improvement of the Dubinin-Astakhov adsoption equation. Journal of Collid and interface Science. 56(1): 83-91.
    [45] Radovic L R, Menon V C, Leon Y, et al. 1997. On the porous structure of coals: Evidence for an interconnected but constricted micropore system and implications for coalbed methane recovery[J]. Adsorption, 3(3): 221-232.
    [46] Sato Y, Inaba A. 1985. Molecular Orbital study of the effect of hydrogen donating solvent on the coal liquefaction. ICCS, 1:730-733.
    [47] Shinn J H. 1984. From coal to single-stage and two stage products: a reactive model of coal structure[J]. Fuel, 63: 1187-1196.
    [48] Siemons N, Busch A. 2007. Measurement and interpretation of supercritical CO2 sorption on various coals[J]. International Journal of Coal Geology, 69: 229-242.
    [49] Takanohashi T, Terao Y, Iion M. 2000. Sorption behaviors of methanol vapor by extracts and residues[J]. Fuel, 79(34):349-353.
    [50] Van Krevelen D W. 1993. Coal(3rd ed.) [M]. Amsterdam: Elsevier.
    [51] Warren B E. 1941. X-ray diffraction in random layer lattices. Phy Rev, 59: 693-698.
    [52] Yee D, Seidle J P, Hanson W B. 1993. Gas sorption on coal and measurement of gas content. //In: Law B E, Rice D D Eds. Hydrocarbons from Coal[J]. AAPG Studies in Geology, 1993, 38(5):327-368.
    [53] Zhou L, Su W, Sun Y. 2001. Supercritical adsorption: Challenges in theory, analysis andmodeling. Hangzhou: Proceeding of CKCSST’01.
    [54]ХОДОТB B. 1961.宋世钊,王佑安译. 1976.煤与瓦斯突出[M].北京:中国工业出版社.
    [55]艾鲁尼A T. 1992.煤矿瓦斯动力现象的预测和预防[M](唐修义等译).北京:煤炭工业出版社. 67-69.
    [56]白书培. 2002.超临界温度附近CO2在多孔固体上吸附行为的研究[博士学位论文].天津:天津大学. 4-20.
    [57]陈昌国,魏锡文,鲜学福. 2000.用从头计算研究煤表面与甲烷分子相互作用[J].重庆大学学报, 23(3): 77-83.
    [58]陈昌国,辜敏,鲜学福. 2003.煤的原子分子结构及吸附甲烷机理研究进展[J], 26(4): 5-9+15.
    [59]陈宏刚,李凡,谢克昌. 1996.煤结构的计算机辅助分子设计研究[J].煤炭转化, 19(4):1-10.
    [60]陈润. 2007.煤层气分馏机理[硕士学位论文].焦作:河南理工大学.
    [61]陈鹏. 2001.中国煤炭性质、分类和利用[M].北京:化学工业出版社.
    [62]陈文敏,张自劭. 1993.煤化学基础[M].北京:煤炭工业出版社, 196-198.
    [63]陈振宏,王一兵,宋岩,等. 2008.不同煤级煤层气吸附、解吸特征差异对比[J].天然气工业, 28(3): 30-32.
    [64]陈新志,蔡振云. 2002.化工热力学[J],北京:化学工业出版社.
    [65]崔永君,杨锡禄,张庆玲. 2003.煤对超临界甲烷的吸附特征[J].天然气工业, 23(3): 131-133.
    [66]傅雪海,秦勇,李贵中等. 2002.特高煤级煤平衡水条件下的吸附实验[J].石油实验地质, 24(2); 177-180.
    [67]高德霖,张琪,孙小玉. 2003.气相吸附平衡的推算—吸附势理论和微孔吸附容积充填理论[J].精细化工原料及中间体, (11):2-8.
    [68]顾惕人,朱步瑶,李外郎,等. 2001.表面化学[M].北京:科学出版社, 275-280.
    [69]何学秋,张力. 2000.外加电磁场对瓦斯吸附解吸的影响规律及作用机理的研究[J].煤炭学报, 25(6): 614-618.
    [70]何学秋,张力. 2003.正弦波电磁场对瓦斯吸附常数的影响规律[J].中国矿业大学学报, 32(5): 475-478.
    [71]姜波,秦勇,金法礼. 1998.变形煤的结构演化机理及其地质意义.徐州:中国矿业大学出版社.
