一类积分型全局最优性条件及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对全局最优的刻画一直是数学规划领域最核心的研究内容之一。已有研究结果多以最优性条件的形式给出,依据所使用的运算工具,大致可划分为微分型与积分型两类。微分型最优性条件以导数/广义导数运算为基础,且多为局部最优条件,目前已有的绝大多数研究均属此类。积分型最优性条件则以积分运算为基础构建,考虑到积分运算的‘凸化’效果,该类型最优性条件能够较好的刻画问题的全局最优解与最优值,但已有研究相对较少。
     本文研究一类积分型全局最优性条件,包含分别对全局最优值与全局最优解的积分刻画。对此积分型全局最优性条件及其性质、数值计算及在若干优化问题中的应用进行了研究,具体内容如下:
     1.第二章为积分型全局最优性条件及其性质与数值实现的研究。首先追溯了积分型全局最优性条件的历史,指出该条件中关于最优值的表述源于Laplace方法,而对最优解的表述最早由Pincus提出。然后对此最优条件进行研究,一方而,指出若可行域由紧致集松弛为Borel集(不一定有界),最优值积分型全局最优性条件依然成立;若优化问题的全局最优解不唯一为有限多个时,Pincus所指出的最优解积分型全局最优性条件将不再成立,此时得到的是这有限多个全局最优解的某个凸组合。另一方面,基于最优解的积分型全局最优性条件,给出了求解全局优化的一个概念性算法,并结合蒙特卡洛方法,给出算法的数值实现。抽取典型全局优化(包括无约束/箱式约束、约束及非光滑)考题进行了数值验证。计算结果表明该算法可以得到全部考题的全局最优解与最优值,且具有无需初始点、对函数性态要求较低且可保证解的全局最优等特点。最后,对可微优化问题,研究了积分型全局最优性条件与传统微分型最优性条件的联系。
     2.第三章为积分型全局最优性条件在极大极小问题中的应用研究。一方面,研究离散测度下的积分型全局最优性条件在有限极大极小问题中的应用,得到的恰为求解有限极大极小问题的凝聚函数法(又称为熵函数法),指出凝聚函数富含极大值函数的高阶信息。特别的,对于凸问题,(叉熵)凝聚函数的一阶导数,在光滑参数趋向于无穷大时,为极大值函数的某个次梯度。另一方面,研究Lebesgue测度下的积分型全局最优性条件在半无限极大极小问题中的应用,得到半无限极大极小问题的一类积分型光滑逼近。对由此得到的积分型光滑函数的性质进行了研究,特别的,澄清了已有一L作中对此光滑函数关于光滑参数单调性的误解。而对此光滑函数的导数计算表明,该函数富含极大值函数的统计信息,并通过对其共轭函数—熵函数的Legendre级数展开对此现象进行了初步阐释。
     3.第四章为积分型全局最优性条件在变分不等式中的应用研究。基于最优值的积分型全局最优性条件,得到了变分不等式的一个新的光滑gap函数,利用此光滑gap函数可将变分不等式转化为一个等价的光滑优化问题。并结合最优解的积分型全局最优性条件,设计了基于此光滑gap函数的下降类算法。详细讨论了光滑gap函数的性质,其中,稳定点特性表明,在一定条件下,由任意初始点得到的等价优化问题的稳定点皆为全局最优解,即为变分不等式问题的解。基于光滑gap函数的下降方向,分别结合精确线搜索与Armijo非精确线搜索给出了求解变分不等式问题的下降类算法。该类算法无需对函数的Hessian阵进行计算,从而节省计算量与内存空间,并证明了其全局收敛性。针对箱式约束变分不等式问题,给出了光滑gap函数、gap函数下降方向及下降类算法的显式表达,并抽取典型考题对下降类算法进行数值验证。
     4.第五章为积分型全局最优性条件在锥约束优化中的应用研究。借助于值函数及其共轭函数,应用最优值积分型全局最优性条件,得到凸锥约束下的凸规划问题及其对偶问题的对数障碍函数,从而对对数障碍函数的由来给出一个有趣的阐释。进一步地,基于对对数障碍函数推导过程的分析,给出一类利用积分型全局最优性条件构造对偶问题的新方法,若值函数为凹的,则此对偶体系的强对偶条件成立,即原问题与该方法所构造对偶问题的最优值相等。尤其对于利用共轭运算构造对偶问题而较难计算的问题,该方法经运算可得到显式的对偶问题。
The characterization of global optimality, which is studied as the optimality condition, is one of the most important and corn issues in the field of mathematical programming. From the viewpoint of mathematical operation, the formulation of optimality condition can be divided into two types, i.e. the differential one and the integral one. The differential type of optimality condition, which is also known as the gradient-based one, has been studied much more extensively and profoundly during the past50years, although it just describes a local optimal characteristic. Contrast to the differential one, the integral type of optimality condition is often viewed as the global optimality condition since the integral operation may have some convexity effects on the approximated functions. However, the studies of integral optimality conditions are still relatively few until now.
