低发泡木粉/PVC复合材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木塑复合材料的研制与生产应用对于寻求实体木材的替代材料和利用木材加工剩余物具有重要意义,也是回收塑料再生利用的有效途径之一。本文采用SJSZ50/105锥型双螺杆挤出生产设备,使用改性AC发泡剂,采用结皮发泡方法,以聚氯乙烯(PVC)为基体树脂,速生杨木木粉(简称木粉)为填料,无铅复合稀土为热稳定剂,制备低发泡木粉/PVC复合材料(WF-PVC)。主要研究内容:
     (1)对AC发泡剂进行了改性研究,并将改性AC发泡剂应用于木粉/PVC复合材料的制备中;
     (2)研究了发泡木粉/PVC复合材料界面改性及其对材料性能的影响;探索了加工过程中几种主要助剂及用量与材料的性能、微观结构之间的关系;
     (3)通过研究发泡调节剂、抗冲击改性剂对低发泡木粉/PVC复合材料熔体流变性能的影响,探索了熔体流变性能与加工性能、材料物理力学性能之间的关系。
     (4)研究了低发泡木粉/PVC复合材料加工工艺与材料性能的关系。
     (5)研究制备了适合低发泡木粉/PVC复合材料的无铅复合稀土热稳定剂,并研究了其对木粉/PVC复合材料热稳定性能及力学性能的影响;
     (6)通过对木粉/PVC复合材料燃烧和热解性能的研究,设计了高效阻燃抑烟剂AMPC,研究了其对木粉/PVC复合材料燃烧性能和力学性能的影响。
     主要成果:
     (1)进行了AC发泡剂的改性研究,使发泡剂分解温度在165~180℃范围内可控,分解的诱导时间缩短到10分钟,与木粉/PVC复合材料的加工温度相适应。本研究中使用改性AC发泡剂1.2份,获得的发泡材料性能较好。
     (2)在木粉/PVC复合材料界面改性研究方面,采用偶联剂(钛酸四丁酯偶联剂、ND1010钛酸酯偶联剂、硅烷偶联剂)、异氰酸酯和NaOH溶液等对木粉进行处理,同时也采用在配方中加入相容剂MAPP的方法,制备低发泡木粉/PVC复合材料,研究界面改性对低发泡木粉/PVC复合材料性能的影响。
     ①采用相同的偶联剂处理木粉,在弹性模量方面,低发泡木粉/PVC复合材料的弹性模量比未发泡的木粉/PVC复合材料降低40%;采用不同偶联剂对木粉进行改性,对低发泡木粉/PVC复合材料的弹性模量影响不明显,低发泡木粉/PVC复合材料的弹性模量,不仅与木粉处理方法有关,还与获得的材料中泡孔结构有关。低发泡木粉/PVC复合材料的冲击强度与未发泡木粉/PVC复合材料相比得到提高,提高的幅度与界面改性处理有关。低发泡木粉/PVC复合材料冲击强度的改善不仅与界面结合有关,还与加工过程的熔体强度、形成的气泡孔形态有关。
     ②在低发泡木粉/PVC复合材料中,采用偶联剂对木粉进行改性处理都能降低复合材料的密度,其中,用钛酸四丁酯偶联剂处理粒径为80~100目木粉,使低发泡木粉/PVC复合材料密度最低达到1.02g/cm~3,与用未改性木粉制备的低发泡木粉/PVC复合材料密度1.21g/cm~3相比明显降低,此时材料冲击强度明显提高。
     ③不同的木粉改性方法,影响低发泡木粉/PVC复合材料加工过程中熔体粘度。与采用未改性木粉填充的体系相比,除了用钛酸酯偶联剂ND1010改性木粉的体系熔体粘度增加之外,其他改性方法都使体系粘度降低,其中使用MAPP改性的低发泡木粉/PVC复合材料熔体粘度降低最明显。
     (3)低发泡木粉/PVC复合材料成型技术有自身的特殊性。低发泡木粉/PVC复合材料的加工对原料、配方、挤出设备、模具等生产工艺都有特殊要求,影响发泡的因素较多。本研究使用实验室自行研制开发的SJSZ50/105锥形双螺杆挤出设备,挤出机机筒为四段控温。采用发泡模具和多段冷却真空定型装置。由于PVC树脂、木粉及发泡剂都是对温度敏感性材料,使低发泡木粉/PVC复合材料加工生产技术的难度增加。各种技术参数的设定与选用的生产设备、使用的原料有直接关系。本研究中挤出机机筒温度设定在150~175℃范围内,挤出压力控制在17MPa以上,选用SG5型PVC树脂,控制木粉的含水率在1%以下,加入适量发泡调节剂ZB-530。有待于进一步解决的问题是设备运行一定时间后出现的炭化现象。
     (4)制备了适合低发泡木粉/PVC复合体系的复合稀土热稳定剂
     以无毒硬脂酸镧为主稳定剂,采用正交实验设计得到了复合稀土稳定剂的最优基础配方。该稳定剂与季戊四醇、有机锡稳定剂之间有协同作用。自行开发设计的复合稀土稳定剂LS具有无毒及透明性,在低发泡木粉/PVC复合材料配方中使用该稳定剂10份,热稳定效果较好,同时能提高材料的力学性能,尤其在改善低发泡木粉/PVC复合材料冲击性能方面效果显著。
     (5)研究了木粉/PVC复合材料的阻燃抑烟性能。采用锥形量热仪分析、热重分析和热裂解-气相色谱-质谱分析(Py-GC-MS)手段揭示了木粉/PVC复合材料中木粉与PVC之间相互作用关系;研究了金属氧化物CuO、La_2O_3对木粉/PVC复合材料燃烧和热解以及阻燃抑烟性能的影响;制备了高效、无毒复合阻燃抑烟剂AMPC,研究了其对材料燃烧性能的影响。
     ①木粉/PVC复合材料的燃烧和热解过程是复杂的。在木粉/PVC复合材料燃烧和热解过程中,木粉和PVC之间存在相互作用,其中,PVC促进了木粉的热解,木粉又推迟了PVC的降解过程,同时,木粉促进了PVC热解过程的交联成炭,提高体系成炭量。木粉/PVC复合材料的热降解行为,具有更多的PVC材料降解的特征。与PVC材料燃烧过程相比,木粉/PVC复合材料燃烧过程中平均热释放速率(av-HRR)和总热释放(THR)分别降低44%和9.2%,同时,总烟产量(TSP)和平均比消光面积(av-SEA)分别下降25.8%和29.9%,可见木粉的加入对PVC材料燃烧过程中的热释放和烟释放有抑制作用。
     ②将木粉/PVC复合材料在500℃热裂解,对其热解产物进行Py-GC-MS分析。结果表明:木粉的加入使PVC热解产物的组分发生了明显变化。与PVC热裂解组分相比,HCl的释放量降低了59.7%,脂肪族化合物含量从2.49%增加到38.58%,芳香族化合物含量的比例下降96.5%,进一步解释了木粉/PVC复合材料在燃烧过程中烟释放量降低的主要原因。热裂解过程产生的含氯化合物和多环化合物这类有害物质含量明显降低,减少了木粉/PVC复合材料燃烧对人体健康和环境的危害。同时也发现在木粉/PVC复合材料中,由于木粉的存在,推迟了PVC的热解过程,改变了PVC热解途径,使其主要向着生成交联中间体,促进交联成炭的方向进行。
     ③金属氧化物CuO和La_2O_3对木粉/PVC复合材料均有阻燃作用,在燃烧和热解过程中均能增加成炭量。CuO使木粉/PVC复合材料燃烧过程中热释放速率(HRR)、总热释放(THR)、烟释放速率(SPR)、总烟产量(TSP)等参数下降显著,表现出明显的阻燃与抑烟效果。
     ④合成的新型阻燃抑烟剂AMPC能显著促进复合材料热解挥发性产物的充分燃烧,明显降低木粉/PVC复合材料燃烧时的烟释放量。AMPC的阻燃机理为凝聚相阻燃机理。木粉含量为30%~70%的木粉/PVC复合材料,用5份AMPC对其进行阻燃处理,总烟释放与未阻燃处理材料相比降低幅度在39.1%~57.4%。单位质量的一氧化碳产量降低37.5%。AMPC具有无毒、添加量少、抑烟效果显著的特点。
