卫星夹层结构分析与结构设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天器功能的不断增加,工艺、材料与分析手段的不断改进和发展,总体上看,航天器结构逐步复杂化、轻量化、柔性化、大型化。本文针对卫星结构设计中的若干技术问题,主要进行了以下几方面的研究工作:
     蜂窝夹层结构在卫星结构中得到广泛的应用。在对蜂窝夹层结构进行有限元分析时,要对其进行等效处理,采取等效方法的合理性将直接影响计算结果的准确性。采用Reissner理论、Hoff理论和三明治夹芯板理论三种不同的等效方法建立有限元模型,分别进行静力分析和模态分析,并将每种等效方法的计算结果与实体单元建立模型的计算结果在不同载荷工况下,从位移大小、应力水平和频率大小三个方面进行了分析比较。结果表明采用三明治夹芯板理论对蜂窝夹层结构进行等效要优于其他两种等效理论。
     基于有限元法进一步研究蜂窝夹层结构的稳定性问题。蜂窝夹层结构随面板厚度的逐渐变化会出现不同的屈曲现象。针对连续芯层有限元模型,求出不同面板厚度时结构的屈曲因子,并与经验失稳公式预测值进行对比,两种方法的结果基本吻合。建立考虑芯层几何特征的有限元模型,进行屈曲分析并研究芯层几何参数对结构稳定性的影响。介绍了一种局部屈曲现象——蜂窝壁屈曲,提出了相应的失稳预测分析方法,并与三维有限元分析结果进行比较,以验证该方法的正确性。对承受多轴惯性载荷的蜂窝夹层承力筒结构进行稳定性分析,通过改变面板厚度和纵横惯性载荷比,得到一系列有限元解,给出了相关的多轴惯性载荷相关方程。该方程能够指导夹层承力筒结构设计,有一定的工程应用价值。
     各结构之间连接刚度的设计与关键连接部位的等效处理,决定着结构是否满足设计要求和有限元模型的精度。文中针对航天器推进剂贮箱并列放置于中心承力筒内的结构布局形式,采用在贮箱支架内是否预埋金属加强框的方法来改变贮箱支架的刚度和强度,通过比较四种不同贮箱支架结构设计方案的优劣,研究了贮箱支架刚度和强度的安装方式,提出了推进剂贮箱系统安装的“上弱下强”设计准则。并结合结构布局的特点,为了满足设计要求,对推进剂贮箱支架结构进行了改进设计。
     同时,归类总结卫星结构的主要连接方式,并对卫星关键连接部位的等效处理方法进行了研究。分别采用MPC(Multi Point Constraints)法、Beam元法、Bush元法和Fastener元法四种方法模拟关键部位的螺栓连接建立整星有限元模型,对其进行了模态分析和静力分析,分析了每种建模方法的优劣。
     针对有附加结构的卫星天线桁架结构,提出了一种实现结构多目标优化的综合设计方法。首先,探讨附加结构刚度对桁架结构动力学特性的影响,以便建立精确的有限元模型,为进行优化设计奠定基础。之后,交替采用代理模型方法和人机交互方式进行结构拓扑构型设计,其中代理模型是采用优化拉丁超立方法进行试验设计,结合径向基函数近似方法生成的。最后,应用NSGA-II全局优化方法实现以重量最小和频率最大的多目标优化分析,并根据分层图(不考虑设计偏好和考虑设计偏好两种)定量可视化地从Pareto前端和Pareto最优解集中筛选最优设计方案。方法有利于提高设计效率,降低全局优化的复杂度,同时能够得到满足设计要求的设计方案,适用于多目标结构优化设计。
     最后,为了有效地确定航天器结构设计和试验验证所需要的振动环境,需要通过星箭耦合分析给出星箭分离面的载荷响应。根据航天器结构的动力学特性,利用等效模型代替复杂的有限元模型进行星箭耦合设计分析。等效模型由一系列的单自由度质量块弹簧元构成,并根据模态有效质量的概念,给出了等效模型中各参数的计算方法。以某卫星为例,分别采用等效模型和复杂有限元模型两种方法进行星箭耦合动力学计算分析,并将得到的响应分析结果进行比较。结果表明等效模型可以代替复杂的有限元模型进行星箭耦合分析。
With the increasing of spacecraft functions and the development of processing technology,material and analysis methods, spacecraft structures are being more complex, lighter, more flexibilityand larger scale. The research works for some technological problems of design for satellite structureare as follows:
     Honeycomb sandwich structures are widely applied to the satellite structures. During the finiteelement analysis (FEA) for honeycomb sandwich structures, the equivalent elastic constants directlyinfluence the accuracy of results. Three equivalent methods, including Reissner theory, Hoff theoryand sandwich theory, are used. Static analysis and mode analysis for honeycomb sandwich plates areperformed. The calculation results of each equivalent theory are compared with the results of3-Dsolid element model in different load cases, including the displacement, the stress and the normalfrequency. Results show that the sandwich theory is better than the other two equivalent theories.
