低速大转矩永磁同步电机及其控制系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以低速大转矩永磁同步电机作为研究对象,从电机设计与控制技术相结合的角度出发,着重进行了永磁同步电机驱动控制和优化设计两方面的研究。
     首先基于坐标变换原理,详细分析了永磁同步电机在静止三相坐标系、静止两相以及旋转两相坐标系下的数学模型,深入讨论了永磁同步电机电压空间矢量控制方法,提出了基于矩阵变换器的永磁同步电机空间矢量调制策略。根据矩阵变换器的拓扑结构特点,将交-交直接变换结构矩阵变换器等效为由“虚拟整流器”和“虚拟逆变器”组成的交-直-交结构,深入分析了矩阵变换器的变换关系,推导出矩阵变换器的电压、电流双空间矢量PWM调制函数。
     为了验证基于矩阵变换器的永磁同步电机空间矢量调制策略的可行性,以及调制方法的正确性,首先使用Matlab软件平台搭建了空间矢量调制的仿真模型,并以低速大转矩永磁同步电机作为被控对象,对矩阵变换器的输入输出特性进行分析。仿真结果表明,矩阵变换器输出电压的幅值和频率独立可调,实现了电机在宽广范围的连续可调、任意负载下的输入功率因数为1,且能实现能量的回馈,克服了传统交-直-交变频器驱动永磁同步电机所存在的输入谐波大、输入功率因数低、直流回路需要大的储能电容等缺点。解决了传统交-交变频器存在的功率因数低、谐波污染严重以及调速范围窄等问题,改善了永磁同步电机调速系统的运行性能。
     在仿真的基础上,搭建了基于矩阵变换器的永磁同步电机实验系统,该系统以DSP为主控制器进行空间矢量调制,以FPGA为协处理器实现矩阵变换器开关函数的合成和四步换流策略的实施,成功实现了对输出电压和输入电流的同时调制,获得期望的正弦输入电流和输出电压,保证了永磁同步电机优良的起动和调速性能。实验结果表明,该控制器不仅具有永磁同步电机驱动系统调速精确、动态响应快、鲁棒性强等特点,同时还具有输入、输出电流谐波小、无中间滞留滤波电容、能量再生等特点。
     针对电机优化设计中存在的高度非线性问题,本文提出了一种基于模糊专家系统的多目标粒子群算法,根据专家设计经验,构建模糊专家系统,将专家经验融合到粒子群速度方程中,引导支配子集更快地向最优解方向运动,改善了多目标粒子群算法寻优过程,提高了求解精度和收敛速度。同时,将电机优化问题转化为博弈问题,提出基于博弈论的电机优化设计方法,从纳什均衡解出发,运用策略性让步博弈的思想综合考虑各优化目标,从非劣解集中搜索综合最优解,降低了电机开发难度、缩短了设计周期,为实现电机设计智能化奠定了基础。针对加工、装配过程中产生的误差及实际应用中存在的干扰因素,在电机设计中引入稳健设计的思想,采用信噪比方法分析了设计方案的稳健性,建立了评价和排序非劣解的重要指标。同时基于灵敏度分析思想,揭示了电机各设计参数与优化目标的内在关系,为电机生产和设计提供了理论指导。最后采用基于模糊专家系统和博弈论的多目标粒子群算法对电梯用低速大转矩永磁同步电机进行了优化设计,测试和应用结果表明,优化设计后,电机综合性能指标明显提高。
Centreing around the permanent magnet synchronous motor, two parts of researches on the motor optimization design and the drive control are systematically introduced in this dissertation.
     Based on the theory of axes transformation, the mathematic models of PMSM in three-phase stationary coordinates, two-phase stationary coordinates and two-phase rotating coordinates are analyzed in details. SVPWM method is introduced in the second chapter. The AC-AC transformation control and the double SVPWM scheme of the matrix converter are deduced from the equivalent structure of the AC-DC-AC conversion in the third chapter.
     In order to validate the feasibility of the SVPWM strategy for permanent magnet synchronous machine based on matrix converter and the correctness of the modulation method, the simulation model of vector control speed regulating system for a lower- speed high-torque PMSM is firstly established based on Matlab. Then the input and output characteristics of matrix converter, the speed, torque and load characteristics of the PMSM are then analysed. The simulation results show that it can realize the separate modulation of the output voltage amplitude and frequency. Besides, the excellent waveforms of input current and output voltage, unit value power factor reveal the matrix converter system has the ability of four guardant operations. It has unexampled merits on controllable input power factor, power regeneration and lack of bulky energy storage capacitors.