Low Foaming wood-flour/PVC composites(WF-PVC) was prepared by crust foaming extrusion of the mixture of wood-flour as filler,poly(vinyl chloride)(PVC) as matrix, modified AC as foaming agent and rare-earth stabilizer using a SJSZ50/105 conical twin screw extruder.The study was carried out in the aspects as follows:
     (1) The modification of AC foaming agent
     (2) The interracial modification of foaming wood-flour/PVC composites and the effect of interracial modification on properties of composites
     (3) The influence of the additives on micro-morphology and properties of foaming wood-flour /PVC composites.The effects of foaming control agent ZB-530 and impact modifier ACR and CPE on rheological properties of the low foaming wood-flour/PVC composites as well as the relationship between rheological properties,processing and mechanical properties of foaming wood-flour/PVC composites were studied.
     (4) The relationship between the processing and properties of foaming wood-flour/PVC composites.
     (5) Composite lead-free rare-earth stabilizer was prepared and its influence on thermal stability of PVC and WF-PVC composites was studied.
     (6) The properties of fire-retardancy and smoke-suppression of WF-PVC composites were studied and a new fire retardant for WF-PVC was synthesized.
     Main research results of this study are as follows:
     (1) AC foaming agent was modified to apply to WF-PVC composites.The results showed that the induction time of modified AC foaming agent was shortened to 10min and the decomposition temperature can be controlled in the range from 165℃to 180℃,which is consistent with the processing temperature of foaming wood-flour/PVC composites.Improved properties were obtained when added this modified AC foaming agent 1.2phr to the formulation of foaming wood-flour/PVC composites.
     (2) The effects of interfacial modification on the properties of low foaming wood-flour /PVC composites were studied using coupling agents(tetrabutyl titanate,ND 1010 titanate coupling agent,silane coupling agent,isocyanate) and sodium hydroxide solution and interracial compatibillizer MAPP.The results are as follows:
     ①There is difference between foaming and non-foaming wood-flour/PVC composites in flexural modulus.Flexural modulus of foaming wood-flour/PVC composites was decreased 40%compare with that of non-foaming composites when using the same treating agent to modify wood-flour.Flexural modulus have little changed when treated wood-flour with different treating agent for the same type of composites.Impact strength of foaming wood-flour /PVC composites was not only related to the treating agent but also affected by the cell morphology.Compare with non-foaming wood-flour/PVC composites,the impact strength of foaming wood-flour/PVC composite was enhanced and the change range was related to the interfacial modification of foaming wood-flour/PVC composites.Meanwhile,the impact strength was also affected by the melt strength and cell morphology.
