多天线多用户通信系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在对无线通信系统的研究当中,多天线技术凭借其较高的频谱效率和多样化的实现方案,近年来引起了人们日益广泛的观注。目前单用户技术发展的已经较为成熟,而通过基站多天线来获取多用户空间复用增益正成为现在开发的热点。本文主要研究了多天线多用户系统各种有效的实现方案,并对其上/下行链路的通信性能进行了详细的分析,同时获得了以下的创新成果:
     首先,针对引入多用户空间复用能力的多天线系统下行链路,提出了一类基于不同拥塞线性约束条件的预编码算法,并证明了此类算法同现有的基于迫零块对角化和最大SLR准则的线性预编码方案之间的等价性。然后,在此基础之上我们还推导出了其最优发射权值的闭式表达式,从而有效的避免了实现现有算法所必需的奇异值分解(或广义特征值分解)等运算,显著降低了系统的复杂度。此外,利用上述闭式解,还推导出了不同预编码算法接收信干噪比(信干比)的概率密度函数,进而得到了相应的性能解析式。
     其次,由于发射端获得信道状态信息(CSI)的多少决定了多天线系统的通信性能,所以对于需要通过反馈来获得下行CSI的系统,我们研究了基于码书量化反馈的线性预编码方案。这里首先分析了基于用户信道方向信息的最小拥塞预编码算法,然后在此基础之上,提出了一种基于随机矢量量化码书的有限反馈预编码方案。同传统的迫零算法相比,这种基于最小拥塞的预编码算法具有明显的性能优势。不过由于存在量化噪声不匹配效应,导致了这种直接信道量化算法的性能随着信噪比的增加而出现波动,并且逐渐恶化最终趋近于与迫零体制相同。所以为了提高系统的稳定性,该章还推导出了相应的稳健预编码算法。仿真结果和分析表明,这种稳健算法在保证了相对迫零算法的优势的前提下,其性能随着信噪比的增加仍然会稳定上升,从而有效地提高了系统的稳健性。
     再次,针对用户数量较多的无线网络,研究了借助用户选择技术来提取多用户分集增益的实用算法。首先分析了一种基于广义最小拥塞预编码算法的多用户选择策略,并将其同现有的迫零体制进行了比较。仿真结果表明,该方案能够获得更优的通信性能,并且在保证一定通信质量的基础上,同时支持更多的用户工作,因而更适合在大用户数量的网络中应用。然后,根据以上策略给出了与其相对应的低复杂度实现方案,以及一种基于最大信拥噪比准则的多用户快速选择算法。这两种快速算法能够在获得与穷举搜索算法相接近的性能的同时,显著的降低所需的计算复杂度,从而便于在实际的通信系统中应用。
     最后,研究了采用分集技术时,多天线系统上行链路所能获得的性能。这里为了对抗日益严重的阴影衰落等因素的影响,重点考察了广义分布式天线系统(GDAS)的情况。基于该系统中信道的复合衰落分布形式复杂的特点,我们借用了一种Lognormal变量近似的方法,推导出了使用最大比合并和相干等增益合并时,分集输出信噪比的概率密度函数,并给出了高精度的中断概率和误码率的解析结果。
In the research on wireless communication systems, multiple antenna techniques have attracted extensive attention in recent years, due to their potential for high spectral efficiency and high flexibility. Although the application techniques for single user systems are well developed, it is still an open issue for exploiting the spatial multiplexing gain by using multiple antennas at the basestation (BS). In this dissertation, we investigate various realization strategies for multi-antenna multi-user systems, and analyze the uplink/downlink communication performance specificly. The main contributions of this thesis are as follows:
     Firstly, for the downlink of multiple antenna systems with the ability of multiuser spatial multiplexing, a novel precoding algorithm based on a series of linear constraints on jamming is proposed, and a proof on its equivalence to the linearly precoding schemes of block diagonalization (BD) and signal to leakage ratio (SLR) maximization is also given. Besides, closed-form expressions of the optimal precoding weights of the algorithm proposed are derived, therefore resulting in the remarkable reduction on the complexity of the existed schemes, by avoiding the operations of singular value decomposition (or generalized eigenvalue decomposition). Also, using the results above, we derive the exact probability density function (PDF) of the receiving SINR (SIR), and furthermore the analytical expressions of the performance evaluation metrics.