     In this dissertation, we mainly study a class of integral global optimality condition, which is composed of the integral characteristics of global optimal value and the integral characteristics of global optimal solution. We investigate the theoretical properties, computational aspects and some applications of the IGOC.
     The main results of this thesis are as follows:
     1. Some basic theoretical properties and computational aspects of IGOC are studied in chapter2. Firstly, we review the literature and point out that the IGOC of optimal value probably goes back to Laplace' method and the IGOC of optimal solution was discovered by Pincus. Based on this, we point out that if the optimization problem has finite global optima, Pincus' condition will result in a convex combination of the global optimal vectors. Secondly, we study the computational aspects of IGOC and propose a conceptual algorithm for global optimization problems based on the IGOC of optimal solution. In the proposed algorithm, Monte-Carlo method is employed to compute the integration in the formula of IGOC. Numerical results on a set of famous optimization test problems (including unconstrained/box constrained, constrained and nons-mooth problems) show that our algorithm owns some good features, such as does not require the initial point, does not require the differentiability of functions and always can obtains the global optimal solution. At last, we also reveal the relationships between the IGOC of optimal value and the classical gradient-based optimality conditions.
     2. We analyze the application of1GOC in min-max problem in chapter3. On one hand, we discuss the IGOC with discrete measure and finite min-max problem. In this situation, we obtain the aggregate function method (also called entropic method), which is a mature method for finite min-max problem. The aggregate function in entropic method contains high-order information of max-function. Especially, the first-order gradient of aggregate function is just one sub-gradient of max-function with convex components, when the smoothing parameter tends to infinity. On the other hand, we discuss the IGOC with Lebesgue measure and semi-infinite min-max problem. We obtain one integral smooth approximation of semi-infinite min-max problem and discuss the detailed properties of the integral smoothing function. Especially, we clarify the mistake of monotonicity of this integral smoothing function with the smoothing parameter. Furthermore, we propose that this integral smoothing function contains high-order information of max-function and give an explanation of this by the Legendre series expansion of entropy function.
     3. In chapter4, a new gap function which is a smooth approximation of Auslender's gap function is obtained by the using of IGOC of optimal value in variational inequality problem (VIP). And VIP can be formulated as an equivalent differentiable optimization problem. We discuss properties of the new smooth gap function. Especially, under appropriate assumptions on VIP, any stationary point of the optimization problem is a global optimal solution, and hence solves the VIP. Based on the IGOC of optimal solution, we discuss descent methods for solving the equivalent optimization problem. Two algorithms that uses the descent direction with exact line search rule and with Armijo-type steplength rule are proposed. The global convergence results of these algorithms are also established. At last, the analytic expressions of smoothing gap function、descent direction and the descent algorithms for box VIP are proposed. Some test problems are calculated to confirm the descent algorithm.