     A research method of stability problem of honeycomb sandwich structures based on the FEA ispresented. The buckling factors of honeycomb sandwich structures with fixed size core are obtainedwith different faceplate thicknesses using homogenization core models. The solutions obtained withthe FEA approach are compared with the results from the conventional analytical formulas. Theresults obtained by two kinds of methods are basically consistent. The finite element modelsconsidering the geometry characteristics of the core are used. And the effect of the core’s geometrycharacteristics on the stability problem is discussed. A local instability phenomenon, called cell-wallbuckling, is introduced. A prediction analytical approach for the phenomenon is presented. And theresults are compared with that of the FEA to validate the proposed approach. The stability problem ofsatellite sandwich bearing cylinder under the multi-axis inertial loads is researched. The finite elementresults are obtained with different faceplate thicknesses and different ratios of vertical and horizontalinertial load. The related analysis equation for the multi-axis inertial loads is given. It can guide thebearing cylinder design.
     Design for structure connection stiffness and the equivalent method of the important connectionpart influence the design requirements satisfied or not, and the accuracy of results. The hydrazinetanks are apposed in the bearing cylinder. The stiffness and strength of hydrazine tank brackets arechanged through the strengthen frames. Compared with four different design schemes of thehydrazine tank bracket structure, the installation way is researched. The design principle of “the lowerstrong, the upper weak” for hydrazine tank system is proposed. To satisfy the design requirements, the hydrazine tank bracket structure is further improved.
     The connection modes of satellite structure are classified. The equivalent method of theimportant connection part is researched. Four equivalent methods, including MPC(Multi-PointConstraint) method, beam element method, bush element method and fastener element method,areused to simulate the bolt joints for normal mode analysis and linear static analysis. The advantagesand disadvantages of each equivalent method are listed.
     A multiobjective optimization method is presented for trusses of spacecraft antenna withappended structures. To set up an accurate finite element model for optimization design, the effect ofappended structure stiffness on the truss structure dynamic characters must be discussed. Thestructural topological configuration is decided iteratively using the surrogate model and theman-machine interactive method. For the surrogate model, optimal Latin hypercube sampling methodis used as the design of experiments strategy, and radial basis functions are selected as theapproximation method. The multiobjective evolutionary algorithm NSGA-II which produces a set ofPareto front points and Pareto solutions is employed as the optimization strategy to tradeoff theminimization of weight and the maximization of natural frequency. The optimum solution is visuallychosen with the level diagrams (considering the design preference and no considering the designpreference). This method not only can maintain good design efficiency, but also increase the globalsearch capability. And it is very useful for the multiobjective optimization design of spacecraftstructure.
     Finally, for defining the vibration environment which is needed for spacecraft structure designand experiment verified, the load responses of spacecraft and launch-vehicle interfaces need to begiven in the coupled analysis. According to the dynamic characters, the equivalent models instead ofthe finite element model are used. The equivalent models consist of some single-degree-of-freedommass-springs. Based on the concept of modal efficient mass, the calculation formulas of theparameters of equivalent models are derived. Taken a satellite as an example, the equivalent modelsand the finite element model are respectively used in the coupled analysis of spacecraft andlaunch-vehicle. Then the results of the above two models are compared. It is demonstrated that theequivalent models can be used to replace the complex finite element model.