     Secondly, it is well known that the communication performance of multiple antenna systems highly depends on the amount of channel state information (CSI) known at the basestation. So, for the systems that the downlink CSI is obtained through feedback channel, we investage a precoding scheme based on the limited feedback quantization codebook. Here a minimum jamming precoding algorithm utilizing channel direction information only is derived, and then we present a limited feedback linear precoding strategy based on random vector quantization (RVQ) codebook. Compared with the conventional BD scheme, the algorithm proposed exhibits much higher performance. However, due to the effect of quantization noise mismatch, this improvement fluctuates with the increasing of the SNR, and eventually converges to the BD scheme. To eliminate the impact above, a robust precoding algorithm is also presented. Simulation results show that, this algorithm can ensure the advantage over the BD scheme, and at the same time, maintain the performance while the SNR increasing, therefore improve the robustness of the system.
     Thirdly, we study the multiuser selection strategy for the downlink linearly precoding systems. Here a scheme based on the generalized minimum jamming criterion is considered, and simulation results show that it can obtain better performance compard with the BD algorithm, and more importantly, it can surport much more users at the same time (frequency) slot. Based on the selection scheme above, its fast realization versions are also proposed. The performance of the fast selection algorithms is close to that of the exhaustive search, whereas the reduction in the system complexity is quite large.
     Lastly, we analyze the uplink performance of multiple antenna systems using receiver diversity techniques. Especially, we focus on the situation of the generalized distributed antenna system (GDAS), which can significantly reduce the impact of shadowing in the wireless fading channel. Because of the mathematical complexity of the composite fading in GDAS, here an approximation method is used to derive the PDF of the combining output SNR, and the high precise analytical expressions of outage probability and bit error ratio are also presented.
引文
[1]吴伟陵,牛凯.移动通信原理.北京:电子工业出版社,2005
    [2]Kellerer W and Vogel H J. A communication gateway for infrastructure-independent 4G wireless access. IEEE Communication Magazine,2002, 38(9):1298-1300P
    [3]Ahmadi S. An overview of next-generation mobile WiMAX technology. IEEE Communication Magazine,2009,47(6):84-98P
    [4]Frattasi S and Gimmler A. Potentials and limits of cooperation in wireless communications:toward 4G wireless. IEEE Technology and Society Magazine,2008,27(1):8-12P
    [5]Kan Z, Lin H, Gang L, et al. Beyond 3G evolution. IEEE Vehicular Technology Magazine,2008,3(2):30-36P
    [6]Dinis M and Fernandes J. Provision of sufficient transmission capacity for broadband mobile multimedia:a step toward 4G. IEEE Communication Magazine,2001,39(8):46-54P
    [7]Paulraj A J, Gore D A, Nabar R U, et al. An overview of MIMO communications—a key to gigabit wireless. Proceedings of the IEEE,2004, 92(2):198-218P
    [8]Telatar E. Capacity of multi-antenna gaussian channels. Euro. Trans. Telecommun.,1999,10(6):585-595P
    [9]Foschini G J and Gans M J. On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications,1998,6(3):311-335P
    [10]Foschini G J. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal. Autumn 1996,1(2):41-59P
    [11]杨大成.移动传播环境.北京:机械工业出版社,2003
    [12]Proakis J G.Digital Communications.4th ed.McGraw-Hill,2001
    [13]Gesbert D, Shafi M, Shiu D, et al. From theory to practice:an overview of MIMO space-time coded wireless systems. IEEE Journal on Selected Areas in Communications,2003,21(3):281-302P