    [72]蒋文萍,崔永君,张群,等. 2006.煤表面与CH4,CO2相互作用的量子化学研究[J].煤炭学报, 31(2): 237-240.
    [73]近藤精一,石川达雄,安部郁夫(李国希译). 2007.吸附科学[M].北京:化学工业出版社.
    [74]琚宜文,姜波,王桂樑等. 2003.构造煤结构及储层物性[M].徐州:中国矿业大学出版社.
    [75]刘保县,鲜学福,徐龙君等. 2000.地球物理场对煤吸附瓦斯特性的影响[J].重庆大学学报, 23(5): 78-81.
    [76]刘焕杰,秦勇,桑树勋. 1998.山西南部煤层气地质学[M].徐州:中国矿业大学出版社.
    [77]聂百胜,何学秋,王恩元. 2000.煤的表面自由能及应用探讨[J].太原理工大学学报. 31(4):346-348.
    [78]聂百胜,何学秋,王恩元等. 2004.煤吸附水的微观机理[J].中国矿业大学学报, 33(4): 379-383.
    [79]钱凯,赵庆波,汪泽成. 1996.煤层气勘探开发理论与实验测试技术[M].北京:石油工业出版社, 119-142
    [80]秦匡宗,郭绍辉,李术元. 1998.煤结构的新概念与煤成油机理的再认识[J].科学通报, 43(18): 1912-1917.
    [81]秦勇. 1996.中国高煤级煤的显微岩石学特征及结构演化[M].徐州:中国矿业大学出版社.
    [82]秦勇. 2003.中国煤层气勘探开发所面临的若干科学问题[A].//见:李文阳,王慎言,赵庆波主编.中国煤层气勘探与开发[C].徐州:中国矿业大学出版社, 14-20.
    [83]秦勇,宋全友,傅雪海. 2005.煤层气与常规油气共采可行性的探讨:深部煤储层平衡水条件下的吸附效应[J].天然气地球科学, 16(4): 492-498.
    [84]秦志宏. 2004.煤中有机质溶出行为的研究[博士学位论文].徐州:中国矿业大学.
    [85]苏现波,陈江峰,孙俊民等. 2001.煤层气地质学与勘探开发[M].北京:科学出版社.
    [86]苏现波,张丽萍,林晓英. 2005.煤级对煤吸附能力的影响[J].天然气工业, 25(1): 19-21.
    [87]苏现波,林晓英. 2008.煤层气地质学[M].北京:煤炭科学出版社.
    [88]孙培德. 1998.煤层气越流的固气耦合理论及其计算机模拟研究[博士学位论文].重庆:重庆大学.
    [89]谈慕华,黄蕴元. 1985.表面物理化学[M].北京:中国建筑工业出版社.
    [90]唐书恒,韩德馨. 2002a.煤对多元气体的吸附与解吸[J].煤炭科学技术, 30(1); 58-60.
    [91]唐书恒,杨起,汤达祯. 2002b.注气提高煤层甲烷采收率机理及实验研究[J].石油实验地质, 24(6): 545-549.
    [92]唐书恒,汤达祯,杨起. 2004.二元气体等温吸附实验及其对煤层甲烷开发的意义[J].地球科学, 29(2): 219-223.
    [93]田永东,李宁. 2007.煤对甲烷吸附能力的影响因素[J].西安科技大学学报, 27(2): 247-250.
    [94]王宝俊,李敏,赵清艳等. 2004.煤的表面电位与表面官能团间的关系[J].化工学报, 55(8): 1329-1334.
    [95]王宝俊. 2006.煤结构与反应性的量子化学研究[博士学位论文].太原:太原理工大学.
    [96]王飞,张代钧,李小鹏等. 2003a.煤的溶剂萃取产物的氮气吸附行为[J].燃料化学学报, 31(5): 395-399.
    [97]王飞,张代钧,杨明莉等. 2003b.煤的溶剂抽提规律及其产物性能的研究进展[J].煤炭转化, 26(1): 8-11.
    [98]王晓华. 2003.煤的溶剂分级萃取与萃取物的组成及结构分析[博士学位论文].徐州:中国矿业大学.
    [99]翁成敏,潘志贵. 1981.峰峰煤田煤的X射线衍射分析[J].地球科学, (1):214-221.
    [100]吴俊. 1994.中国煤成烃基本理论与实践[M].北京:煤炭工业出版社.