引文
[1]中国科学院空间领域战略研究组.中国至2050年空间科技发展路线图[M].北京:科学出版社,2009.
    [2]徐福祥,林华宝,侯深渊.卫星工程概论(上)[M].北京:宇航出版社,2003.
    [3]彭成荣.大型通信卫星平台技术发展研究[J].航天器工程,2000,9(4):4-15.
    [4] Conley P L. Space vehicle mechanisim: elements of successful design[M]. New York: JohnWily&Sons Inc,1997.
    [5]刘天雄,林益明,王明宇,等.航天器振动控制技术进展[J].宇航学报,2008,29(1):1-12.
    [6]马兴瑞,于登云,韩增尧,等.星箭力学环境分析与试验技术研究进展[J].宇航学报,2006,27(3):323-331.
    [7] Tibert G. Deployable tensegrity structures for space applications [D]. Stockholm: Royal Instituteof Technology,2002.
    [8] Hopkins M A, Dolvin D J, Paul D B, et al. Structure technology for future aerospace system[R].AIAA-1998-1869,1998.
    [9] Darooka D K, Jensen D W. Advanced space structure concepts and their development [R].AIAA-2001-1257,2001.
    [10] Kim B J, Lee D G. Development of a satellite structure with the sandwich T-joint[J]. CompositeStructure,2010,92(2):460-468.
    [11] Kodiyalam S, Nagendra S, DeStefano J. Composite sandwich structure optimization withapplication to satellite components[J]. AIAA Journal,1996,34(3):614-621.
    [12]陈烈民.航天器结构与机构[M].北京:中国科学技术出版社,2005.
    [13] Clough R W. Early history of the finite element method from the view point of a pioneer[J].International Journal of Numerical Methods in Engineering,2004,60(1):283-287.
    [14] Clough R W. The finite element method in plane stress analysis[C]. Proceedings of the SecondASCE Conference on Electronic Computation. Pittsburgh, PA:1960.
    [15] MSC. Sorftware Corporation. MSC.Nastran quick reference guide[M]. Santa Ana:MSC.Sorftware Corporation,2002.
    [16] Vidal C A, Filho M K, Takahashi W K, et al. Application of sensitivity analysis for optimizationof a satellite structure[J]. Journal of Spacecraft and Rockets,2000,37(3):416-418.
    [17] Zhang J, Liang L, Liu M H, et al. Floating design of meteorological satellite structure for thermalstress release and vibration attenuation[R]. AIAA-2008-7625,2008.
    [18] Wijker J J. Spacecraft Structures[M]. Berlin Heidelberg: Springer-Verlag,2008.
    [19] Vinson J R. The behavior of shells composed of isotropic and composite materials[M]. London:Kluwer Academic Publishers,1993.
    [20] Niu M C Y. Airframe stress analysis and sizing[M].2nd Edition. Hong Kong: Hong KongConmilit Press LTD,1999.
    [21] Mukhopadhyay V. Blended-Wing-Body (BWB) fuselage structural design for weightreduction[R]. AIAA-2005-2349,2005.
    [22] Vinson J R. Sandwich structures: past, present, and future[M].//Thomsen O T, Bozhevolnaya E,Lyckegaard A. Sandwich structures7: advancing with sandwich structures and materials. Berlin:Springer,2005:3-12.
    [23]杨亚政,杨嘉陵,曾涛,等.轻质多孔材料研究进展[J].力学季刊,2007,28(4):503-516.
    [24]张广平,戴干策.复合材料蜂窝夹芯板及其应用[J].纤维复合材料,2000,(2):25-27.
    [25] Allen H G. Sandwich construction today and tomorrow[J]. Sandwich Constructions,1989,19-21:3-22.
    [26] Reissner E. On bending of elastic plates[J]. Quarterly of Applied Mathematics,1947,5:55-68.
    [27] Hoff N J. Bending and buckling of rectangular sandwich plates[R]. NACA/TN-2225,1950.
    [28]杜庆华.三合板的一般弹性理论[J].物理学报,1954,10(4):395-411.
    [29]徐胜今,孔宪仁,王本利,等.正交异性蜂窝夹层板动、静力学问题的等效分析方法[J].复合材料学报,2000,17(3):92-95.