    [14]Palomar D P, Cioffi J M and Lagunas M A. Uniform power allocation in 'MIMO channels:a game-theoretic approach. IEEE Transcations on Informations Theory, July,2003,49(7):1707-1727P
    [15]Shiu D and Kahn J M. Power allocation strategies for wireless systems with multiple transmit antennas. Internal report of the University of California, Berkley and Lucent Technologies, July,1998
    [16]Baccarelli E and Biagi M. A water-filling based approach for power allocation for multiple-antenna Rayleigh flat fading systems with partially coherent detection." IEEE 56th Vehieular Technology Conference,2002, VTC2002-Fall,1:92-96P
    [17]Khalighi M A, Brossier J M, Jourdain G V, et, al. Water filling capacity of Rayleigh MIMO channels. IEEE International Symposium on Personal indoor and Mobile Radio Communications, SanDiego, USA,2001,1: 155-158P
    [18]Commission of the European communities. Digital land mobile radio communications-CPST207 Final Report. ECSC-EEC-EAEC,1989
    [19]Zheng J and Rao B D. Capacity analysis of MIMO systems using limited feedback transmit precoding schemes. IEEE Transactions on Signal Processing,2008,56(7):2886-2901P
    [20]Minhua D and Blostein S D. MIMO minimum total MSE transceiver design with imperfect CSI at both ends. IEEE Transactions on Signal Processing,2009,57(3):1141-1150P
    [21]Spencer Q H, Swindlehurst A L and Haardt M. Zero-forcing methods for downlink spatial multiplexing in multi-user MIMO channels. IEEE Trans. Siganl Process.,2004,52(2):461-471P
    [22]Alamouti S M. A simple transmit diversity technique for wireless communications. IEEE J. Select. Areas Commun.,1998,16:1451-1458P
    [23]Kyung S A, Heath R W and Heung K B. Shannon capacity and symbol error rate of space-time block codes in MIMO Rayleigh channels with channel estimation error. IEEE Transactions on Wireless Communications, 2008,7(1):324-333P
    [24]Jafarkhani H. A quasi-orthogonal space-time block code. IEEE Trans. Commun.,2001,49:1-4P
    [25]Tarokh V, Seshadri N and Calderbank A R. Space-time codes for high data rate wireless communications:performance criterion and code construction. IEEE Trans. Inform. Theory,1998,44:744-765P
    [26]Graell A and Tarable A. On the design of space-time trellis codes for transmit-correlated fading channels. IEEE Transactions on Communica-tions,2007,55(1):112-121P
    [27]Foschini G J, et al. Analysis and performance of some basic space-time architecture. IEEE J. Select. Areas Commun.,2003,21(3):303-320P
    [28]Foschini G J, et al. Simplified processing for high spectral efficiency wireless communication employing multi-element arrarys. IEEE J. Select. Areas Commun.,1999,17(11):1841-1852P
    [29]Sezgin A, Jorswieck E A and Costa E. LDC in MIMO Ricean Channels: Optimal Transmit Strategy With MMSE Detection. IEEE Transactions on Signal Processing,2008,56(1):313-328P
    [30]Vishwanath S, Jindal N and Goldsmith A. Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels. IEEE Trans. Info. Th.,2003,49:2658-2668P
    [31]Yu W and Cio J M. Sum capacity of Gaussian vector broadcast channels. IEEE Trans. Info. Th.,2004,50:1875-1892P
    [32]Sharma N and Ozarow L H. A study of opportunism for multiple-antenna systems. IEEE Transactions on Information Theory,2005,51(5):1804-1814P
    [33]Ozdemir O and Torlak M. Opportunistic beamforming over Rayleigh channels with partial side information. IEEE Transactions on Wireless Communications,2008,7(9):3417-3427P
    [34]Minghua X, Yuanping Z and Ha J, et al. Opportunistic beamforming communication with throughput analysis using asymptotic approach. IEEE Transactions on Vehicular Technology,2009,58(5):2608-2614P
    [35]Weingarten H, Steinberg Y and Shamai S. The capacity region of the Gaussian MIMO broadcast channel. Proc. IEEE Int. Symp. Info. Th.,2004, 1:174P
    [36]Erez U and Brink . A lose-to-capaeity dirty paper coding scheme. IEEE Trans. Info. Th.,2005,51:3417-3432P