     ②Apparent density of low foaming wood-flour/PVC composites was decreased when using treated wood-flour in composites.The lowest apparent density among all samples was obtained when wood-flour was treated using tetrabutyl titanate and particle size is 80~100 mesh in formula.
     ③Wood-flour with different treatment has influence on the melt viscosity of low foaming wood-flour/PVC composites.In the study,compare with the system of no-treated wood-flour,the melt viscosity of samples with treated wood-flour decreased.Besides the sample,in which wood-flour was treated with titanate coupling agent ND1010,the melt viscosity was increased.Melt viscosity of the sample was decreased most significantly in all samples when treated wood-flour with MAPP
     (3) The processing technology of low foaming wood-flour/PVC composites has its own characteristics.Compared with non-foaming wood-flour/PVC composites,the technique of the raw materials and formulation design,technology and equipment in the process of foaming wood-flour/PVC composites extrusion has special technology requirement.More factors affect the foaming process and the properties the product.In this research,the extrusion equipment SJSZ50/105 conical twin screw extruder was designed and assembly by our laboratory. Because of high temperature sensitivity of PVC,wood-flour and foaming agent decomposition temperature,all which made the producing technology of low foaming wood-flour/PVC composites becoming more difficult.Some deficiencies and questions such as the carbonization phenomenon when the equipment operating continuous has no avoided,that require further study.
     (4) Lead-free rare-earth thermal stabilizer was prepared which are suitable for foaming wood-flour/PVC composites.The orthogonal test design was adopted to study the optimal formula of composite lead-free rare-earth stabilizer based on rare earth stearate.Results showed that synergistic effect occurred between composite stabilizer and pentaerythritol or organotin stabilizer.Composite rare-earth stabilizer LS was prepared which is nontoxic, excellent in transparency and good thermal stability was obtained when used this stabilizer about 10phr in foaming wood-flour/PVC composites formula.Meanwhile,mechanical properties of low foaming wood-flour/PVC composites,especially in impact properties,were improved obviously when LS was used.
     (5) Fire-retardancy and smoke-suppression of wood-flour/PVC composites was investigated.The results revealed that there occurs the relationship between wood-flour and PVC in composites using cone calorimeter testing,TGA and Py-GC-MS analysis.The effects of different metal oxides CuO and La_2O_3 on the properties of combustion and degradation of wood-flour/PVC composites were investigated.High effective fire retardant AMPC was synthesized and applied to the formula of wood-flour/PVC composites.The results are listed in following:
     ①The process of combustion and degradation of wood-flour/PVC composites is complicated.During the combustion and degradation of wood-flour/PVC composites the interaction occurred between wood-flour and PVC,in which decomposition of wood-flour was accelerated and the degradation of PVC was delayed.Meanwhile,residues of wood-flour/PVC composites were improved and the release rate of hydrogen chloride was decreased because of the addition wood-flour to PVC.Thermal degradation of wood-flour/PVC composites has more characteristics of PVC.During combustion of wood-flour/PVC composites average heat release rate(av-HRR),total heat release(THR),total smoke production(TSP) and average specific extinction area(av-SEA) was decreased 44%,9.2%,25.8%and 29.9%,respectively, compare to the burning of PVC.Therefore,the addition of wood-flour to PVC could obviously inhibit the heat release and smoke release.
     ②The results of Py-GC-MS analysis at 500℃showed that the thermal degradation products of wood-flour/PVC composites were different from that of PVC.The yields of HCl and aromatic compounds decreased 59.7%and 96.5%,and aliphatic compounds increased from 2.49%to 38.58%.This further explained the reason that smoke release decreased obviously during the combustion of wood-flour/PVC composites.It was found that the degradation process of PVC was delayed by the addition of wood-flour and the path of PVC degradation was in the direction of forming cross-linked intermediates,promoting charring.
     ③Metal oxides CuO and La_2O_3 play the role of flame-retardant in wood-flour/PVC composites and promote charring during combustion and degradation.Parameters,heat release rate(HRR),total heat release(THR),smoke production rate(SPR) and total smoke production (TSP),obtained from cone calorimeter testing were decreased obviously by the addition of CuO to wood-flour/PVC composites.CuO is an effective fire-retardant which is effective in smoke suppression.
     ④A novel fire retardant AMPC was synthesized which significantly promotes the complete combustion of the volatile components of the pyrolysis products of the wood-flour /PVC composites and made smoke release decreased obviously.The results showed AMPC is functioned in the condensed phase.When 5 phr AMPC was added to the formula of wood-flour/PVC composites with wood-flour content of 30%and 70%,total smoke production was decreased 39.1%and 57.4%respectively compare with the control(no AMPC).
引文
[1]卜宪华,周南桥,朱文莉.PVC木塑复合材料界面改性[J].塑料科技,2006,34(4):58-62.
