滚珠丝杠感应加热有限元分析及优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
感应加热具有加热速度快、物料内部发热效率高、加热均匀,且具有产品质量好、几乎无污染、易于实现生产自动化等一系列优点,因此近年来得到了迅速发展。采用感应淬火处理滚珠丝杠能够较理想地解决表面和心部性能要求不一致的矛盾:既能改善表面强度、硬度和耐磨性,又能保持心部的塑性和韧性,从而提高其承受一定冲击负荷、抵抗磨损和疲劳的能力。利用计算机数值模拟方法来描述感应加热过程可以提前预测工件的温度场分布情况,找到获得确定淬硬层深度的加热工艺,进而修改相关参数优化其工艺性能。所以对丝杠的感应淬火进行有限元模拟具有现实意义。
     本文针对感应加热过程中工件温度难以测量的问题,应用电磁学和传热学基本理论,建立了滚珠丝杠坯料电磁场和温度场分布的数学模型,详细介绍了ANSYS感应加热模拟步骤,针对丝杠在静止线圈内感应加热过程及结果进行分析,得到相应结论。
     本文介绍了辐射、电流密度、电流频率等因素对滚珠丝杠感应加热过程的影响。利用ANSYS软件进行多次模拟总结得知:温度越高,辐射效果越明显;电流密度大小影响最终加热温度,电流密度值足够大,使得材料感应加热过程中温度能达到二次相变温度,之后材料温升曲线会有不同趋势;电流频率影响材料的透入深度,进而影响材料感应淬火后表面与中心的温差值。高频率能在极短时间内迅速提高材料表面温度,同时提高热效率。
     基于模拟线圈移动时所采取的随时间变化电流密度单元变化思路,研究滚珠丝杠在移动单线圈内感应加热的一般规律,由模拟结果得到相应结论,发现存在丝杠外表面和滚道温差过大的问题,改用移动双线圈进行感应加热,结果能够得到较好的改善。
     本文所得结论为合理选择加热参数提供参考依据,为揭示滚珠丝杠感应加热过程的规律、优化工艺参数提供理论依据。
Induction heating is fast, efficient and well-proportioned, and it possesses many advantages such as high-grade production, no pollution, good controllability and easy to achieve automatic, so it developed very fast in the recent years. The induction quenching process of ball screw can perfectly resolve the contradiction about performance requirements inconsistent between the surface and center, Not only can improve the strength, hardness and wear resistance of surface, and can keep the plasticity and toughness of the center, so as to improve the ability of bearing load impact, abrasion resistance and fatigue resistance. The computer numerical simulation method of describing the induction heating process can predict the temperature field distribution of the work piece, find the access to determine the hardened layer depth of heating process, and then modify the relevant parameters to optimize processing property. Therefore, the finite element modeling of induction quenching has a realistic significance.
     Aiming at the difficulty in measuring for induction heating, based on the electromagnetic theory and thermal theory, it constructed the mathematic analysis models of the ball screw performing electromagnetic field, temperature field, the induction heating simulation steps of ANSYS were introduced, According to the analysis and the results of induction heating process, we got the corresponding conclusion.
     The influences of radiation, current density, current frequency to the induction heating process were introduced. Finally, concluding that:The higher the temperature is, the more obvious effects of radiation; the current density values affects the ultimate level of heating temperature, if the current density values is large enough, the temperature of induction heating can reach Secondary phase transition temperature, After that the temperature rise curve will have a different trend; The current frequency affects the penetration depth of material, which will affects the temperature difference between the surface and the center after induction hardening. High frequency can improve the surface temperature rapidly in a very short period of time, while improving the thermal efficiency.
     Along with the time changing, the current density loading unit changes, General rules of ball screw induction heating in mobile single-turn coil were researched. Some conclusions are drawn from the simulation results; there is a problem that the temperature difference of outer surface and raceway of screw is too large. With double coil for induction heating, the result is better.
     The conclusion of this paper provides reference basis for reasonable choice of heating parameters, and provides a theoretical basis for the optimization of process parameters.
引文
[1]姜江,彭其凤.表面淬火技术[M].北京:化学工业出版社,2006:1-2.
    [2]中国机械工程学会热处理专业分会《热处理手册》编委会编.热处理手册[M].第3版.北京:机械工业出版社,2001:20-23.
    [3]许雪峰,赵敏,吴金富.45钢工件感应淬火温度场有限元模拟分析[J].金属热处理,2005,(30):152-155.
    [4]姜士林,赵长汉.感应加热原理与应用[M].天津:天津科技翻译出版公司,1993:10-26.
    [5]肖国春.圆管感应加热工件内电参数计算[J].工业加热,1993,(4):19-26.
    [6]西安电炉研究所.感应加热技术应用及其设备设计经验[M].第一机械工业部技术情报所编,1975:34-37.
    [7]金晓昌.感应加热技术中的趋肤效应[J].武汉化工学院学报,1995,17(4):65-68.
    [8]刘志儒.金属感应热处理[M].北京:机械工业出版社,1985:9-17.
    [9]沈庆通.感应热处理问答[M].北京:机械工业版社,1990:11-19.
    [10]林信智,杨连第.汽车零部件感应热处理工艺与设备[M].北京:北京理工大学出版社,1998:101-110.
    [11]杨晓光.横向磁通感应加热及其优化问题的研究[D].河北工业大学博士学位论文,2004:27-30.
    [12]约翰.戴维斯[英]著.感应加热手册[M].张淑芳译.北京:国防工业出版社,1985:5-10.
