电磁力辅助水火弯板成形数值模拟分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在船体曲面外板的成形加工过程中,水火弯板工艺一直是世界各国的造船厂普遍使用的成形方法。由于水火弯板工艺是利用金属板局部加热和冷却过程中内部产生的热应力来实现弯曲变形的,因而对于较厚或曲率变化较大钢板的成形效果不佳,往往需要将钢板反复加工;而对于高强钢这样的容易产生裂纹的材料,水火弯板工艺存在着控制加工温度和达到所需变形的矛盾。针对水火弯板技术存在的这些不足,本文提出利用电磁力辅助水火弯板成形的新方法。
     本文运用有限元分析软件ANSYS实现了对电磁力辅助水火弯板成形过程的模拟。首先建立电路—电磁耦合有限元模型,模拟电磁线圈的放电过程,得到了线圈中放电电流的变化规律和电磁力的时空特性;建立电磁—结构耦合有限元模型,实现电磁力的加载,并得到钢板的应变情况。接着考虑温度对电磁力的影响,并将温度作为载荷施加于钢板结构中,模拟得到了钢板在温度和电磁力共同作用下的应变情况,分析了电磁力对水火弯板成形的作用机理。
     最后,分析了放电回路参数和几何参数的变化对电磁力的影响,为后续的研究提供必要的理论参考。
In the process of ship curved plate forming, line heat forming technique has been used as the most popular forming method by shipyards all over the world. For line heat forming, bend deformation occurs when metal plate internally produces heat stress in the process of local heating and cooling, so the forming effect become poor when the steel plate is thick or seriously bend. The steel plate needs to be processed many times. For high-strength steel which is apt to produce crack, the line heat forming technique has a contradiction between keeping the temperature not too high and achieving the expectant deformation. As a result of these disadvantages line heat forming technique has, a new method of aiding line heat forming with electromagnetic force is put forward in this paper.
     This paper simulates the process of aiding line heat forming with electromagnetic force by using finite element (FE) analysis software ANSYS. First of all, to establish electromagnetic-circuit coupled FE model, simulate the discharging process of electromagnetic coil, gain the variation laws of discharging current in coil and the characteristic of electromagnetic force in period and space; to establish electromagnetic-structure coupled FE model, load the electromagnetic force, gain strain situation of steel plate. Then to consider the influence of temperature to electromagnetic force, load temperature to steel plate structure, gain the strain of steel plate under the action of temperature and electromagnetic force, analyze the action mechanism of electromagnetic force to line heat forming.
     Finally, to analyze the influence of discharging circuit parameters and geometrical parameters to electromagnetic force, provide theory reference for further research.
引文
[1]徐兆康.船舶建造工艺学[M].北京:人民交通出版社,2000:105-109.
    [2]李春峰.高能率成形技术[M].北京:国防工业出版社,2001.
    [3]谢文良.低合金钢水火弯板[J].造船技术,1980,2:19-25
    [4]Rykalin N N. Calculation of Heat Processes in Welding[M]. Mashinostroenije, Moscow.1960.
    [5]Martin Birk-SΦrensen. Simulation of welding distortions in ship section:[D]. Denmark: Technical University of Denmark,1999.
    [6]Adak Malabika, N.R. Mandal. Thermo-Mechanical Analysis of plates undergoing line heating using pseudolinear equivalent constant rigidity system[J]. Journal of Ship Production,2004,20(2):84-89.
    [7]董大栓,柳存根,谭家华.水火弯板计算中高斯分布热源模型各参数的实验确定[J].上海交通大学学报,2001,35(10):1459~1463.
    [8]汪骥,刘玉君,纪卓尚,邓燕萍.水火弯板数值模拟中热源模型参数研究[J].大连理工大学学报,2006,45(3):367~371.
    [9]韩华.基于ANSYS水火弯板温度场的数值分析[J].武汉船舶职业技术学院学报,2005(3):13~17.
    [10]刘玉君,郭培军,邓燕萍,纪卓尚,汪骥,周波.人工神经网络在水火弯板温度场热源参数预测时的应用研究[J].造船技术,2006(2):19-21.
    [11]Junichi Katsuta, Tsuyoshi Kato. The Acquirement system of skills for bending process of steel plate by line heating[J]西部造船会报,2001,102:273-285.
    [12]H.C.Kuo, L.J.Wu. Fuzzy control of a heat-bending system[J]. Journal of Materials Processing Technology,2002,120:186-201.