    [2]W.Chetanachan,D.Sookkho,W.Sutthitavil.PVC Wood:A new look in construction[J].Journal of vinyl &additive technology,2001,7(3):134-136.
    [3]李思远,杨伟,杨鸣波.木塑复合材料挤出成型工艺及性能的研究[J].塑料工业,2003,11:22-24.
    [4]H.Jiang,P.Kamdem.Development of poly(vinyl chloride)/wood composite a literature review[J].Journal of vinyl &Additive technology,2004,10(2):59-69.
    [5]陈广汉,陈福林,雷彩红.改性木粉/复合材料的研究进展[J].塑料.2006,35(4):1-6.
    [6]秦特夫.改性木塑复合材料界面相容性的途径[J].世界林业研究.1998,(3):46-51.
    [7]黄泽雄.木塑复合材料的发展趋势[J].国外塑料,2003,21(2):10-13.
    [8]赵水生,薛平,朱复华,等.木塑复合材料的研究进展[J].塑料制造,2006,6:67-71.
    [9]蒋洋,赵永生,刘素梅,等.木纤维塑料复合材料[J].新型建筑材料,2003,9:23-25.
    [10]薛平,贾明印,王哲,等.PVC/木粉复合材料挤出发泡成型的研究[J].工程塑料应用,2004,32(12):66-70.
    [11]L.M.Matuana,C.B.Park,J.J.Balatinecz.Cell morphology and property relationships of microcellular foaming pvc/wood-fiber composites[J].Polymer engineering and science,1998,38(11):1862-1872.
    [12]向帮龙,管蓉,杨世芳.微孔发泡机理研究进展[J].高分子通报,2005,6:7-15.
    [13]傅志红,唐少炎,王菊槐,等.微孔塑料挤出成型的研究[J].塑料,2005,34(1):77-80.
    [14]陈志俭,刘廷华.PVC颗粒形态及其对制品力学性能的影响[J].中国塑料,2003,17(10):33-35.
    [15]L.M.matuana,C.B.Park,J.J.Balatinecz.CharacterizationofmicrocellularfoamingPVC/cellulosic-fibre composites[J].Cell.Plast,1996,32:449-452.
    [16]L.M.Matuana.Processing and cell morphology relationships for microcellular foaming PVC/Wood fiber composites[J].Polymer engineering and science,1997,37(7):246-252.
    [17]H.Lin,S.Minda,Z.Chinoen.Mechanical characterization of microcellular fnaming PVC:/woodflour composites[J].Polym Research,2001,8:241.
    [18]L.M.Matuana,F.Mengloglu.Manufacture of Rigid PVC/Wood-Flour composites foaming using moisture containted in wood as foaming[J].Journal of Vinyl Additive Technology,2002,8(4):264-270.
    [19]F.Mengeloglu,L.M.Matuana.Foaming of rigid PVC/wood-flour composites through a continuous extrusion process[J].Journal of vinyl &Additive technology,2001,7(3):142-148.
    [20]B.L.Shah,L.M.Maturant.Online measurement of rhologican properties of PVC/wood flour composites [J].Journal of vinyl &additive technology,2004,10(3):121-128.
    [21]Matnana L.M,Mengelogln F.Microcellula foaming of impact-modlifier in rigid PVC wood-fiber composites[J].Journal of Vinyl Additive Technology 2001,7(2):67-75.
    [22]D.Rodrigue,S.Souici.Effect of wood powder on polymer foam Nucleation[J].Journal of Vinyl Additive Technology,2006,10:1002-1008.
    [23]G.Guo,G.M.Rizvi,C.B.Park.Critical processing temperature in the manufacture of fine-celled plastie/wood fiber composites foams[J].Journal of Applied Polymer Science,2004,91:621-629.
    [24]G.M.Rizvi,C.B.Park,W.S.Lin,et al.Exoansion mechanisms of plastic/wood-flour composites foams with moisture dissolved gaseous volatiles and undissolved gas bubbles[J].Polymer Engineering and Science,2003,43(7):1347-1360.
    [25]F.Mengeloglu,L.M.Matuana,A.K.Juliu.Effect of impact modifiers on the properties of Rigid PVC/wood-fiber composites[J].Journal of Vinyl and AdditiveTechnology,2000,6(3):153-157.
    [26]O.Virginia,Guffey,B.S.Amiel.PVC/Wood flour cocmposites compatibilized with chlorinated polyethxylene[J].Journal of Vinyl and Additive Technology,2002,8(4):259-263.
    [27]国明成.PVC/木纤维微孔发泡技术的研究[J].塑料,2002,31(4):21-25.
    [28]苑会林,李运德,闫雪晶.木粉填充聚氯乙烯发泡体系的力学性能研究[J].聚氯乙烯,2002,(6):29-32.
    [29]姚祝平.微发泡硬质PVC/术粉体系型材的挤出[J].上海塑料,2002,(3):27-29.
    [30]王澜,董洁,卜雅萍.聚氯乙烯/稻壳粉木塑发泡制品的研究[J]塑料,2005,34(5):1-7.
    [31]秦特夫.改善木塑复合材料界面相容性的途径[J].世界林业研究,1997,11(3):46-50.
    [32]王清文,王伟宏,郭垂根,等.木塑复合材料与制品[M].北京:化学工业出版社,2007:73-75.