    [30] Guj L, Sestieri A. Dynamic modeling of honeycomb sandwich panel[J]. Archive of AppliedMechanics,2007,77(11):779-793.
    [31] Soliman H E, Makhecha D P, Vasudeva S, et al. On the static analysis of sandwich panels withsquare honeycomb core[R]. AIAA-2006-2168,2006.
    [32]翟光,杨小平.多夹心层蜂窝板动力学特性分析与仿真[J].计算机仿真,2006,23(8):44-46.
    [33]翟光,杨小平,梁斌,等.基于等效理论的多夹心层蜂窝板模态分析[J].机械强度,2007,29(3):517-520.
    [34]张广成,赵景利.蜂窝夹层结构复合材料的力学性能研究[J].机械科学与技术,2003,22(3):280-282.
    [35]周祝林,徐玉珍,孙佩琼.复合材料平板及蜂窝芯综合性能测试与分析[J].纤维复合材料,2002,(4):17-20.
    [36] Jing Y A, Guo S J, Han J T, et al. Fabrication and compressive performance of plain carbon steelhoneycomb sandwich panels[J]. Journal of University of Science and Technology Beijing,2008,15(3):255-560.
    [37] Vinson J R. Optimum design of composite honeycomb sandwich panels subjected to uniaxialcompression[J]. AIAA Journal,1986,24(10):104-110.
    [38]崔德刚.结构稳定性设计手册[M].北京:航空工业出版社,1996.
    [39] Ley R P, Lin W, Mbanefo U. Facesheet wrinkling in sandwich structures[R].NASA/CR-1999-208994,1999.
    [40] United States Department of Defense. Structural sandwich composites[M]. Washington D C:Department of Defense,1968.
    [41] Spadoni A, Ruzzene M, Scarpa F. Global and local linear buckling behaviour of chiral cellularstructure[J]. Physica Status Solid (B),2005,242(3):695-709.
    [42] Scarpa F, Blain S, Lew T. Elastic buckling of hexagonal chiral cell honeycombs[J]. CompositesPart A:Applied Science and Manufacturing,2007,38(2):280-289.
    [43] Vonach W K, Rammerstorfer F G. Wrinkling of thick orthotropic sandwich plates under generalloading conditions [J]. Archive of Applied Mechanics,2000,70(5):338-348.
    [44] Hadi B K. Wrinkling of sandwich column: comparison between finite element analysis andanalytical solutions [J]. Composite Structures,2001,53(4):477-482.
    [45] Fagerberg L. Wrinkling of sandwich panels for marine applications [D]. Stockholm: RoyalInstitute of Technology,2003.
    [46] Rose C A, Moore D F, Knight N F, et al. Finite element modeling of the buckling response ofsandwich panels[R]. AIAA-2002-1517,2000.
    [47] Hohe J. A direct homogenization approach for determination of the stiffness matrix formicroheterogeneous plates with application to sandwich panels [J]. Composites Part B:Engineering,2003,34(7):615-626.
    [48] Rabczuk T, Kim J Y, Samaniego E, et al. Homogenization of sandwich structures[J]. InternationalJournal for Numerical Methods in Engineering,2004,61(7):1009-1027.
    [49] Léotoing L, Drapier S, Vautrin A. Using new closed-form solutions to set up design rules andnumerical investigations for global and local buckling of sandwich beams[J]. Journal ofSandwich Structures and Material,2004,6(3):263-289.
    [50] Abbadi A, Koutsawa Y, Carmasol A, et al. Experimental and numerical characterization ofhoneycomb sandwich composite panels[J]. Simulation Modelling Practice and Theory,2009,17(10):1533-1547.
    [51] Woo T H. Structural optimization of large spacecraft[R]. AIAA-92-1227,1992.
    [52] Wang G G, Shan S. Review of metamodeling techniques in support of engineering designoptimization[J]. Journal of Mechanical Design,2007,129(4):370-380.
    [53] Giunta A A. Use of data sampling, surrogate models, and numerical optimization in engineeringdesign[R]. AIAA-2002-0538,2002.
    [54] Simpson T W, Peplinski J D, Koch P N, et al. Metamodels for computer-based engineeringdesign: survey and recommendations[J]. Engineering with Computers,2001,17(2):129-150.