     4. In chapter5, the log-barrier function and a systematic way to obtain a dual problem is obtained by the using of IGOC of optimal value in cone-constrained optimization. With value function and its conjugate function, we obtain the log-barrier function for cone-constrained optimization. Furthermore, the application technique of IGOC with value function and its conjugate function provides a systematic duality method in cases when dual problem can not be obtained explicitly from the conjugation.
引文
[1]Szego G P, Dixon L C W. Towards Global Optimization [M]. North-Holland,1975.
    [2]Szego G P, Dixon L C W. Towards Globla Optimization 2 [M]. North-Holland,1977.
    [3]Floudas C A, Pardalos P M. Frontiers in Global Optimization [M]. New York:Springer, 2003.
    [4]Weise Thomas. Global Optimization Algorithms Theory and Application [M/OL]. University of Kassel, Distributed Systems Group:Self-Published,2009. http://www.it-weise.de/.
    [5]Floudas C A, Pardalos P M. Encyclopedia of Optimization [M]. Berlin:Kluwer Academic Publishers,2008.
    [6]Dzemyda G, Saltenis V, Zilinskas A. Stochastic and Global Optimization [M]. New York: Springer-Verlag GmbH,2002.
    [7]Floudas C A. Global optimization in design and control chemical process systems [J]. Journal of Process Control,2000,1:125-134.
    [8]Pardalos P M, Romeijn H E, Tuy H. Recent developments and trends in global optimization [J]. Journal of Computational and Applied Mathematics,2000,124 (1-2): 209-228.
    [9]Neumaier A. Complete search in continuous global optimization and constraint satisfaction [M]. A Iserles. Acta Numerica:Cambridge University Press.2004.271-369.
    [10]Floudas C A, Akrotirianakis I G, Caratzoulas S, Meyer C A, Kallrath J. Global optimization in the 21st century:advances and challenges [J]. Computers & Chemical Engineering,2005,29 (6):1185-1202.
    [11]Floudas C A, Gounaris C E. A review of recent advances in global optimization [J]. Journal of Global Optimization,2009,45:3-38.
    [12]Edwin K P Chong. Stanislaw H Zak. An Introduction to Optimization.2nd Edition[M]. Chichester, UK:Wiley-Interscience,2001.
    [13]Urmila Diwekar. Introduction to Applied Optimization[M]. New York:Springer,2008.
    [14]Christodoulos A Floudas. Deterministic Global Optimization:Theory, Methods and Applications[M]. Kluwer Academic Publishers,1999.
    [15]Godfrey C Onwubolu, Badu B V. New Optimization Techniques in Engineering [M]. Berlin/Heidelberg,Germany:Springer-Verlag,2004.
    [16]Liberti L. Maculan N. Global Optimization:From Theory to Implementation[M]. Berlin: Kluwer Academic Publishers.2006.
    [17]John F. Extremum problems with inequalities as subsidiary conditions. Friedrichs K O, Neugebauer O E, Stoker J J. Studies and Essays:Courant Anniversary Volume. New York:Wiley-Interscience.1948. pp.187-204.
    [18]Kuhn H W, Tucker A W. Nonlinear programming [C]. Berkeley, CA:J.Neyman. eds. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability,1951, pp.481-492.
    [19]Karush W. Minima of Functions on Several Variables With Inequalities as Side Conditions[D]. Department of Mathematics, University of Chicago,1939.
    [20]Bazaraa M S, Shetty C M. Nonlinear Programming:Theory and Algorithms [M]. New York:Wiley,1979.
    [21]Avriel M. Nonlinear Programming:Analysis and Methods [M]. New York:Dover Publications,2003.
    [22]Rockafellar R T. Convex Analysis [M]. Princeton:Princeton University Press,1970.