     After simulation, a PMSM control system based on matrix converter is experimented, which uses DSP TMS320F2812 as main controller and FPGA EP1C6 as coprocessor. DSP carries out space vector modulation, and FPGA carries out switch functions synthesis and four step commutations. They together accomplish the modulation of sine wave input current and output voltage. The excellent startup characteristic, high control precision, quick dynamic response and good adaptability are ensured which can be seen from the experiment results. All the data indicate again that the method in this dissertation is effective.
     On the subject of high nonlinear existing in optimization design, a sort of multi-objective particle swarm optimization algorithm based on fuzzy expert system is proposed in the fourth chapter. The man expert experiences on design are imported into the artificial fuzzy expert system, and then join in the speed equations of the particle swarm. Thus lead the dominant subsets move to the directions of optimal solution. Fuzzy expert system improves the optimization process of multi-objective particle swarm optimization algorithm, and advances the convergent rate and solving precision. The other novel point in this dissertation is that the optimization problem is translated into game problem. The optimized goals are regarded as the game individuals, an optimization design methods of PMSM based on game theory is proposed. Surrounding Pareto optimum under Nash equilibrium, the concession negotiation strategy between the game individuals is applied to the optimized goals in order to get a better global negotiation result. The motor design cycle is simplified by searching the unitary optimal result from non-inferior solution set. For the error due to machining and assembly and the disturbance, the robustness design idea is introduced in motor design. The non-inferior solutions are evaluated and arranging by signal noise ratio. The sensitiveness analysis idea is also introduced in motor design to reveal the interrelation between every design parameter and the optimized goals. At last, a PMSM is optimized by multi-objective particle swarm optimization algorithm based on fuzzy expert system. The result shows that the design method has the merit of high efficiency, and the integrated characteristic of the motor after optimization design is improved.
引文
[1] S. P. Bordeau. C. Truman Hibbard and the invention of automatic control for synchronous motors[J]. IEEE Transactions on Education, 1980, 23(3): 163-169.
    [2]贺益康,潘再平.电力电子技术[M].北京:科学出版社,2004.
    [3]智大为.永磁同步电机的转矩直接控制[硕士学位论文],杭州:浙江大学,2003.
    [4]胡崇岳.现代交流调速技术[M].北京:机械工业出版社,1998.
    [5]许家群,于慎波,徐衍亮,等.电梯曳引驱动系统的现状及发展前景[J].微特电机, 2002, 30(3): 5-7,13.
    [6]王铁成,代颖,崔淑梅.电动车用永磁同步电机研究状况[J].微电机,2005,38(1): 55-57.
    [7] S. I. Kim, G. H. Lee, J. P. Hong, et al. Design process of interior PM synchronous motor for 42-v electric air-conditioner system in hybrid electric vehicle[J]. IEEE Transactions on Magnetics, 2008, 44(6): 1590-1593.
    [8] J. Hur. Characteristic analysis of interior permanent-magnet synchronous motor in electrohydraulic power steering systems[J]. IEEE Transactions on Industrial Electronics, 2008, 55(6): 2316-2323.
    [9]赵彤,王先逵,刘成颖,等.机床进给用永磁同步直线伺服单元的设计与实验研究[J].中国机械工程, 2006, (23): 2421-2425.
    [10]孙雅玲,祁世发,黎崇彬.大型交流变频调速同步电机绝缘体系及应用[J].大电机技术, 2003, (1): 1-5.
    [11]邓穗湘,沈雄.永磁电机在船舶电力推进中的应用和仿真[J].航海技术, 2005, (4): 43-46.
    [12] S. Morimoto, M. Sanada, Y. Takeda, et al. Optimum machine parameters and design of inverter-driven synchronous motors for wide constant power operation[C]. Conference Record of the 1994 IEEE Industry Applications Society Annual Meeting, 1994: 177-182.
    [13] C. Hasegawa, S. Nishikata. A simple starting method for self-controlled synchronous motors in electric propulsion systems for ships[C]. European Conference on Power Electronics and Applications, 2007, 9: 1-10.
    [14] G. F. Uler, O. A. Mohammed, C. S. Koh. Utilizing genetic algorithms for optimization design of electromagnetic devices[J]. IEEE Transactions on Magnetics. 1994, 30(6): 4296-4298.
    [15] T. N. Shi, C. L. Xia. Optimal design of hybrid pm synchronous motor based on genetic algorithm[C]. International Conference on Power System Technology, 2002, 10: 1195-1198.