    [55] Montgomery D C.实验设计与分析[M].6th Edition.傅珏生,等译.北京:人民邮电出版社,2009.
    [56] Jin R, Chen W, Simpson T W. Comparative studies of metamodeling techniques under multiplemodeling criteria[J]. Structural and Multidisciplinary Optimization2001,23(1):1-13.
    [57] Currin C, Mitchell T, Morris M, et al. Bayesian prediction of deterministic functions,withapplications to the design and analysis of computer experiments[J]. Journal of the AmericanStatistical Association,1991,86(416):953-963.
    [58] Johnson M E, Moore L M, Ylvisaker D. Minimax and maximin distance design[J]. Journal ofStatistical Planning and Inference,1990,26(2):131-148.
    [59] Hedayat A S, Sloane N J A, Stufken J. Orthogonal arrays: theory and applications[M]. New York:Springer,1999.
    [60] Kalagnanam J R, Diwekar U M. An efficient sampling technique for off-line quality control[J].Technometrics,1997,39(3):308-319.
    [61] Meckesheimer M, Booker A J, Barton R R, et al. Computationally inexpensive metamodelassessment strategies[J]. AIAA Journal,2002,40(10):2053-2060.
    [62] Fang K T, Lin D K J, Winker P, et al. Uniform design: theory and application[J]. Technometrics,2000,43(3):237-248.
    [63] Simpson T W, Lin D K J, Chen W. Sampling strategies for computer experiments: design andanalysis[J]. International Journal of Reliability and Applications,2001,2(3):209-240.
    [64] Jin R, Chen W, Sudjianto A. An efficient algorithm for constructing optimal design of computerexperiments[J]. Journal of Statistical Planning and Inference,2005,134(1):268-287.
    [65] Wang G G. Adaptive response surface method using inherited Latin hypercube design points[J].Journal of Mechanical Design,2003,125(2):210-220.
    [66] Wang G G, Simpson T. Fuzzy clustering based hierarchical metamodeling for design spacereduction and optimization[J]. Engineering Optimization,2004,36(3):313-335.
    [67] Simpson T W, Mistree F. Kringing models for global approximation in simulation-basedmultidisciplinary design optimization[J]. AIAA Journal,2001,39(12):2233-2241.
    [68] Fang H B, Horstemeyer M F. Global response approximation with radial basis functions[J].Engineering Optimization,2006,38(4):407-424.
    [69] Clarke S M, Griebsch J H, Simpson T W. Analysis of support vector regression forapproximation of complex engineering analyses[J]. Journal of Mechanical Design,2005,127(6):1077-1087.
    [70] Simpson T W. Multidisciplinary design optimization[J]. Aerospace America,2005,43(12):34.
    [71] Eddy J, Lewis K. Multidimensional design visualization in multiobjective optimization[R].AIAA-2002-5621,2002.
    [72] Mattson C A, Messac A. Concept selection using s-Pareto frontiers[J]. AIAA Journal,2003,41(6):1190-1198.
    [73] Ligetti C, Simpson T W. Metamodel-driven design optimization using integrative graphicaldesign interfaces: Results from a job-shop manufacturing simulation experiment[J]. Journal ofComputing and Information Science in Engineering,2005,5(1):8-17.
    [74] Simpson T W, Iyer P S, Rothrock L, et al. Metamodel-driven interfaces for engineering design:Impact of delay and problem size on user performance[R]. AIAA-2005-2060,2005.
    [75] Chen W, Allen J K, Schrage D P, et al. Statistical experimentation methods for achievingaffordable concurrent systems design[J]. AIAA Journal,1997,35(5):893-900.
    [76] Wujek B A, Renaud J E. New adaptive move-limit management strategy for spproximateoptimization, Part1[J]. AIAA Journal,1998,36(10):1911-1921.
    [77] Wujek B A, Renaud J E. New adaptive move-limit management strategy for spproximateoptimization, Part2[J]. AIAA Journal,1998,36(10):1922-1934.
    [78] Toropov V, van Keulen F, Markine V, et al. Refinements in the multi-point approximation methodto reduce the effects of noisy structural responses[R]. AIAA-1996-4087,1996.