    [33]钟鑫,薛平,丁筠.木塑复合材料性能研究的关键问题[J].中国塑料,2003,31(1):67-70.
    [34]许民,高延明,王克奇.改性剂对木塑复合材料力学性能影响的研究[J].林业科技,2006,31(1):32-35.
    [35]M.N.Ichazo,C.Albano,J.Gonzalez,et al.Polypropylene/wood flour composites:treatments and properties[J].Composite Structures,2001,54:207-214.
    [36]D.Harper,M.Wolcott.Interaction between coupling agent and lubricants in wood/polypropylene composites[J].Composites:Part A,2004,(35):385-394.
    [37]薛平,王哲,贾明印,等.木塑复合材料加工工艺与设备的研究[J]人造板通讯,2004,11:9-13.
    [38]B.L.Shah.Novel coupling Agent for PVC/wood flour composites[J].Journal of vinyl &additive technology,2005,11:160-165.
    [39]D.Maldas,B.V.Kokta.Performance of hybrid reinforcements in PVC composites.Ⅱ:Use of the surface-modified moca and different cellulosic materials as reinforcements[J].Journal of Vinyl Technology,1993,15:38-44.
    [40]H.Jiang,P.Kamdem.Effects of copperAmine treatment on mechanical properties of PVC/Woodflour composites[J].Journal Vinyl Additive Technology,2004,10:70-80.
    [41]熊传溪,周伟,鲁圣军,等.木粉/PVC复合材料的制备及其性能[J].化学建材,2005,1(6):42-45.
    [42]J.L.Garnett,Looeck.Additive effects common to radiation grafting and wood plastic composite formation[J].Radiat.Phys.Chem.,1996,48(1):217-230.
    [43]王强,曹爱丽,黄积涛,等.苯乙烯(St)/甲基丙烯酸甲酯(MMA)/丙烯睛(AN)三元接枝共聚塑合木 研制[J].林业科学,1999,35(2):8286.
    [44]E.H.Bakrajia,N.Salman,H.Alkassiri.Gamma-radiation-induced wood-plastic composites from syrian tree species[J].Radiation Physics and Chemistry,2001,61:137-141.
    [45]苑会林,李军.表面处理对木粉增强PVC发泡复合材料性能的影响[J].塑料应用,2003,31(8):22-25.
    [46]V.Hristov,M.Krumova,G.Michler.The influence of excess coupling agent on the microdeformation processc and mechanical properties of poly(propylene)/wood flour composites[J].Macromolecular Materials and engineering,2006,291,677-683.
    [47]陈智修.改性剂CPE在PVC木塑复合材料中的应用[J].聚氯乙烯,2004,5:19-20.
    [48]董炎明,张海良.高分子科学教程[M].北京::科学出版社,2004.165-170.
    [49]寇俊莉,林彦军,王明明.无毒PVC热稳定剂的研究现状与发展趋势[J].中国氯碱,2006,2:1-5.
    [50]R.根赫特,H.米勒.塑料添加剂手册[M].北京:化学工业出版社,2000:221-257.
    [51]方献泉,潘学松.液体钙/锌PVC复合热稳定剂[J].塑料助剂,2005,2:31-34.
    [52]Hirohisa,Y.H.Goto,Y.Higaki,et al.Synergetic effect of dimerized pentaerythritol esters with Synergetic Metal Soap on the Stabilization of Poly(vinyl)chloride)[J].Journal of Applied Polymer Science,2001,79:2029-2037.
    [53]E.Ureta,M.L.Cantu.Zinc Maleate and Zinc Inthranilate as thermal Stabilizers for PVC[J].Journal of Applied Polymer Science,2000(9):2603-260.
    [54]林美娟,章文贡.新型高效无毒的钙皂/锌皂热稳定剂的研究[J].聚氯乙烯,2000,(1):35-37.
    [55]刘庆丰,严海彪.PVC无毒热稳定剂的研究和发展[J].塑料助剂,2005,(4):1-5.
    [56]张洪江.PVC无毒钙锌复合热稳定剂研究[D].天津:天津大学,2003.
    [57]桂客.PVC用水滑石-锌-稀土复合热稳定体系的研究[D].长沙:中南大学,2005.
    [58]赵劲松,付志敏,王栋.稀土复合稳定剂在PVC加工中的应用及稳定机理探讨[J].聚氯乙烯,2002(3):30-34.
    [59]杨占红.稀土稳定剂对聚氯乙烯热稳定性能的影响[J].稀土,1999,(2):61-63.
    [60]高田幸人,国部恭一郎.ヒニん树脂安定法化[P].日本特许公报,昭1971:46-40421.
    [61]宇野次生,野濑寿.化ヒニん树脂组成物[P].日本特许公报,昭1982:5740539-40421.
    [62]P.Ducros.Organo rare earths:the new comers in the organometallic world[J].J Less-commonMet,1985,111:37-42.
    [63]王晶,李晶,张庆录,等.稀土复合稳定剂在PVC门窗型材中的应用[J].聚氯乙烯,2002,(3):35-37.
    [64]曾冬铭,许志惠,舒万艮,等.PVC塑料稀土复合热稳定剂的研制[J].稀土,2001,22(1):20-21.