    [16]邱琳,刘长红.基于遗传算法的直线同步电机优化设计[J].大电机技术, 2003, 2: 1-4.
    [17]夏永明,付子义.粒子群优化算法在直线感应电机优化设计中的应用[J].中小型电机, 2002, 29(6): 14-16.
    [18]孙昌志,曲春雨.混沌蚁群算法及其在电机设计中的应用[J].控制理论与应用, 2007, 26(3): 11-14, 29.
    [19]陈冬阳,孙昌志,刘子俊,等.混沌粒子群混合算法对微型永磁电机的优化设计[J].沈阳工业大学学报, 2006, 28(6): 614-618.
    [20]王秀和,贾宏新.改进的区域消去法在电机优化设计中的应用[J].电机与控制学报, 1999, 3(2): 117-120.
    [21]丘昌涛,武亚光.计算机辅助电机优化设计系统[J].中国电机工程学报, 1995, 15(4), 261-266.
    [22]方向,赵忠芳.基于工程数据库的稀土永磁同步电动机CAD系统[J].计算机与现代化, 2008, 4: 111-114.
    [23]王兴华,励庆孚.永磁无刷直流电机空载气隙磁场和绕组反电势的解析计算[J].中国电机工程学报, 2003, 23(3): 126-130.
    [24] J. F. Dawson, M. P. Robinson, and T. Konefal. Computational electromagnetic (cem) model validation against measured and calculated results[C]. IEE Seminar. Validation of Computational Electromagnetics, 17-21.
    [25] Y. K. Huang, J. G. Zhu, Y. Guo, et al. Core loss and thermal behavior of high-speed SMC motor based on 3-D FEA[C]. IEEE International Electric Machines & Drives Conference, 2007, 2: 1569-1573.
    [26] C. T. Mi, G. R. Slemon, R. Bonert. Modelling of iron losses of permanent magnet synchronous motors[J]. IEEE Transactions, Industry application, 2003, 39(3): 734-742
    [27] S. Vaez-Zadeh, A. H. Isfahani. Multiobjective design optimization of air-core linear permanent-magnet synchronous motors for improved thrust and low magnet consumption[J]. IEEE Transactions, Magnetics, 2006, 42(3): 446-452.
    [28] M. H. Mouland. Preliminary design considerations for integrating a composite impeller in a permanent magnet brushless motor[D]. Michigan State University, 2003.
    [29] Y. G. Guo, J. G. Zhu, W. Wu. Thermal analysis of soft magnetic composite motors using a hybrid model with distributed heat sources[J]. IEEE Transactions, Magnetics, 2005, 41(6): 2124-2128.
    [30] J. Zhang. Optimal kinematic and dynamic design of high-performance machinery[D]. Stony Brook University, 2004.
    [31] Y. P. Yang, Y. P. Luh, C. H. Cheung. Design and control of axial-flux brushless dc wheel motors for electric vehicles-part I: Multiobjective optimal design and analysis[J]. IEEE Transactions, Magnetics, 2004, 40(4): 1873-1882.
    [32] G. Hrovat, A. Hamler. Determination of heat circumstances in the motor protection switch considering air flow[J]. IEEE Transactions, Magnetics, 2006, 42(4): 1071-1074.
    [33] C. P. Riley, J. Simkin. Materials modelling for computational electromagnetic software for electric machines[C]. IEEE Colloquim, Impact of New Materials on Design, 1995, 9:1-7.
    [34]张慧,杨仕友,倪光正.快速全局优化算法在电磁场逆问题中的应用[J].机电工程, 2007, 24(10): 28-31.
    [35]聂曼.电磁场逆问题分析计算的进化算法研究[博士学位论文].杭州:浙江大学, 2006.
    [36] Y. P. Chang, C. Y. Low, C. J. Wu. Optimal design of discrete-value passive harmonic filters using sequential neural-network approximation and orthogonal array[J]. IEEE Transactions, Power Delivery, 2007, 22(3): 1813-1821.
    [37]董红斌,黄厚宽,邓大勇.一种求解多目标优化问题的协同演化算法[J].北京交通大学学报, 2007, 31(5): 67-71.
    [38]王海政,仝允桓.主从递阶多目标风险决策模型构建及算法研究[J].运筹于管理, 2007, 16(1): 1-8.
    [39]关慧,赵争鸣,孟朔,等.变频调速异步电机的优化设计[J].中国电机工程学报, 2004, 24(7): 194-199.