    [37]Shih L and Hsuan S. Practical vector dirty paper coding for MIMO Gaussian broadcast channels. IEEE Journal on Selected Areas in Communications,2007,25(7):1345-1357P
    [38]Uppal M, Stankovic V and Zixiang X. Code design for MIMO broadcast channels. IEEE Transactions on Communications,2009,57(4):986-996P
    [39]Damico A. Tomlinson-Harashima precoding in MIMO systems:a unified approach to transceiver optimization based on multiplicative Schur-convexity. IEEE Transactions on Signal Processing,2008,56(8): 3662-3677P
    [40]Min H, Shidong Z and Jing W. Analysis of Tomlinson-Harashima precoding in multiuser MIMO systems with imperfect channel state information. IEEE Transactions on Vehicular Technology,2008,57(5): 2856-2867P
    [41]Caire G and Shamai S. On the achievable throughput of a multiantenna Gaussian broadcast channel. IEEE Trans. Info. Th.,2003,49:1691-1706P
    [42]Dimic G and Sidiropoulos N D. On downlink beamforming with greedy user selection:Performance analysis and a simple new algorithm. IEEE Trans. Sig. Proc,2005,53:3857-3868P
    [43]Wong K, Cheng R, Letaeif K B, et al. Adaptive antennas at the mobile and base stations in an OFDM/TDM A system. IEEE Trans. Commun.,2001,49: 195-206
    [44]Ping X, Batalama S N, Pados D A, et al. Multiuser transmit beamforming under total transmit power constraint. IEEE Military Communications Conference (MILCOM),2005,1:393-397P
    [45]Lai-U C, Murch R D. A transmit preprocessing technique for multiuser MIMO systems using a decomposition approach. IEEE Transactions on Wireless Communications,2004,3(1):20-24P
    [46]Spencer Q H, Swindlehurst A L and Haardt M. Zero-forcing methods for downlink spatial multiplexing in multiuser mimo channels. IEEE Trans. on Signal Process.,2004,52(2):461-471P
    [47]Pan Z, Wong K K and Ng T S. Generalized multiuser orthogonal space-division multiplexing. IEEE Trans. on Wireless Commun.,2004,3(6): 1969-1973P
    [48]Wong K K, Murch R D and Letaief K B. A joint-channel diagonalization for multiuser MIMO antenna systems. IEEE Trans. Wireless Commun., 2003,2(4):773-786P
    [49]Zukang S, Runhua C, Andrews J G, et al. Sum capacity of multiuser MIMO broadcast channels with block diagonalization." IEEE Transactions on Wireless Communications,2007,6(6):2040-2045P
    [50]Runhua C, Zukang S, Andrews J G., et al. Multimode transmission for multiuser MIMO systems with block diagonalization. IEEE Transactions on Signal Processing,2008,56 (7-2):3294-3302P
    [51]Tarighat A, Sadek M and Sayed A H. A multi-user beamforming scheme for downlink MIMO channels based on maximizing signal-to-leakage ratios. Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, PA,2005,3:1129-1132P
    [52]Sadek M, Tarighat A and Sayed A H. A leakage-based precoding scheme for downlink multi-user MIMO channels. IEEE Trans. Wireless Commun., 2007,6(5):1711-1721P
    [53]Sadek M, Tarighat A and Sayed A H. Active antenna selection in multi-user MIMO communications. IEEE Trans. Signal Processing,2007,55(4): 1498-1510P
    [54]孟银阔,殷勤业,丁乐等.一种多用户多输入多输出系统下行链路线性预编码方法.西安交通大学学报,2006,40(10):1103-1106P
    [55]Zhang J, Wu Y and Xu M et al. Linear transmitter precoding design for downlink of multiuser MIMO systems. Electronics Letters,2005,41(14): 811-813P
    [56]张贤达.矩阵分析与应用。北京:清华大学出版社,2004
    [57]Bengtsson M and Ottersten B. Optimal and suboptimal transmit beamforming. Handbook of Antennas in Wireless Communications, L. C. Godara, Ed. Boca Raton, FL:CRC,2001
    [58]Kaltenberger F, Kountouris M and Gesbert D. On the trade-off between feedback and capacity in measured MU-MIMO channels. IEEE Transactions on Wireless Communications,2009,8(9):4866-4875P
    [59]Robb J Muirhead. Aspects of multivariate statistical theory. New York, USA, John Wiley & Sons,1982:85-99P