    [23]Bazaraa M S, Sherali H D, Shetty C M. Nonlinear Programming:Theory and Algorithms [M]. Hoboken:Wiley-Interscience,2006.
    [24]Halmos P R. Measure Theory [M]. Beijing:Springer-Verlag,1998.
    [25]程士宏.测度论与概率论基础[M].北京:北京大学出版社,2006.
    [26]严加安.测度论讲义[M].北京:科学出版社,2004.
    [27]严世健,王隽骧,刘秀芳.概率论基础[M].北京:科学出版社,1982.
    [28]严世健,刘秀芳.测度与概率[M].北京:北京师范大学出版社,2003.
    [29]Cohn D L. Measure Theory [M]. Boston:Birkhauser,1980.
    [30]张恭庆,林源渠.泛函分析讲义(上)[M].北京:北京大学出版社.1987.
    [31]Chew Soohong. Zheng Quan. Integral Global Optimization:Theory. Implementation and Application [M]. Berlin:Springer Verlag,1988.
    [32]Zheng Q. Integral global optimization of robust discontinuous functions [J]. Computers and Mathematics with Applications.1991.21:17-24.
    [33]Zheng Q. Robust analysis and global minimization of a class of discontinuous functions (I) [J]. Acta Mathematicae Applicatae Sinica (English Series),1990,6 (3):205-223.
    [34]Zheng Q. Robust analysis and global minimization of a class of discontinuous functions (Ⅱ) [J]. Acta Mathematicae Applicatae Sinica (English Series),1990,6 (4):317-337.
    [35]Galperin E A, Pan Z, Zheng Q. Applications of global optimization to implicit solution of partial differential equations. Boiti M, Martina L, Pempinelli F, eds. Nonlinear Evolution Equations and Dynamical Systems. World Scietific,1992. pp.409-417.
    [36]Zheng Q, Zhuang D. Finite dimensional approximation to soluteions of minimizeation problems in function spaces [J]. Optimization.1992.26:33-50.
    [37]He Zh, Cui H Q. Zheng Q. Finite dimensional approximation to global minima-An integral approach[J]. OR Transactions,2005,9:21-31.
    [38]Tu R, Zheng Q. Integral global optimization method in statistical applications[J]. Computer and Mathematics with Applications,1993,25:9-18.
    [39]Pan X C, Zheng Q. Global optimum shape design [J]. Computers and Mathematics with Applications,1999,37:41-58.
    [40]Hiriart-Urruty J-B. Conditions for global optimality [M]. Horst R, Pardalos P M, eds. Handbook of Global Optimization. Dordrecht/Boston/London:Kluwer Academic,1995.
    [41]Pincus M. A closed form solution of certain programming problems [J]. Operations Research,1968,16:690-694.
    [42]Metropolis N, Ulam S. The Monte Carlo method [J]. Journal of American Statistical Association,1949,44:335-341.
    [43]Pincus M. A Monte-Carlo method for the approximate solution of certain types of constrained optimization problems [J]. Operations Research,1970,18:1225-1228.
    [44]Charnes A, Wolfe M. Extended Picus theorems and convergence of simulated annealing [J]. International Journal of Systems Science,1989,20 (8):1521-1533.
    [45]Fang S-C, Wu Soon-Yi. Solving min-max problems and linear semi-infinite programs [J]. Computers & Mathematics with Applications,1996,32 (6):87-93.
    [46]Stephen M Stigler. Laplace's 1774 memoir on inverse probability [J]. Statistical Science, 1986,1 (3):359-378.
    [47]Erdelyi A. Asymptotic Expansions [M]. New York:Dover,1965.
    [48]Henrici P. Applied and Computational Complex Analysis [M]. New York:Wiley,1977.
    [49]Hsu L C. Approximations to a class of double integrals of functions of large mumbers[J]. American Journal of Mathematics,1948,70:698-708.
    [50]Hsu L C. A theorem of the asymptotic behavior of a multiple integral [J]. Duke Mathematical Journal.1948,15:623-632.