    [79] Alexandrov N, Dennis J E J, Lewis R M, et al. A trust region framework for managing the use ofapproximation models in optimization[J]. Structural Optimization,1998,15(1):16-23.
    [80] Rodríguez J E, Renaud J E, Watson L T. Trust region augmented lagrangian methods forsequential response surface approximation and optimization[J]. Journal of Mechanical Design,1998,120(1):59-66.
    [81] Wang G G, Dong Z, Aitchison P. Adaptive response surface method-a gobal optimization schemefor computation-intensive design problems[J]. Engineering Optimization,2001,33(6):707-734.
    [82]宋笔锋,刘晓东,李寿安,等.作战飞机方案和关键技术的决策理论与方法[M].北京:国防工业出版社,2010.
    [83]夏利娟,金咸定,汪庠宝.卫星结构蜂窝夹层板的等效计算[J].上海交通大学学报,2003,37(7):999-1001.
    [84]陈昌亚,郑晓亚,姜晋庆.卫星结构优化设计的建模问题[J].机械科学与技术,2005,24(1):66-69.
    [85]富明慧,尹久仁.蜂窝芯层的等效弹性参数[J].力学学报,1999,31(1):113-118.
    [86] Gibson L J, Ashby M F, Schajer G S, et al. The mechanics of two-dimensional cellularmaterials[J]. Proceedings of the Royal Society of London Series A,1982,382(1782):25-42.
    [87] Saidi A, Coorevits P, Guessasma M. Homogenization of a sandwich structure and validity of thecorresponding two-dimensional equivalent model[J]. Journal of Sandwich Structures andMaterial,2005,7(1):7-30.
    [88] Kaechele L E. Minimum-weight design of sandwich panels[R]. USAF Project Rand ResearchMemorandum RM-1895,1957.
    [89]姚骏,满孝颖,李应典,等.卫星承力筒的结构特点与应用分析[J].电子机械工程,2010,26(3):24-28.
    [90] Maly J R, Fowler E C, Biskner A C, et al. Structural models and dynamic measurements ofsatellite launch adapter structures[R]. AIAA-2009-2695,2009.
    [91]沈伯良.卫星健壮保障技术[M].上海:中国航天科技集团公司第八研究院可靠性中心,2002.
    [92]杨德庆,李应典,戴浪涛.卫星肼瓶系统减振优化设计[J].宇航学报,2005,26(6):804-807.
    [93] Koedinger M, Brissonnaud T. Spacebus3000-thermal contool[C]. Proceeding of the SixthEuropean Symposium on Space Environmental Control Systems. Noordwijk, Netherlands:1997.
    [94] Tam W H, Griffin P S, Jackson A C. Design and manufacture of a composite overwrappedpressurant tank assembly[R]. AIAA-2002-439,2002.
    [95] Tam W H, Jaekle Jr D E. Design and manufacture of an oxidizer tank with a surface tensionPMD[R]. AIAA-2005-3734,2005.
    [96] Tam W, Ballinger I, Jaekle Jr D E. Tank trade studies-an overview[R]. AIAA-2008-4940,2008.
    [97]于百胜,黄文虎,郑钢铁.通用有限元NASTRAN中的阻尼计算问题[J].强度与环境,2003,30(1):7-10.
    [98] Corporation M S. MSC.Nastran basic dynamic analysis user’s guide[M]. Los Angeles:MSC.Software Corporation,2004.
    [99]中国航空研究院.复合材料链接手册[M].北京:航空工业出版社,1994.
    [100] Hash H. Influence of fasterner flexibility on the prediction of load transfer and fatigue life formultiple-row joints[M].//Potter J M. Fatifue in mechanically fastened composite ang metallicjoints ASTM STP927Philadephia: American Sociery for Testing and Materials,1986:221-250.
    [101] Chung Y T, Sernaker M L, Peebles J H. Simulation flight boundary conditions for orbiterpayload modal survey[R]. AIAA-93-1605,1993.
    [102] Guo X, Cheng G D. Epsilon-continuation approach for truss topology optimization[J]. ActaMechanica Sinica,2004,20(5):526-533.