    [65]吴茂英,刘正堂,崔英德.环氧脂肪酸稀土的合成及其对PVC热稳定作用的研究[J].中国塑料,2001,15(7):51-53.
    [66]葛铁军,张汉兴,陈荣华.稀土稳定剂硬质聚氯乙烯中的稳定机理研究[J].沈阳化工学院学报,2001,15(1):43-46.
    [67]杨治伟,王国全,侯宇峰,等.纳米氧化锌/AC复合发泡剂在PP发泡中的应用研究[J].塑料,2003 32(3):25-28.
    [68]陈立军,陈焕钦.活性物质对AC发泡剂性能的影响研究及其活化机理[J].绝缘材料,2005,1:30-32.
    [69]吴俊涛,周琼,甄红宇,等.发泡剂AC的若分解活化机理及影响因素[J].橡胶工业,1999,46:387-394.
    [70]周琼,王甲坤,吴俊涛,等.AC发泡剂的分解活化机理及其突发性的表征[J].中国塑料,1999,13(5):78-82.
    [71]徐世忠,治学,黄志明,等.发泡剂在PVC中的分解动力学[J].中国塑料,1995,9(5):19-25.
    [72]刘龙敏,黎四芳,蔡兰珍.发泡剂ADC改性的研究现状和发展趋势[J].塑料,2002,31(3):22-25.
    [73]周月明,徐洪耀,张兴智.新型用复合发泡剂研究[J].安徽大学学报(自然科学版),2005,29(3):70-75.
    [74]周琼,于涛,郑鸿,等.典型放热型、吸热型和吸-放热型发泡剂热分解特性的研究[J].高分子材料科学与工程,2000,6(5):137-139.
    [75]符若文,李谷,冯开才.高分子物理[M].北京:化学工业出版社,2005:292-294.
    [76]皮红,郭少云.PVC阻燃抑烟研究进展[J].聚氯乙烯,2001,4:28-33.
    [77]A.Ballistreri,G..Montaudo,C.Puglisinet,et al.Mechanism of smoke suppression by metal oxides in PVC[J].Journal of Polymer Science:Polymer Chemistry Edition,1991,19:1397-1408.
    [78]P.A.Cusack,M.S.Heer.Zinc hydroxylstannate as an alternative synergist to antimony trioxide in polymer resins containing halogenated flame retradts[J].Polymer Degradation and Stability,1997,158:229-237.
    [79]P.Catty,S.White.Smoke-suppression in plasticized chlorinated poly(vinyl chloride)[J].Polymer Degradation and Stabilitily,1999,63:465-468.
    [80]H.Pi,Xiong Y,Guo S.Y,The kinetic studies of elimination of HCI during thermal decomposition of PVC in the presence of transition metal oxides[J].Polymer Plastics Technology and Engineering,2005,44(2):275-288.
    [81]周盾白,贾德民,黄险波.聚氯乙烯阻燃抑烟研究进展[J].聚氯乙烯,2006,4,1-6.
    [82]R.M.Lum.MoO_3 additives for PVC:A study of the molecular interactions[J].Journal of Application Polymer Science,1979,23(4):1247-1263.
    [83]W.Kroenke.Metal smoke retarders for poly(vinyl chloride[J].Journal Application Polymer Science,1981,26(4):1167-1190.
    [84]R.P.Lattimer,W.J.Kroenke.The functional role of molybdenum trioxide as a smoke retarder additive in rigid poly(vinyl chloride)[J].Journal Application Polymer Science,1981,26(4):1191-1210.
    [85]R.P.Lattimer,W.J.Kroenke,R.G.Getts.Effects of copper and molybdenum oxides on the pyrolysis of model compounds of poly(vinyl chloride)[J].Journal Application Polymer Science,1984,29(12):3783-3794.
    [86]W.J.Kroenke,R.P.Lattimer.The effects of a synergistic molybdenum-copper smoke retarder additive during the pyrolysis and combustion of rigid poly(vinyl chloride) compounds[J].Journal Application Polymer Science,1986,32(2):3737-3747.
    [87]B.Li,J.Wang,Y.Ding.Investigation of thermal degradation,flame retardance and smoke suppression of rigid PVC by using cone calorimeter[J].Polymer materials Science and Engineering 1995;15(5):124-127.
    [88]B.Li.Influence of polymer additives on thermal decomposition and smoke emission of poly(vinyl chloride).Polymer Degradation and Stability,2003,82:467-476.
    [89]A.Yasuhara,Y.Tanaka,T.Katami,et al.The role of metals in dioxin formation from combustion of newspapers and polyvinyl chloride in an incinerator.Chemosphere,2005,58:891-896.
    [90]J.Wang,B.Li.An XPS investigation of thermal degradation and charring in combustion of PVC and PVC/Cu_2O/MoO_3-the synergy between MoO_3 and Cu_2O in PVC.Polymer Degradation and Stability,1999,63:279-285.
    [91]M.Geoffrey,Anthony.Kinetic and chemical studies of ppolymer cross-linking using thermal gravimetry and hyphenated methods.Degradation of polyvinylchloride[J].Polymer degradation and stability,1999,64:353-357.
    [92]W.H.Starnes Jr,R.D.Pike,J.R.Cole.Cone calorimetric study of copper--promoted smoke suppression and fire retardance of poly(vinyl chloride)[J].Polymer Degradation and Stability,2003,82:15-24.