    [51]Hsu L C. On the asymptotic evaluation of a class of multiple integral involving a parameter [J]. American Journal of Mathematics,1951,73:625-634.
    [52]Rooney P G. Some remarks on Laplace's method [J]. Transactions of the Royal Society of Canada III,1953,47:29-34.
    [53]Lasserre J B. Why the logarithmic barrier function in convex and linear programming? [J]. Operations research letters,2000,27:149-152.
    [54]Lasserre J B, Zeron E S. Lp-norms, log-barriers and cramer transform in optimization [J]. Set Valued Analysis,2010,18 (3-4):513-530.
    [55]李建宇.非光滑力学问题的数学规划法研究[D].大连:大连理工大学工业装备结构分析国家重点实验室,运载工程与力学学部,工程力学系,大连理工大学,2007.
    [56]周广路,王长钰,张玉忠.半无限规划问题的一个有效解法[J].计算数学.1999,21(1):1-8.
    [57]Sheu R L, Wu S Y. Combined entropic regularization and path-following method for solving finite convex min-max problems subject to infinitely many linear constraints [J]. Journal of Optimization Theory and Applications 1999,101 (1):167-190.
    [58]Lin Chih-Jen, Fang Shu-Cherng, Wu Soon-Yi. An unconstrained convex programming approach to linear semi-infinite programming [J]. SIAM journal of Optimization,1998, 8 (2):443-456.
    [59]Teboulle M. Nonlinear perturbations for linear semi-infinite optimization problems [C]. Honolulu, Hawaii:Proceedings of the 29th Conference on Decision and Control.1990.
    [60]Doljansky M, Teboulle M. An interior proximal algorithm and the exponential multiplier method for semidefinite programming [J]. SIAM Journal of Optimization,1998,9:1-13.
    [61]Lasserre J-B. Linear and Integer Programming vs Linear Integration and Counting:A Duality Viewpoint [M]. Dordrecht:Springer,2009.
    [62]Lasserre J-B. Generating functions and duality for integer program [J]. Discrete Optimization,2004,1:167-187.
    [63]Brion M, Vergne M. Residue formulae, vector partition functions and lattice points in rational polytopes [J]. Journal of American Mathematical Society,1997,10:797-833.
    [64]Gomory R E. Some polyhedra related to combinatorial problems [J]. Linear Algebra Applications,1969,2:451-458.
    [65]Lasserre J-B. Integer programming. Barvinok's counting algorithm and Gomory relaxations [J]. Operations Research Letters,2004.32:133-137.
    [66]Barvinok A I.A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed [J]. Mathematical Methods of Operations Research,1994. 19:769-779.
    [67]Lasserre J-B. A disrete Farkas lemma [J]. Discrete Optimization,2004,1 (1):67-75.
    [68]Bacelli F. Cohen G, Olsder J. Quadrat J P. Syncronization and Linearity[M]. New York: Wiley.1992.
    [69]Moral P Del. Maslov optimization theory:optimality versus randomness. Kolokoltsov V N, Maslov V P. Idempotency Analysis and Applications. Dordrech/Boston/London: Kluwer Academic Publishers,1997, pp.243-302.
    [70]Auslender A. Optimisation:Methodes Numeriques [M]. Paris:Masson,1976.
    [71]Hearn D W. The gap function of a convex program [J]. Operations Research Letters, 1982.1:67-71.
    [72]Wolfe P. A duality theorem for nonlinear programming [J]. Quarterly of Applied Mathematics,1961,19:239-244.
    [73]Fukushima M. Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems [J]. Mathematical Programming Series B, 1992,53:99-110.
    [74]Auchmuty G. Variational principles for variational inequalities [J]. Numerical Functional Analysis and Optimization,1989,10:863-874.
    [75]Lasson T, Patriksson M. A class of gap functions for variational inequalities [J]. Mathematical Programming,1994,64:53-79.