    [103] Levi F, Gobbi M. An application of analytical multi-objective optimization to truss structures[R].AIAA-2006-6975,2006.
    [104]隋允康,于新,叶宝瑞.应力和位移约束下桁架拓扑优化的有无复合体方法[J].固体力学学报,2004,25(3):355-359.
    [105]顾亦磊,陈昌亚.拓扑优化技术在桁架设计中的应用[C].结构及多学科优化工程应用与理论研讨会'2009(CSMO-2009).大连:2009.
    [106]潘晋,陈昌亚,王德禹.卫星结构的拓扑优化与灵敏度分析[J].宇航学报,2004,25(6):673-676.
    [107] Shi L S, Wang Y F, Sun H C. Approach for layout optimization of truss structures with discretevariables under dynamic stress,displacement and stability constraints[J]. Applied Mathematicsand Mechanics,2006,27(5):593-599.
    [108]崔海涛,桑韧,温卫东.应力和位移约束下连续体结构的拓扑优化[J].航空学报,2005,26(1):54-57.
    [109]陈建军,车建文,崔明涛,等.结构动力优化设计述评与展望[J].力学进展,2001,31(2):181-192.
    [110]陈珅艳,黄海,王利民.人机交互的航天器结构优化设计[J].计算力学学报,2004,21(4):510-512.
    [111]李东旭.挠性航天器结构动力学[M].北京:科学出版社,2010.
    [112] Simpson T W, Booker A J, Ghosh D, et al. Approximation methods in multidisciplinary analysisand optimization: a panel discussion[J]. Structural and Multidisciplinary Optimization,2004,27(5):302-313.
    [113] Giunta A A, Wojtkiewicz Jr S F, Eldred M S. Overview of modern design of experimentsmethods for computational simulations[R]. AIAA-2003-649,2003.
    [114] Queipo N V, Haftka R T, Shyy W, et al. Surrogate-based analysis and optimization[J]. Progressin Aerospace Sciences,2005,41(1):1-28.
    [115] Regis R G, Shoemaker C A. Improved strategies for radial basis function methods for globaloptimization[J]. Journal of Global Optimization,2007,37(1):113-135.
    [116] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
    [117] Jadaan O A, Rajamani L, Rao C R. Non-dominated ranked genetic algorithm for solvingmulti-objective optimization problems:NRGA[J]. Journal of Theoretical and AppliedInformation Technology2008,14(1):60-64.
    [118]张铁亮,丁运亮.复合材料加筋壁板的结构布局优化设计[J].南京航空航天大学学报,2010,42(1):8-12.
    [119] Mavris D, DeLaurentis D. An integrated approach to military aircraft selection and conceptevaluation[R]. AIAA-95-3921,1995.
    [120] Blasco X, Herrero J M, Sanchis J, et al. A new graphical visualization of n-dimensional Paretofront for decision-making in multiobjective optimization[J]. Information Sciences,2008,178(20):3908-3924.
    [121] Zio E, Bazzo R. A clustering procedure for reducing the number of representative solutions inthe Pareto front of multiobjective optimization problems[J]. European Journal of OperationalResearch,2011,210(3):624-634.
    [122] Messac A. Physical programming effective optimization for computational design[R].AIAA-96-1427,1996.
    [123] Wada B K, Bamford R, Garba J A. Equivalent spring-mass system:a physical interpretation[J].The Shock and Vibration Bulletin,1972,42(5):215-225.
    [124] Sedaghati R, Soucy Y, Etienne N. Efficient estimation of effective mass for complex structuresunder base excitations[J]. Canadian Aeronautics and Space Journal,2003,49(3):135-143.
    [125] Shunmugavel P. Modal effective masses for space vehicles[R]. AIAA-95-1252,1995.
    [126] Wijker J J. Mechanical vibrations in spacecraft design[M]. Berlin Heidelberg: Springer-Verlag,2004.
    [127] Craig R R, Bampton M C C. Coupling of substructures for dynamic analysis[J]. AIAA Journal,1968,6(7):1313-1319.
    [128] Draisey S. International space station,a deployment and modal test facility[C].34th COSPARScientific Assembly, the Second World Space Congress. Houston, Texas, USA:2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700