    [40]金欣磊.基于PSO的多目标优化算法研究及应用[博士学位论文].杭州:浙江大学, 2006.
    [41] T. Y. Lee. Optimal wind-battery coordination in a power system using evolutionary iteration particle swarm optimisation[J]. IET Generation, Transmission & Distribution, 2008, 2(2): 291-300.
    [42]马小亮.大功率交-交变频调速及矢量控制技术[M].北京:机械工业出版社,2003.
    [43]李崇坚.交流同步电机调速系统[M].北京:科学出版社,2006.
    [44] H. Lin, X. W. Wang, Z. H. Ye et al. Equivalent circuit model of cycloconverter-fed multiphase synchronous motor system[C]. 2004 International Conference on Power System Technology, 2004, 11: 464-469.
    [45]智大为.永磁同步电机的转矩直接控制:[硕士学位论文],杭州:浙江大学,2003
    [46] A. B. Plunkett, F. G. Turnbull. System design method for a load commutated inverter-synchronous motor drive[J]. IEEE Transactions on Industry Applications, 1984, 20(3): 589-597.
    [47] K. H. Kim, M. J. Youn. A simple and robust digital current control technique of a PM synchronous motor using time delay control approach[J]. IEEE Transactions on Power Electronics, 2001, 16(1): 72-82.
    [48] X. T. Zhao, C. J. Li, W. H. Sheng et al. Research on digital control systems for large power AC-DC-AC converters with synchronous motor load[C]. CES/IEEE 5th International Power Electronics and Motion Control Conference, 2006, 8: 1-4.
    [49] I. I. Incze, C. Szabo, M. Imecs. Voltage-hertz strategy for synchronous motor with controlled exciting field[C]. 11th International Conference on Intelligent Engineering Systems, 2007, 6: 247-252.
    [50] F. H. Li, Y. H. Li, X. H. Wang et al. Modelling and simulation of synchronous motor fed by cycloconverter[C]. 25th Annual IEEE Power Electronics Specialists Conference, 1994, 6: 830-834.
    [51] H. Yamamoto, R. Kurosawa, R. Nakamura. Novel vector controller for synchronous motor via inverse dynamics modeling[C]. Conference Record of the 1993 IEEE Industry Applications Society Annual Meeting, 1993, 10: 544-550.
    [52] B. J. Chalmers, L. Musaba, D. F. Gosden. Variable-frequency synchronous motor drives for electric vehicles[J]. IEEE Transactions on Industry Applications, 1996, 32(4): 896-903.
    [53] X. J. Wu, J. G. Jiang, P. Dai et al. Full digital control and application of high power synchronous motor drive with dual stator winding fed by cycloconverter[C]. The Fifth International Conference on Power Electronics and Drive Systems, 2003, 11: 1194-1199.
    [54] M. Tewolde, S. P. Das. Matrix converter-fed high performance synchronous motor drive system[C]. IEEE International Conference on Industrial Technology, 2006, 12: 2519-2524.
    [55]徐艳平,钟彦儒,杨惠.永磁同步电机矢量控制和直接转矩控制的研究[J].电力电子技术,2008,42(1): 60-62.
    [56]刘贤兴,卜言柱,胡育文,等.基于精确线性化解耦的永磁同步电机空间矢量调制系统[J].中国电机工程学报,2007,27(30): 55-59.
    [57]齐放,邓智泉,仇志坚,等.一种永磁同步电机无速度传感器的矢量控制[J].电工技术学报,2007,22(10): 30-34,41.
    [58] D. J. Zhou, Z. M. Zhao, S. M. Wang et al. Vector control for a twelve-phase synchronous motor[C]. International Conference on Electrical Machines and Systems, Seoul, Korea, 2007, 10: 1037-1040.
    [59] C. Szabo, M. Imecs, I. I. Incze. Synchronous motor drive with controlled stator-field-oriented longitudinal armature reaction[C]. 33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, 2007, 11: 1214-1219.
    [60] S. C. Hsu, W. D. Liu, C. H. Liu. Parameter auto-tuning for a linear permanent magnet synchronous motor drive[C]. 26th Annual Conference of the IEEE Industrial Electronics Society, 2000, 10: 1031-1036.
    [61] H. X. Sun, B. M. Ge, Y. Chi et al. Dynamic matrix control (DMC) for the step motion of synchronous motor[C]. Proceedings of the Power Conversion Conference, Nagaoka, 1997: 151-156.
    [62] K. I. Saleh, O. A. Mohammed, M. A. Badr. Field-oriented vector control of synchronous motors with additional field winding[J]. IEEE Transaction on Energy Conversion, 2004, 19(1): 95-101.