    [60]Jafar S A, Vishwanath S and Goldsmith A. Channel capacity and beamforming for multiple transmit and receive antennas with covariance feedback. Proc. IEEE ICC 2001, June 2001,1:2266-2270P
    [61]Gohary R H and Davidson T N. On rate-optimal MIMO signalling with mean and covariance feedback. IEEE Transactions on Wireless Communications,2009,8(2):912-921P
    [62]Srinivasa S and Jafar S A. The optimality of transmit beamforming:a unified view. IEEE Transactions on Information Theory,2007,53(4): 1558-1564P
    [63]Caire G and Shamai S, On the achievable throughput of a multiantenna Gaussian broadcast channel. IEEE Trans. Inf. Theory,2003,49(7): 1691-1706P
    [64]Narula A, Lopez M J, Trott M D, et al. Efficient use of side information in multiple-antenna data transmission over fading channels. IEEE J. Select. Areas Commun.,1998,16:1423-1436P
    [65]Love D J and Heath R W Jr. Equal gain transmission in multipleinput multiple-output wireless systems. IEEE Trans. Commun.,2003,51: 1102-1110P
    [66]Zhou S, Wang Z and Giannakis G B. Quantifying the power-loss when transmit-beamforming relies on finite rate feedback. IEEE Trans. Wireless Commun.,2005,4:1948-1957P
    [67]Mukkavilli K K, Sabharwal A, Erkip E, et al. On beamforming with finite rate feedback in multiple-antenna systems. IEEE Trans. Inform. Theory, 2003,49:2562-2579P
    [68]Love D J, Heath R W Jr and Strohmer T. Quantized antenna weighting codebook design for multiple-input multiple-output wireless systems. Proc. 40th Allerton Conf. Communications, Control, and Computing, Moticello, IL,2002
    [69]Love D J, Heath R W Jr and Strohmer T. Grassmannian beamforming for multiple-input multiple-output wireless systems. IEEE Trans. Inf. Theory, 2003,49(10):2735-2747P
    [70]Strohmer T and Heath R W Jr. Grassmannian frames with applications to coding and communication. Applied and Computational Harmonic Analysis,2003,14(3):257-275P
    [71]Conway J H, Hardin R H and Sloane N J A. Packing lines, planes, etc.: Packings in Grassmannian spaces. Exper. Math.,1996,5(2):139-159P
    [72]Sloane N J A. Packings in Grassmannian spaces. [Online] Available: http://www.research.att.com/-njas/grass/index.html
    [73]Love D J. Grassmannian subspace packing. [Online] Available: http://cobweb.ecn.purdue.edu/-dj love/grass.html
    [74]Santipach W and Honig M. Signature optimization for CDMA with limited feedback. IEEE Trans. Inf. Theory,2005,51(10):3475-3492P
    [75]Santipach W and Honig M. Asymptotic capacity of beamforming with limited feedback. Proc. IEEE Int. Symp. Information Theory, Chicago, IL, Jun./Jul.2004,1:290P
    [76]Au-Yeung C and Love D J. On the performance of random vector quantization limited feedback beamforming in a MISO system. IEEE Trans. Wireless Commun.,2007,6(2):458-462P
    [77]Jindal N. MIMO broadcast channels with finite rate feedback. IEEE Tran. on Inform. Theory,2006,52(11):5045-5060P
    [78]Ravindran N and Jindal N. Limited feedback-based block diagonalization for the MIMO broadcast channel. IEEE J. Select. Areas Commun.,2008, 26(8):1473-1482P
    [79]Santipach W and Honig M L. Capacity of a multiple-antenna fading channel with a quantized precoding matrix. IEEE Trans. Inf. Theory,2009, 55(3):1218-1234P
    [80]Knopp R and Humblet P. Information capacity and power control in single-cell multiuser communications. IEEE Int. Conf. Communications, Seattle, WA, Jun.1995,1:331-335P
    [81]Wonjong R and Cioffi J M. On the capacity of multiuser wireless channels with multiple antennas. IEEE Transactions on Information Theory,2003, 49(10):2580-2595P
    [82]Mun C, Lee M W and Yook J G, et al. Exact capacity analysis of multiuser diversity combined with transmit diversity. Electronics Letters,2004, 40(22):1423-1424P
    [83]Taiwen T and Heath R W. Opportunistic feedback for downlink multiuser diversity. IEEE Communications Letters,2005,9(10):948-950P
    [84]Tu Z and Blum R S. Multiuser diversity for a dirty paper approach. IEEE Commun. Lett,1999,7:585-596P