    [13]Shin J G, Ryu C H, Lee J H, Kim W D. User-friendly, advanced line heating automation for accurate plate forming[J]. Journal of Ship Production,2003,19(1):8-15.
    [14]张雪彪,纪卓尚,刘玉君,金世良.水火弯板线变形和工艺参数关系数学建模研究[J].船海工程,2006(3):48~52.
    [15]刘玉君,郭培军,纪卓尚,邓燕萍.基于遗传算法的水火弯板工艺参数预报方法研究[J].大连理工大学学报,2006,46(2):235~240.
    [16]刘滨,蒋祖华,虞成全,江志斌.基于FEA和ANN的水火弯板表面变形预测方法[J].中国造船,2006,47(2):120~124.
    [17]韩飞,莫健华,黄树槐.电磁成形技术理论与应用的研究进展[J].锻压技术,2006(6):4-8.
    [18]马瑞伍,肖小亭.电磁成形技术发展简介[J].模具制造,2005(8):24~26.
    [19]Sung Ho Lee, Dong Nyung Lee. A Finite Element Analysis of Electromagnetic Forming for Tube Expansion[J]. Journal of Engineering Materials and Technology.1994 (16):250~254
    [20]张守彬,李硕本.圆管在脉冲电磁力作用下的动力响应[J].锻压技术,1997,(3):30~33.
    [21]崔晓辉,莫健华,韩飞,肖师杰.平板电磁成形时匀压力线圈及板料受力研究[J].华中科技大学学报(自然科学版),2011,39(2):61-63.
    [22]黄尚宇,常志华,田贞武,杨梅,王仲仁.管件电磁成形电磁力分布特性分析[J].塑性工程学报,2006,7(2):30~34.
    [23]李春峰,赵志衡,李建辉,李忠.电磁成形磁场力的研究[J].塑性工程学报,2001,8(2):70~72.
    [24]许威,刘雪松,杨建国,方洪渊,徐文立.温度对平板电磁成形中电磁力影响的数值分析[J].材料科学与工艺,2010,18(1):71-74.
    [25]初红艳,费仁元,陆辛,杨鲁义.电磁成形中板料厚度与变形深度的关系[J].机械工程学报,2003,39(3):62~65.
    [26]张敏,陆辛.加热条件下电磁成形试验研究[J].塑性工程学报,2005,12(4):35~37.
    [27]M.Ahmed, S.K.Panthi, N.Ramakrishnan,等Alternative flat coil design for electromagnetic forming using FEM[J]. Transactions of Nonferrous Metals Society of China,2011,21(3): 618~625.
    [28]赵志衡,李春峰,李建辉,李忠.电磁成形用螺线管线圈电感的研究[J].哈尔滨工业大学学报,2000,32(5):64~66.
    [29]初红艳,费仁元,陆辛.平板电磁成形时线圈最小尺寸的计算[J].中国机械工程,2003,14(10):818~822.
    [30]常宏,孟正华,胡双峰.平板毛坯电磁成形线圈的研究及应用[J].锻压技术,2007,32(3):7-11.
    [31]赵志衡,李春峰,邓将华.管坯电磁成形时线圈受力的研究[J].材料科学与工艺,2004,12(4):387-390.
    [32]许威.基于电磁力的焊接热裂纹及变形随焊控制新方法[D].哈尔滨:哈尔滨工业大学,2008.
    [33]谢德馨,杨仕友编著.工程电磁场数值分析与综合[M].北京:机械工业出版社,2008.
    [34]张倩等编著.ANSYS 12.0电磁学有限元分析从入门到精通[M].北京:机械工业出版社,2010.
    [35]舒行军,余本刚,张棋飞等.电磁成形放电电流及磁场的计算机仿真[J].武汉理工大学学报,2002,24(1):47~50.
    [36]初红艳,费仁元,陆辛,杨鲁义.平板件电磁成形用线圈的设计[J].中国机械工程,2004,15(22):2031~2036.
    [37]初红艳.平板件电磁成形的质量保证技术的研究[D].北京:北京工业大学,2003.
    [38]张婧.基于电磁力的焊接热裂纹随焊控制新方法[D].哈尔滨:哈尔滨工业大学,2006.
    [39]张旭辉,潘展钊,陈小丹.浅谈水工结构耦合场分析的间接法和物理环境法[J].广东水利水电,2008,(8):112~114.
    [40]党沙沙等编著.ANSYS 12.0多物理耦合场有限元分析从入门到精通[M].北京:机械工业出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700