    [63] H. Lin, Y. P. Zou, B. He. The vector control strategies for multiphase synchronous motor drive systems[C]. IEEE International Symposium on Industrial Electronics, 2006, 7: 2205-2210.
    [64]陈国呈. PWM变频调速及软开关电力变换技术[M].北京:机械工业出版社,2001.
    [65] I. Takahashi, T. Noguchi. A new quick-response and high-efficiency control strategy of an induction motor[J]. IEEE Transaction on Industry Applications, 1986, 22(5): 820-827.
    [66] M. Depenbroke. Direct self-control (DSC) of inverter-fed induction machine[J]. IEEE Transactions on Power Electronics, 1988, 3(4): 420-429.
    [67] S. Ichikawa, M. Tomita, S. Doki et al. Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory[J]. IEEE Transactions on Industrial Electronics, 2006, 53(2): 363-372.
    [68] K. Nagata, H. Nemoto, T. Katayama et al. A simple sensorless control for medium voltage synchronous motor drives[C]. IEEE Power Electronics Specialists Conference, 2008, 6: 2832-2837.
    [69]史婷娜,田洋,夏长亮,等.基于自适应小波网络的永磁无刷直流电机直接电压控制.电工技术学报[J], 2007, 22(9): 74-79.
    [70]史婷娜,张倩,夏长亮,等.基于UKF算法的无刷直流电机转子位置和速度估计.天津大学学报[J], 2008, 41(3): 338-343.
    [71] T. Song, M. F. Rahman, K. W. Lim et al. A singular perturbation approach to sensorless control of a permanent magnet synchronous motor drive[J]. IEEE Transaction on Energy Conversion, 1999, 14(4): 1359-1365.
    [72] S. Ichikawa, M. Tomita, S. Doki et al. Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory[J]. IEEE Transactions on Industrial Electronics, 2006, 53(2): 363-372.
    [73] K. Tatematsu, D. Hamada, K. Uchida et al. Sensorless permanent magnet synchronous motor drive with reduced order observer[C]. Thirteenth Annual Applied Power Electronics Conference and Exposition, 1998, 2: 75-80.
    [74]史婷娜,王向超,夏长亮.基于RBF神经网络的永磁同步电机无位置传感器控制.电工电能新技术, 2007, 26(2): 16-19(44).
    [75] S. Morimoto, M. Sanada, Y. Takeda. High-performance current sensorless drive for synchronous motors with only low-resolution position sensor[C]. Conference Record of the Industry Applications Conference, 2002, 10: 2065-2072.
    [76] S. Li, Q. X. Ge, X. X. Wang et al. Implementation of sensorless control with improved flux integrator for wound field synchronous motor[C]. 2nd IEEE Conference on Industrial Electronics and Applications, 2007, 5: 1526-1530.
    [77] C. H. Chen, W. C. Tai, M. Y. Cheng. A cost effective sensorless control method for permanent magnet synchronous motors based on average terminal voltage[C]. CES/IEEE 5th International Power Electronics and Motion Control Conference, 2006, 8: 1-5.
    [78] S. K. Chung, H. S. Kim, C. G. Kim et al. A new instantaneous torque control of PM synchronous motor for high-performance direct-drive applications[J]. IEEE Transactions on Power Electronics, 1998, 13(3): 388-400.
    [79] B. M. Ge, X. H. Wang, P. S. Su et al. Dynamic matrix control for the step motion of synchronous motor based on the L∞performance index[C]. Proceedings of the Fifth International Conference on Electrical Machines and Systems, 2001, 8: 770-773.
    [80] A. D. Grey. Power factor improvement using fuzzy logic control of an AC synchronous motor[C]. Proceedings. IEEE SoutheastCon, 2005, 4: 193-199.
    [81] Y. Kuroe, H. Asada, T. Maruhashi. Design of robust position servo of synchronous motors using sliding mode control[C]. Third International Conference on Power Electronics and Variable-Speed Drives, 1988, 7: 332-335.
    [82] F. J. Lin, P. H. Shen, Y. S Kung. Adaptive wavelet neural network control for linear synchronous motor servo drive[J]. IEEE Transactions on Magnetics, 2005, 41(12): 4401-4412.
    [83] J. Vittek, J. Michalik, V. Vavrus et al. Design of control system for forced dynamics control of an electric drive employing linear permanent magnet synchronous motor[C]. International Conference on Industrial Electronics and Control Applications, 2005, 11: 6.