    [85]Jiang J, Buehrer R M and Tranter W H. Greedy scheduling performance for a zero-forcing dirty-paper coded system. IEEE Trans. Commun.,2006, 54(5):789-793P
    [86]Viswanathan H and Kumaran K. Rate scheduling in multiple antenna downlink wireless systems. Proc. Allerton Conf. Commun. Control Comput. Allerton, IL, Jun.2001
    [87]Zukang S, Runhua C, Andrews J G, et al. Low complexity user selection algorithms for multiuser MIMO systems with block diagonalization. IEEE Transactions on Signal Processing,2006,54(9):3658-3663P
    [88]Sigdel S and Krzymien W A. Simplified antenna selection and user scheduling for orthogonal space-division multiplexing. IEEE Wireless Communications and Networking Conference, WCNC 2007,2007,1: 1728-1733P
    [89]Golub G H and Van Loan C F. Matrix computations.3rd ed. Baltimore, MD: The John Hopkins Univ. Press,1996
    [90]Enrlich L W. Complex matrix inversion versus real." Appl. Phys. Lab., Johns Hopkins U., Dec.1969
    [91]Chen H H and Guizani M. Next generation wireless systems and networks. England:John Wiley & Sons,2006
    [92]Tse D and Viswanath P. Fundamentals of wireless communication. England: Cambridge University Press,2004
    [93]Shyy D J and Dunyak J. "Cooperative MIMO gateways:a promising technique for fast handoff. Wireless Telecommunications Symposium,2005, 1:49-54P
    [94]Zhang Y, Wang G and Amin M G. Cooperative spatial multiplexing in multi-hop wireless networks. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),2006,4:IV821-IV824P
    [95]Kim Y and Liu H. Infrastructure relay transmission with cooperative MIMO. IEEE Transactions on Vehicular Technology,2008,57(4):2180-2188P
    [96]Matthias P. Mobile fading channels. England:John Wiley & Sons,2002
    [97]Simon M and Alouini M. Digital communication over fading channels. New Jersey:John Wiley & Sons,2nd Ed.,2005
    [98]Tokgoz Y. Performance analysis of antenna diversity based wireless communication systems. Dissertation, University of California, San Diego, 2004
    [99]Saleh A, Rustako A and Roman R. Distributed antennas for indoor radio communications. IEEE Transactions on Communications,1987,35(12): 1245-1251P
    [100]Lee W. Smaller cells for greater performance. IEEE Commun. Mag.,1991, 29:19-23P
    [101]Kerpez K J. A radio access system with distributed antennas. IEEE Transactions on Vehicular Technology,1996,45(2):265-275P
    [102]Clark M V, III T M W and Greenstein L J, et al. Distributed versus centralized antenna arrays in broadband wireless networks. Proc. IEEE Veh. Technol. Conf.'01 Spr.,2001,1:33-37P
    [103]Hu H, Zhang Y and Luo J. Distributed antenna systems:open architecture for future wireless communications. AUERBACH,2007
    [104]Wonil R and Paulraj A. Outage performance of the distributed antenna systems in a composite fading channel. Proceedings of VTC,2002-Fall, Vancouver, Canada,3:1520-1524P
    [105]Wonil R, Paulraj A. MIMO channel capacity for the distributed antenna. IEEE 56th Vehicular Technology Conference,2002-Fall,2:706-709P
    [106]Wonil R. High performance distributed antenna cellular networks. Dissertation, Stanford University,2003.
    [107]Adinoyi A, Yanikomeroglu H and Loyka S. Hybrid macro and generalized selection combining microdiversity in lognormal shadowed Rayleigh fading channels. Proceedings of ICC,2004, Paris, France,1:244-248P
    [108]Adinoyi A and Yanikomeroglu H. On the performance of hybrid macro/ micro diversity in the reverse-link microcellular networks. Proceedings of WCNC,2005, LA, USA,2:973-977P
    [109]Gordon L S. Principles of mobile communication.2nd ed., Springer,2000
    [110]Mehta N B, Jingxian W and Molisch A F, et al. Approximating a sum of random variables with a lognormal. IEEE Transactions on Wireless Communications,2007,6(7):2690-2699P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700