    [93]R.Knuemann,H.Bockhorn.Investigation of the kinetics of pyrolysis of PVC by TG-MS analysis[J].Combustion Science Technology,1994,101(1-6):285-299.
    [94]R.Miranda,Rakdel,C.Roy,et al.Vacuum pyrolysis of PVC I.Kinetic study[J].Polymer Degradation and Stability,1999,64:127-144.
    [95]R.Miranda,R.Rakdel,H.Darmstadt,et al.Vacuum pyrolysis of PVC If:Product analysis[J].Polymer Degradation and Stability,1999,66:107-125.
    [96]李斌,王建祺.CuO对硬质PVC热解、阻燃和抑烟的锥形量热仪(CONE)研究[J].高分子材料科学与工程,1999,15(5):124-127.
    [97]石西昌,赵瑞荣,蒋汉瀛.PVC中金属氧化物的抑烟规律[J].中国塑料,1995,9(4):40-42.
    [98]A.Ballistreri.Mechanism of smoke-suppression by metal oxides in PVC[J].Journal of Polymer Science,1980,(18):1397-1402.
    [99]王元宏.阻燃剂化学及其应用[M].上海:上海科学技术文献出版社,1988:26-32.
    [100]王建荣,唐小勇,欧育湘.锡酸锌对软质聚氯乙烯的阻燃和抑烟作用[J].中国塑料,2003,17(4):76-79.
    [101]屈红强,武伟红,焦运红,等.氧化锌和氢氧化物对软聚氯乙烯阻燃性能的影响[J].化工学报,2006,57(5):163-167.
    [102]郭栋,王建祺.八铝酸蜜胺、Cu_2O与Fe_2O_3对PVC协同抑烟作用的研究[J].高分子材料科学 与工程,2001,17(3):87-91.
    [103]皮红.聚氯乙烯/阻燃抑烟体系热分解过程中结构演变及阻燃抑烟机理的研究[D].成都:四川大学,2003.
    [104]田春明,屈红强.金属配合物对软聚氯乙烯的阻燃消烟作用[J].中国塑料,2003,17(8):75-78.
    [105]朱新生,石小丽,蒋雪璋.添加剂对PVC热稳定性和阻燃抑烟性能影响的机理分析[J].聚氯乙烯.2006,4:19-24.
    [106]S.W.Bigger,J.Scheid,G.Caminoc.An investigation of the kinetics of cellulose degradation under non-isothermal conditions[J].Polymer Degmiation and Stability,1998,62:3340-3349.
    [107]B.Garba.Effect of zinc borate as flame retardant formulation on some tropical woods.Polymer Degradation and Stability,1999,64:517-522.
    [108]胡云楚.硼酸锌和聚磷酸铵在木材阻燃中的成炭作用和抑烟作用[D].长沙:中南林业科技大学,2006.
    [109]周新华.生物质材料热解实验及动力学分析[D].阜新:辽宁工程技术大学,2006.
    [110]B.McGhee,F.Norton,C.E.Snape et al.The copyrolysis of poly(vinylchloride) with cellulose derived materials as a model for municipal waste derived chars[J].Fuel,1995,74(1):28-31.
    [111]Y.Matsuzawa,M.Ayabe,J.Nishino.Acceleration of cellulose co-pyrolysis with polymer[J].Polymer Degradation and Stability,2001,71:435-444.
    [112]白晓艳,王清文,房轶群,等.金属氧化物对木粉/PVC复合材料抑烟阻燃性能的影响.第一届全国生物质材料科学与技术学术研讨会论文集.北京:2007,8.170-174.
    [113]房轶群,白晓艳,王清文,等.硼酸锌对木粉/PVC复合材料阻燃抑烟及力学性能的影响第一届全国生物质材料科学与技术学术研讨会论文集.北京:2007,8.175-179.
    [114]黎继群,吴英瑜.ADC发泡剂发气量测定方法的改进[J].中国氯碱,2001,2:33-35.
    [115]周兆良.偶氮二甲酰胺的改性[J].氯碱工业,2000,2:35-37.
    [116]黄锐,曾邦录.塑料成型工艺学[M].北京:中国轻工业出版社,1996:14-19.
    [117]娄庆.核-壳结构ACR增韧UPVC的加工工艺-结构-性能关系的研究[D].北京:北京化工大学,2001.
    [118]魏文杰.PVC抗冲击改性剂ACR树脂的结构、性能及应用[D].北京:北京化工大学,2004.
    [119]S.Masataka,H.Hirokazu,T.Taniguchi,et al.Rheological properties of poly(vinyl chloride)/plasticizer systems-relation between sol-gel transition and elongational viscosity[J].Rheol Acta,2007,46:957-964.
    [120]王亚明,申长雨,杨广军,等.我国硬质PVC低发泡挤出制品的开发概况[J].塑料科技,2000,(1)37-39.
    [121]C.B.Bucknall,D.Clayton.Rubber toughening of plastics[J].Material Science,1972,7:1443-1452
    [122]陈运根,肖方一,李燕霞,等.高分子改性剂ACR在RPVC低发挤出制品中的应用[J].塑料工业,2003,31(12):52-54.