    [84] C. D. Du, X. F. Zhang, H. Lin et al. Improvement of low-speed operation performance of DTC for three-level inverter-fed multi-phase synchronous motor[C]. Proceedings of the Eighth International Conference on Electrical Machines and Systems, 2005, 9: 132-137.
    [85] J. Wang, H. Peng. A robust position controller design for PM synchronous motor using neural network[C]. 2004 8th Control, Automation, Robotics and Vision Conference, China, 2004, 12: 2134-2138.
    [86]董克文,张兴,张昱等.基于新型趋近率的永磁同步电机滑模便结构控制[J].中国电机工程学报,2008, 28(21): 102-106.
    [87]比马尔K.波斯(美).现代电力电子与交流传动[M].北京:机械工业出版社,2003.
    [88] K. M. Rahman, S. Hiti. Identification of machine parameters of a synchronous motor[C]. Conference Record of the Industry Applications Conference, 2003, 10: 409-415.
    [89] S. Yamamoto, T. Ara, S. Oda et al. Prediction of starting performance of synchronous motor by DC decay testing method with the rotor in any arbitrary position[C]. Conference Record of the 1997 IEEE Industry Applications Conference, 1997, 10: 247-254.
    [90] J. H. Hu. J. B. Zou, W. Y. Liang. Finite element calculation of the saturation DQ-axes inductance for a direct drive PM synchronous motor considering cross-magnetization[C]. The Fifth International Conference on Power Electronics and Drive Systems, 2003, 11: 677-681.
    [91] S. Shinnaka, T. Sagawa. New optimal current control methods for energy-efficient and wide speed-range operation of hybrid-field synchronous motor[J]. IEEE Transactions on Industrial Electronics, 2007, 54(5): 2443-2450.
    [92]马小亮.大功率交-交变频调速及矢量控制技术[M].北京:机械工业出版社,2003.
    [93] F. J. Lin. Real-time IP position controller design with torque feedforward control for PM synchronous motor[J]. IEEE Transactions on Industrial Electronics, 1997, 44(3): 398-407.
    [94] S. Shinnaka, T. Sagawa. New optimal current control methods for energy-efficient and wide speed-range operation of hybrid-field synchronous motor[C]. IEEE International Conference on Electric Machines and Drives, 2005, 5: 535-542.
    [95] L. Gang, F. Yu. A hybrid nonlinear autoregressive neural network for permanent-magnet linear synchronous motor identification[C]. Proceedings of the Eighth International Conference on Electrical Machines and Systems, 2005, 9: 310-314.
    [96] K. H. Kim, M. J. Youn. A simple and robust digital current control scheme of a permanent magnet synchronous motor using time delay control approach[C]. Conference Record of the 2000 IEEE Industry Applications Conference, 2000, 10: 1689-1696.
    [97] B. P. Muni, S. K. Pillai, S. N. Saxena. Digital simulation of internal power factor angle controlled surface mounted permanent magnet synchronous motor[C]. Proceedings of the 1996 International Conference on Power Electronics, Drives and Energy Systems for Industrial Growth, 1996, 1: 900-906.
    [98] N. Bianchi, S. Bolognani. Parameters and volt-ampere ratings of a synchronous motor drive for flux-weakening applications[J]. IEEE Transactions on Power Electronics, 1997, 12(5): 895-903.
    [99] J. Vittek, V. Vavrus, M. Malek et al. Prescribed closed-loop speed dynamics control of the actuator employing linear permanent magnet synchronous motor[C]. IEEE International Conference on Industrial Technology, 2005, 12: 604-609.
    [100] F. Colamartino, C. Marchand, A. Razek. Considerations of non-sinusoidal field distribution in a permanent magnet synchronous motor control[C]. Fifth International Conference on Power Electronics and Variable-Speed Drives, 1994, 10: 508-513.
    [101] P. M. Pelczewski, W. Oberschelp, U. H. Kunz. Optimal model-following control of a positioning drive system with a permanent-magnet synchronous motor[J]. IEE Proceedings D [see also IEE Proceedings-Control Theory and Applications] Control Theory and Applications, 1991, 138(3): 267-273.
    [102] S. I. Kim, J. H. Bhan, J. P. Hong et al. Optimization Technique for Improving Torque Performance of Concentrated Winding Interior PM Synchronous Motor with Wide Speed Range[C]. Conference Record of the 2006 IEEE Industry Applications Conference, 2006, 10: 1933-1940.