    [76]Patriksson M. On the convergence of descent methods for monotone variational inequalities [J]. Operations Research Letters,1994,16:265-269.
    [77]Wu J H, Florian M, Marcotte P. A general descent framework for the monotone variational inequality problem [J]. Mathematical Programming,1993,61:281-300.
    [78]Zhu D L, Marcotte P. Modified descent methods for solving the variational inequality problem[J]. Operations Research Letters,1993,14:111-120.
    [79]Zhu D L, Marcotte P. An extended descent framework for variational inequalities [J]. Journal of Optimization and Applications,1994,80:349-366.
    [80]Li X S. An aggregate function method for nonlinear programming [J]. Science in China (A),1991,34(12):1467-1473.
    [81]Li X S. An efficient approach to a class of non-smooth optimization problems [J]. Science in China (A),1994,37 (3):323-330.
    [82]Li Xingsi. Entropy and Optimization[D]. Liverpool:Department of Civil Engineering, University of Liverpool,1987.
    [83]Li Xingsi. An Entropy-based Aggregate Method for Minimax Optimization [J]. Engineering Optimization,1992,18:277-285.
    [84]李兴斯.非线性极大极小问题的一个有效解法[J].科学通报,1991,36(19):1448-1450.
    [85]Li X S, Fang S C. On the entropic regularization method for solving Min-Max problems with applications [J]. Mathematical Methods of Operations Research,1997,46 (1): 119-130.
    [86]Charalambous C, Conn A R. An efficient method to solve the minimax problem directly [J]. SIAM Journal on Numerical Analysis,1978,15:162-187.
    [87]Pillo G D, Grippo L, Lucidi S. A smooth method for the finite min-max problem [J]. Mathematical Programming,1993,60:187-214.
    [88]Han S P. Variable metric methods for minimizing a class of nondifferentiable functions [J]. Mathematical Programming,1981,20:1-13.
    [89]Vardi A. New minimax algorithm[J]. Journal of Optimization Theory and Applications, 1992,75:613-634.
    [90]Zhou J L, Tits A L. An SQP algorithm for finely discretized continuous minimax problems and other minimax problems with many objective functions[J]. SIAM Journal on Optimization,1996,6:461-487.
    [91]姜昱汐,潘少华,李兴斯.熵正则化方法与指数(乘子)罚函数法之间的关系[J].高等学校计算数学学报,2005,27(4):355-362.
    [92]Oko So. Surrogate methods for linear inequalities [J]. Journal of Optimization Theory and Applications,1992,72:247-268.
    [93]Yang K, Murty K G. New iterative methods for linear inequalities [J]. Journal of Optimization Theory and Applications,1992,72:163-185.
    [94]Fang S-C, Puthenpura S. Linear Optimization and Extensions:Theory and Algorithms [M]. New Jersey:Prentice Hall,1993.
    [95]Rajasekera J R, Fang S-C. Derving an unconstrained convex program for linear program [J]. Journal of Optimization Theory and Applications,1992,75:603-612.
    [96]李兴斯.解非线性规划的一个可微”准”精确惩罚函数方法[J].科学通报,1991,19:1451-1453.
    [97]潘少华,李兴斯.准精确惩罚函数法的渐进性分析[J].高等学校计算数学学报,2007,29(1):47-56.
    [98]Huard P. A method of centers by upper-bounding functions with applications. Rosen J B, Mangasarian O L, Pitter K, eds. Nonlinear Programming, Proceeding of A Symposium. New York:Academic Press,1970, pp.1-30.
    [99]Huard P. Resolution of Mathematical Programming with Nonlinear Constraints by the Method of Centers. Abadie J. Nonlinear Programming. Amsterdam:North-Holland. 1967. pp.207-219.
    [100]Cheng F Y. Li Xingsi. Generalized center method for multi-objective engineering optimization[J]. Engineering Optimization.1999.31 (5):641-661.