    [123]李国立,陈向锋,刘敏江,等.稀土热稳定剂在PVC/ACR中应用的研究[J].塑料制造, 2006,4:69-73.
    [124]Wlokam,H.Rehage,H.C.Flemming,et al.Rheological properties of viscoelastic biofitm extracellular polymeric substances and comparison to the behavior of calcium alginate gels[J].Colloid Polymer Science,2004,282:1067-1076.
    [125]何本桥,张玉红,李玉林,等.共混物中聚氯乙烯凝胶化度的测试[J].湖北大学学报(自然科学版),2000,22(4):367-370.
    [126]Sugimotom,Hidah,T.Taniguchi,et.al.Rheological properties of poly(vinylchloride) /plasticizer systems--relation between sol-gel transition and elongational viscosity[J].Rheol Acta,2007,46:957-964.
    [127]G.M.Rizvi,C.B.Park,L.M.Matuana.Foaming of PS/wood fiber composites using moisture as a boleing agent[J].Polymer Engineering Science,2000,40(10):2124-2132.
    [128]敖欢,刘廷华.木塑复合材料发泡成型技术研究进展[J].塑料工业,2005,33(9):1-4.
    [129]H.Zhang,G.M.Rizvi,C.B.Pack.Development of an extrusion for producing fine-celled HDPE/wood-fiber composites foams using CO2 as a blowing agent[J].Advances in polymer technology,2004,23(4):263-276.
    [130]G.M Rizvi,R.Pop-lliev,C.B.Park.A novel system design for continuous processing of plastic/wood-fiber composites foams with improved cell morphology[J].Journal of Cellular Plastic,2002,38(5):367-383.
    [131]陈小波.Celuka法硬质PVC低发泡板材的挤出[J].聚氯乙烯,1999,4:43-45.
    [132]黄锐.塑料成型工艺学(第二版)[M].北京:中国轻工业出版社,2007,243-245.
    [133]王守鹏.硬质PVC塑料门窗异型材的生产技术[J].聚氯乙烯,1995(1):23-25.
    [134]Y.Matsuzawa,M.Ayabe,J.Nishino.Acceleration of cellulose co-pyrolysis with polymer[J].Polymer Degradation and Stability,2001,71:435-444.
    [135]王清文.木材阻燃工艺学原理[M].哈尔滨:东北林业大学出版社,2000,130-154.
    [136]丁筠,武志怡,薛平,等.纤维表面处理对PVC/木纤维复合材料性能的影响[J].工程塑料应用2004,32(9):29-31.
    [137]符若文,李谷,冯开才.高分子物理[M].北京:化学工业出版社,2005:142-146.
    [138]孔展,张卫勤,方吕,等.PVC/木粉复合材料的性能研究[J].塑料工业,2005,33(10):17-20.
    [139]李凯夫,戴东花,谢雪甜,等.偶联剂对木塑复合材料界面相容性的影响[J].工程塑料应用,2003,31(8):26-59.
    [140]周持兴.聚合物流变实验与应用[M].上海:上海交通大学出版社,2003:52-56.
    [141]郝子明.PVC结构的不稳定缺陷及其稳定化改性[J].塑料助剂,2004,(3):36-41.
    [142]蔡伟龙.PVC硬脂酸稀土热稳定剂的合成、复配及应用研究[D].福州:福州大学,2004.
    [143]N.M.Stark,L.M.Matuana.Photostabilization of wood flour filled HDPE composites.In:Proc.of ANTEC,CA,vol 2.Society of Plastic Engineers.SaFrancisco:2002,2209-2213,
    [144]陈鸿熙.有机锡类PVC热稳定剂及其协同作用的探讨[J].广西化工,2001,30(1):13-15.
    [145]B.Li.A study of thermal degradation and decomposition of rigid poly(vinyl chloride) with metal oxides using thermogravimetry and cone calorimetry[J].Polymer Degradation and Stability,2000,68(2):179-182.
    [146]A.A.Basfar.Effect of various combinations of fiame-retardant fillers on flammability of radiation cross-linked poly(vinyl chloride)(PVC)[J].Polymer Degradation and Stability,2003,82:333-340.
    [147]王清文,李坚.用CONE法研究木材阻燃剂FRW的阻燃机理[J].林产化学与工业,2004,24(2):29-34.
    [148]S.Soares,G.Camino,S.Levchik.Effect of metal carboxylates on the thermal decomposition of cellulose[J].Polymer Degradation and Stability,1998,62:25-31.
    [149]S.M.Grimes,H.Lateef,A.J.Jafari,et al.Study of the effects of copper,Copper(Ⅱ)Oxide and Copper(Ⅱ)chloride on the thermal degradation of poly(vinyl chloride )[J].Polymer Degradation and Stability,2006,91:3274-3280.
    [150]B.Li.Influence of polymer additives on thermal decomposition and smoke essission of pol(vinyl chloride)[J].Polymer Degradation and Stability,2003,83:467-476.
    [151]Y.Matsuzawa,M.Ayabe,J.Nishino.Acceleratoin of cellulose co-pyrolysis with polymer[J].Polymer Degradation and Stability,2001.71:435-444.
    [152]H.E Yang,R.Yan,H.E Chen,et al.Characteristics of hemicelluloses,cellulose and lignin pyrolysis [J].Fuel,2007,86:1781-1788.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700