    [103] J. M. Song, M. Zhou, Y. M. Su. Study of optimal efficient control of permanent magnet synchronous motor[C]. Sixth International Conference on Electrical Machines and Systems, 2003, 11: 41-44.
    [104] J. H. Hu, Y. X. Xu, J. B. Zou. Design and implementation of adaptive backstepping speed control for permanent magnet synchronous motor[C]. The Sixth World Congress on Intelligent Control and Automation, Dalian, China, 2006: 2011-2015.
    [105] T. Yoshimura, H. J. Kim, M. Watada et al. Analysis of the reduction of detent force in a permanent magnet linear synchronous motor[J]. IEEE Transactions on Magnetics, 1995, 31(6): 3728-3730.
    [106] N. C. Kar, A. M. El-Serafi. Effect of voltage sag on the transient performance of saturated synchronous motors[C]. Canadian Conference on Electrical and Computer Engineering, 2006, 5: 1246-1251.
    [107] S. Najafi, N. C. Kar. Effect of short-circuit voltage profile on the transient performance of saturated permanent magnet synchronous motors[C]. IEEE Power Engineering Society General Meeting, 2007, 6: 1-6.
    [108] X. H. Ma, S. Y. Ding, W. L. Li. Calculation and analysis of magnetic fields and temperature fields for salient pole synchronous motors in the process of starting[C]. International Conference on Power System Technology, 2006, 10: 1-6.
    [109] M. Andriollo, T. Bertoncelli. Automated procedure for the performance improvement of a low-power single-phase synchronous motor[C]. IEEE International Electric Machines and Drives Conference, 2003, 6: 1098-1104.
    [110] F. Taegen, J. Kolbe, S. P. Verma. Vibrations and noise produced by special purpose permanent-magnet synchronous motors in variable frequency operation[C]. 4th IEEE International Conference on Power Electronics and Drive Systems, 2001, 10: 583-588.
    [111] B. N. Chaudhari, B. G. Fernandes. Steady state performance of polyphase permanent magnet synchronous motor fed from single phase supply system[C]. IEEE Power Engineering Society Winter Meeting, 2001, 1: 1382-1387.
    [112] H. M. Ryu, J. W. Kim, S. K. Sul. Synchronous-frame current control of multiphase synchronous motor under asymmetric fault condition due to open phases[J]. IEEE Transactions on Industry Applications, 2006, 42(4): 1062-1070.
    [113] M. Joo. Dynamic control of large-scale high-TC superconducting synchronous motor[J]. IEEE Transactions on Applied Superconductivity, 2004, 14(2): 908-911.
    [114] S. H. Lee, J. P. Hong, Y. K. Kwon, et al. Study on homopolar superconductivity synchronous motors for ship propulsion applications[J]. IEEE Transactions on Applied Superconductivity, 2008, 18(2): 717-720.
    [115] G. Stumberger, M. T. Aydemir, D. Zarko, et al. Design of a linear bulk superconductor magnet synchronous motor for electromagnetic aircraft launch systems[J]. IEEE Transactions on Applied Superconductivity, 2004, 14(1): 54-62.
    [116] H. Matsuzaki, Y. Kimura, I. Ohtani et al. An axial gap-type HTS bulk synchronous motor excited by pulsed-field magnetization with vortex-typearmature copper windings[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 2222-2225.
    [117] H. Sugimoto, T. Tsuda, T. Morishita et al. Design of an axial flux inductor type synchronous motor with the liquid nitrogen cooled field and armature hts windings[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 1571-1574.
    [118] H. Sugimoto, T. Tsuda, T. Morishita et al. Development of an axial flux type pm synchronous motor with the liquid nitrogen cooled HTS armature windings[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 1637-1640.
    [119]王成元,夏加宽.电机现代控制技术.北京:机械工业出版社,2006.
    [120]王晓明,王玲.电动机的DSP控制[M].北京:北京航空航天大学出版社,2004.
    [121] J. Bredthauer, B. Wachta, Steve appleton. synchronous motors with cylindrical rotors for the petrochemical industry[J]. IEEE Transactions on Industry Applications, 1987, 23(3): 451-463.
    [122]孙凯,周大宁.矩阵变换器技术及其应用.北京:机械工业出版社,2007.
    [123] T. H. Liu, D. F. Chen. Implementation of a matrix converter pmsm position control system[C]. The 27th Annual Conference of the IEEE Industrial Electronics Society, 2001, 1451-1456.