    [101]李兴斯,张崎.谭涛.多目标结构优化设计的中心法[J].力学学报,2005,37(5):606-610.
    [102]Xingsi Li, Gengdong Cheng, Changsong Dongye. A central path-following algorithm for multi-objective optimization of large-scale structures [C]. Xi'an, China:Proceedings of the First China-Japan-Korea Joint Symosium on Optimization of Structural and Mechanical Systems. Oct 31-Nov 4,1999.
    [103]张丽丽,李兴斯,李建宇.多目标优化问题中心法的解的性质[J].运筹与管理,2007,16(5):111-116.
    [104]Nesterov Y. Smoothing minimization of nonsmooth functions [J]. Mathematical Programming,2005.103:127-152.
    [105]Ellis R S. Entropy, Large Deviations, and Statistical Mechanics [M]. New York: Springer-Verlag,1985.
    [106]James A B. Large Deviation Techniques in Decision, Simulation and Estimation [M]. New York:Wiley,1990.
    [107]Connell N O, Lewis J T, Russell Raymond. An introduction to large deviations for teletraffic engineers. Performance 96 Tutorials, Laboratoive de Communication, EPFL, 1997.
    [108]Donsker M D, Varadhan S R. Asymptotic evaluation of certain markov process expectations for large time Ⅰ [J]. Communications on Pure and Applied Mathematics, 1975,28:1-47.
    [109]Donsker M D, Varadhan S R. Asymptotic evaluation of certain markov process expectations for large time Ⅱ [J]. Communications on Pure and Applied Mathematics, 1975,28:279-301.
    [110]Donsker M D, Varadhan S R. Asymptotic Evaluation of Certain Wieners Integrals for Large Time [C]. Cumberland Lodge, Windsor Great Park, London:Functional Integration and Its Applications. pp.15-33. Proceedings of the International Conference. April 1974. Edited by A.M.Arthurs, Clarendon, Oxford.1975.
    [111]Donsker M D, Varadhan S R. Asymptotics for the wiener sausage [J]. Communications on Pure and Applied Mathematics,1975,28:525-565.
    [112]Donsker M D, Varadhan S R. On a variational formula for the principle eigenvalue for Operators with a maximum principle [J]. Proceedings of the National Academy of Science of the United States of America,72:780-783.
    [113]Varadhan S R S. Asymptotic probabilities and differential equations [J]. Communications on Pure and Applied Mathematics,1966,19:261-286.
    [114]哈代G H,李特伍德J E.波利亚G(英)著,越民义译.不等式(第一版)[M].北京:科学出版社.1965.
    [115]Mangasarian O L. Nonlinear Programming [M]. New York:McGxaw-Hill Book Company,1969.
    [116]Zangwill W I. Nonlinear Programming:A Unified Approach[M]. New York: Englewood Cliffs,1969.
    [117]Henrici P. Applied and Computational Complex Analysis [M]. Vol.2. New York: Wiley,1977.
    [118]Feller W. An Introduction to Probability Theory and Its Applications [M]. New York: Wiley,1960.
    [119]Bonnans F J, Shapiro A. Perturbation Analysis of Optimization Problems[M]. New York:Springer-Verlag.2000.
    [120]Yosida K. Functional Analysis [M]. Berlin:Springer-Verlag,1965.
    [121]李兴斯.非线性极大极小问题的一个有效解法[J].科学通报.1992.36(19):1448-1450.
    [122]Polak E. On the mathematical foundations of nondifferentiable optimization in engineering design [J]. SI AM Review.1987,29 (1):21-91.
    [123]Polak E, Pister K S, Ray D. Optimal design of framed structures subject to earthquakes [J]. Engineering Optimization,1976,12:65-71.
    [124]Bonnans J F, Shapiro A著,张立卫(译).最优化问题的扰动分析[M].北京:科学出版社,2008.