    [13]沈庆通.感应加热处理问答[M].北京:机械工业出版社,1990:2-6.
    [14]Hyun-Kyo, Gi-shik Lee, Song-yop Hahn.3-D magnetic field computations using finite-element approach with localized functional [J]. IEEE Transactions on Magnetics,1985,21(6):2129-2198.
    [15]唐兴伦,范群波,张朝晖.ANSYS工程应用教程(热学、电磁学篇)[M].第1版.北京:中国铁道出版社,2003:222-249.
    [16]邓凡平.ANSYS10.0有限元分析自学手册[M].北京:人民邮电出版社,2007:2-4.
    [17]美国ANSYS公司.ANSYS耦合场分析指南[M].1999:1-5.
    [18]Wter Maten E J, Melissen J B M. Simulation of inductive heating[J]. IEEE Transactions on Magnetics,1992, (28):1287-1290.
    [19]党沙沙,许洋,张红松.ANSYS 12.0多物理耦合场有限元分析从入门到精通[M].北京:机械工业出版社,2010:292-343.
    [20]Jeske U. Eddy current calculation in 3-D using the finite element method[J]. IEEE Transactions on Magnetics,1982,18(2):426-430.
    [21]Chaboudez C, CMn S, Olardon R, Rappaz J, Swierkosz M. Numerical modeling of induction heating for axisymmetric geometries[J]. IEEE Transactions on Magnetics,1997,33(1):739-745.
    [22]钟顺时.电磁场理论基础[M].西安:西安电子科技大学出版社,1995:65-110.
    [23]李泉风.电磁场数值计算与电磁铁设计[M].北京:清华大学出版社,2002:7-9
    [24]吴金富,许雪峰.感应加热工件内电磁场计算及其有限元模拟[J].浙江工业大学学报,2004,1(32):58-62.
    [25]盛剑霓.电磁场数值分析[M].北京:科学出版社,1984:1-3.
    [26]M. Feliachi, D. Benzerga, F. Z. Louai and G, Develey. On the 2D or 3D Coupled Analytical and Finite Element Analysis of Eddy Current and Thermal Problems in Plasma Devices [J]. IEEE Transactions on Magnetics,1996,3(32):1613-1616.
    [27]张榴晨,徐松.有限元法在电磁计算中的应用[M].北京:中国铁道出版社,1996.
    [28]张倩,胡仁喜,康士廷.ANSYS 12.0电磁学有限元分析从入门到精通[M].北京:机械工业出版社,2010:17-56.
    [29]Ahmed M. R.,Layers J. D. etc..Boundary element application of induction heating devices with rotational symmetry [J]. IEEE Transactions on Magnetics, 1989,25(4):3022-3024.
    [30]刘高腆.温度场的数值模拟[M].重庆:重庆大学出版社,1990:211-248.
    [31]王润富,陈国荣.温度场和温度应力[M].北京:科学出版社,2005:1-10.
    [32]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.
    [33]Di Barba P, Dughiero F, Trevisan F. Optimal design of windings for the continuous induction hardening process of steel bars[J]. International Journal of Applied Electromagnetic and Mechanics,1998,9(1):53-63.
    [34]Wang KF, Chandrasekar S, Yang HTY. Finite-element simulation of induction Heat-treatment[J]. Journal of Materials Engineering and Performance,1996, 118(4):571-575.
    [35]屠传经,沈珞婵.热传导[M].北京:高等教育出版社,1992:25-27.
    [36]孔祥谦.有限单元法在传热学中的应用[M].北京:科学出版社,1986.
    [37]张媛媛.基于有限元和边界元方法的轴类感应加热分析及数值模拟[D].天津大学硕士学位论文,2006:17-18.
    [38]王泽鹏,张秀辉,胡仁喜.ANSYS 12.0热力学有限元分析从入门到精通[M].北京:机械工业出版社,2010:97-103.
    [39]Fuhrmann J, Homberg D. Numerical simulation of induction hardening of steel [J]. International Jamul for Computation and Mathematics in Electrical and Electronic Engineering,1999,18(3):482-493.
    [40]Karol A, Adam S. A New Concept for Finite Element Simulation of Induction Heating of Steel Cylinders[J]. IEEE transactions on industry applications,1997 33(4):893-897.
    [41]帅克刚.高频感应加热弯板成型温度场的有限元分析[J].锅炉技术,2004,35(3):52-54.
    [42]柏劲松.感应加热钢板变形规律的研究[D].大连理工大学硕士学位论文,2005:19-21.
    [43]龚曙光.ANSYS基础应用及范例解析[M].北京:机械工业出版社,2003:29-304.
    [44]张月红.感应加热温度场的数值模拟[D].江南大学硕士学位论文,2008:30-31.
    [45]赵敏.45钢坯锻前感应加热的有限元模拟分析[D].浙江工业大学硕士学位论文,2006:50-55.
    [46]唐兴伦,范群波,张朝晖,李春阳.ANSYS工程应用教程[M].北京:中国铁道出版社,2003:9-11.
    [47]沈庆通.感应加热技术的近期发展[J].机械工人,2006,1(6):12-15.
    [48]王林章.移动式管体中频感应加热设备[J].石油工程建设,1994,1(2):49-50.
    [49]徐祖耀.相变原理[M].北京:机械工业出版社,1998:134-158.
    [50]姜江,彭其凤.表面淬火技术[M].北京:化学工业出版社,2006:73-87.
    [51]陈明伟,侯增寿.淬冷过程瞬态温度场有限元分析及淬硬层深度预测[J].太原工业大学学报1994,25(4):14-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700