    [124] R. Teichmann, J. Oyama. ARCP soft-switching technique in matrix converters[J]. IEEE Transactions on Industrial Electronics, 2002, 49(2): 353-361.
    [125] E. H. Miliani, D. Depernet, J. M. Kauffmann. DSP implementation of a naturally commutated matrix converter open loop control[C]. IEEE ISIE 2005, 1191-1196.
    [126]阎彦,刘文良,王杰.矩阵变换器优化空间矢量控制算法研究.电气自动化,2006,28(3): 10-12.
    [127]张绍,周波,仇红奎.永磁同步电机-矩阵变换器新型电流调制策略研究[J].中国电机工程学报,2008,28(21): 91-95.
    [128]黄科元.矩阵式变换器的空间矢量调制及其应用研究:[博士学位论文],杭州:浙江大学,2004
    [129]陈希有,陈学允.一般矩阵式电力变换器的等效电路及其应用[J].电工技术学报, 1999, 14(5): 31-34, 39.
    [130]肖鹏,粟梅,孙尧.基于矩阵变换器的随机脉冲位置PWM控制策略的研究[J].电气传动,2006, 36(3): 11-14.
    [131]侯志荣,吕振肃.基于MATLAB的粒子群优化算法及其应用[J].计算机仿真, 2003, 20(10): 68-70.
    [132]苏俊霞,蔚承建.基于粒子群优化算法的自动机制设计[J].计算机工程与应用, 2007, 43(4): 54-57.
    [133]高尚,韩斌,吴小俊,杨静宇.求解旅行商问题的混合粒子群优化算法[J].控制与决策, 2004, 19(11): 1286-1289.
    [134]曲春雨.混沌蚁群算法及其在深水电机设计中的应用[博士学位论文].沈阳:沈阳工业大学, 2007.
    [135]王伟,张健.模拟退火算法在电机优化设计中的应用[J].微电机, 2000, 33(3): 10-13
    [136]方瑞明,瞿旭平.多轮进化遗传算法在电机优化设计中的应用[J].微电机, 2002, 35(3): 6-9,20.
    [137] G. P. Wang, Y. J. Wang. A game model based co-evolutionary algorithms for multiobjective optimization problems[J]. Proceedings of the First International Conference on Innovative Computing, Information and Control, 2006, 3: 312-315.
    [138] Y. H. Wang, S. Y. Yang, G. Z. Ni, S. L. Ho, Z. J. Liu. An emigration genetic algorithm and its application to multiobjective optimal designs of electromagnetic devices[J]. IEEE Transactions, Magnetics, 2004, 40(2): 1240-1243.
    [139] L. Panait, S. Luke, R. P. Wiegand. Biasing coevolutionary search for optimal multiagent behaviors[J]. IEEE Transactions, Evolutionary Computation, 2006, 10(6): 629-645.
    [140] M. A. Abido. Multiobjective particle swarm optimization for optimal power flow problem[C]. 12th International Middle-East Power System Conference, 2008: 392-396.
    [141] S. Carcangiu, A. Fanni, A. Montisci. Multiobjective tabu search algorithms for optimal design of electromagnetic devices[J]. IEEE Transactions, Magnetics, 2008, 44(6): 970-973.
    [142] V. Fireteanu, T. Tudorache, O. A. Turcanu. Optimal design of rotor slot geometry of squirrel-cage type induction motors[C]. IEEE International Electric Machines & Drives Conference, 2007, 1: 537-542.
    [143]王群京.稀土钕铁硼永磁同步电机的设计理论及计算机仿真[M].合肥:中国科学技术大学出版社, 1997.
    [144] R. H. A. Hamid, A. M. A. Amin, R. S. Ahmed, A. A. A. EI-gammal. optimal operation of induction motors based on multi-objective particle swarm optimization(MOPSO)[C]. 33rd Annual Conference of the IEEE, Industrial Electronics Society, 2007: 1079-1084.
    [145]田应忠.基于模糊集的模糊专家系统研究与应用[博士学位论文].武汉:华中科技大学, 2004.
    [146]李立欣.基于博弈论的CDMA系统功率控制技术研究[博士学位论文].西安:西北工业大学, 2004.
    [147]吴舟,赵春晖,王月瑜,等.基于博弈论的自适应波束成形算法[J].系统工程与电子技术, 2007, 29(11): 1830-1833.
    [148] T. Miyamoto, S. Noguchi, H. Yamashita. Selection of an optimal solution for multiobjective electromagnetic apparatus design based on game theory[J]. IEEE Transaction, Magnetics, 2008, 44(6): 1026-1029.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700