    [101]许考,刘明举,刘彦伟. 2003.交变电磁产作用下煤吸附解吸电磁改性研究[J].煤田地质与勘探, 31(3): 23-26.
    [102]谢克昌. 2002.煤的结构与反应性[M].北京:科学出版社.
    [103]邢华斌,苏宝根,杨亦文等. 2002.超临界流体吸附研究进展[J].化学进展, 21(12): 885-893.
    [104]徐龙君,张代钧.煤的吸附特性及其应用[J].煤炭转化, 20(2): 25-31.
    [105]严继民,张启元,高敬宗. 1986.吸附与凝聚——固体的表面和孔(第二版)[M].北京:科学出版社.
    [106]杨斌. 2000.气体跨越临界温度吸附行为研究[博士学位论文].天津:天津大学.
    [107]姚艳斌,刘大锰. 2007.华北重点矿区煤储层吸附特性及其影响因素[J].中国矿业大学学报, 36(3): 308-314.
    [108]于洪观,范维唐,孙茂远等. 2004.煤对超临界甲烷的吸附与解吸特性研究[J].煤炭转化, 27(2): 37-40.
    [109]张代钧,王飞,李小鹏等. 2004.溶剂萃取对烟煤孔隙结构和粒度的影响[J].燃料化学学报, 32: 18-22.
    [110]张丽萍,苏现波,曾荣树. 2006.煤体性质对煤吸附容量的控制作用探讨[J].地质学报, 80(6): 910-915.
    [111]张景来. 2001.煤表面与高分子作用机理的量子化学研究[J].北京科技大学学报, 23(1): 6-8.
    [112]张劲松,高学云,邵玉芬,等. 1998.烟叶硒蛋白质工业化提取及其对免疫调节和抗氧化作用的影响[J].中国烟草学报. (2):29-32.
    [113]张庆玲,崔永君,曹利戈. 2004.煤的等温吸附试验中各因素影响分析[J].煤田地质与勘探, 32(2): 16-19.
    [114]张群,杨锡禄. 1999.平衡水分条件下煤对甲烷的等温吸附特性研究[J].煤炭学报, 24(6): 566-570.
    [115]张晓东. 2005.煤分级萃取的吸附响应及其地球化学机理[博士学位论文].徐州:中国矿业大学
    [116]张新民,庄军,张遂安. 2002.中国煤层气地质与资源评价[J].北京:科学出版社.
    [117]张玉贵,王宝俊,田亚峻等. 2003.抚顺镜煤和树脂煤CS2的族组成和萃取[J].中国矿业大学学报, 32:267-273.
    [118]张宗羲,李琪. 2004.云南恩洪矿区煤层气勘探地质、储层参数因素分析[J].云南煤炭, (1):17-18.
    [119]郑爱玲,王新海,江山等. 2004.煤层多元气体相互作用与替代机理研究方向[J].天然气地球科学, 15(4): 352-354.
    [120]赵志根,唐修义. 2001.低温氮吸附法测试煤中的微结构及其意义[J].煤田地址与勘探, 29(5): 28-30.
    [121]钟玲文,张新民. 1990.煤的吸附能力与其煤化程度和煤岩组成间的关系[J].煤田地质与勘探, 27(4): 29-35.
    [122]钟蕴英,关梦嫔,崔开仁,等. 1989.煤化学[M].徐州:中国矿业大学出版社, 142.
    [123]周来. 2009.深部煤层处置CO2多物理耦合过程的实验与模拟[博士学位论文].徐州:中国矿业大学.
    [124]周理,吕昌忠,王怡林,等. 1999.述评超临界温度气体在多孔固体上的物理吸附[J].化学进展, 11(3): 221-226.
    [125]周荣福,傅雪海,秦勇. 2000.我国煤储层等温吸附常数分布规律及其意义[J].煤田地质与勘探, 28(5): 23-26.
    [126]周胜国,侯瑞云,郭淑敏. 1996.煤对双组分气体的等温吸附实验方法[J].焦作工学院学报, 15(6): 83-87.
    [127]周亚平,周理. 1997.超临界氢在吸附等温线研究[J].物理化学学报, 13(2): 119-127.
    [128]周亚平,杨斌. 2000.气体超临界吸附研究进展[J].化学通报, (9): 8-13.
    [129]朱步瑶,赵振国. 1996.界面化学基础[M],北京:化学工业出版社.
    [130]朱之培,高晋生. 1984.煤化学[M].上海:上海科学技术出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700