    [125]黄震宇,沈祖和.解一类非线性极大极小问题的熵函数法[J].科学通报.1996,41(17):1550-1554.
    [126]Dafermos S. An iterative scheme for variational inequalities [J]. Mathematical Programming, Series A,1983,26:40-47.
    [127]Pang J S, Chan D. Iterative methods for variational and complementarity problems [J]. Mathematical Programming Series B,1982,24:284-313.
    [128]Fukushima M. Merit functions for variational inequality and complementarity problems. F.Giannessi, G.Di Pillo. eds. Nonlinear Optimization and Applications. New York: Plenum Press,1996, pp.155-170.
    [129]Fischer A, Jiang H Y. Merit functions for complementarity and related problems:A survey [J]. Computational Optimization and Applications,2000,17:159-182.
    [130]Hearn D W. The gap function of a convex program [J]. Operations research letters. 1982.1:67-71.
    [131]Marcotte P. A new algorithm for solving variational inequalies with applications to the traffic assignment problem [J]. Mathematical Programming Series B,1985.33: 339-351.
    [132]Kanzow C. Some noninterior continuation methods for linear complementarity problems [J]. SI AM on Matrix Analysis and Applications.1996.17:851-868.
    [133]Burke J V, Xu Song. The global linear convergence of a noninterior path following algorithm for linear complementarity problems [J]. Mathematics of Operations Research. 1998,23:719-734.
    [134]Guler O. Barrier functions in interior point methods [J]. Mathematics of Operations Research,1996,21:860-885.
    [135]Nesterov Y, Nemirovskii A. Interior-Point Polynomial Methods in Convex Programming [M]. SIAM, Philadelphia,1994.
    [136]Storn R, Price K. Different evolution:a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization,1997,11: 341-359.
    [137]Beale E M.On an iterative method of finding a local minimum of a function of more than one variable[R]. Princeton, Statistical Techniques Research Group, Princeton University,1958.
    [138]Bohachevsky M E, Johnson M E, Stein M L. Generalized sumulated annealing for function optimization [J]. Technometrics,1986,28:209-217.
    [139]Abdel-Rahman Hedar's Homepage. [J/OL]. http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm.
    [140]Horst R, Pardalos P M. Handbook of Global Optimization[M]. Dordrecht, Boston, London:Kluwer Academic Publishers,1995.
    [141]Yao Yong. Dynamic tunneling algorithm for global optimization [J]. IEEE Transactions on Systems,Man,and Cybernetics,1989,19 (5):1222-1230.
    [142]Michalewicz Z. Genetic Algorithms+Data Structures=Evolution Programs[M]. Berlin/Heidelberg/New York:Springer-Verlag,1996.
    [143]Dixon G P, Szego L C. The global optimization problem:An introduction [M]. Dixon G P, Szego L C, eds. Toward Global Optimization. New York:North-Holland Publishing Company,1978, pp.1-15.
    [144]Bersini H, Dorigo M, Langerman S, Geront G, Gambardella L. Results of the first international contest on evolutionary optimisation (1st iceo) [C]. Proceedings of IEEE International Conference on Evolutionary Computation.1996.
    [145]Levy A V, Montalvo A. The tunneling algorithm for the global minimization of functions [J]. Society for Industrial and Applied Mathematics,1985,6:15-29.
    [146]Second (2nd) ICEO.Second International Contest on Evolutionary Optimization [J/OL]. http://iridia.ulb.ac.be/langerman/endICEO.html.
    [147]Storn R, Price K. Differential evolution:A simple and efficient heuristic for global optimization over continuous spaces [J]. Journal of Global Optimization,1997,11: 341-359.
    [148]Schwefel H P. Evolution and Optimum Seeking [M]. New York:John Wiley and Sons, 1995.
    [149]Bersini H, Dorigo M, Langerman S, Seront G, Gambardella L. Results of the first international contest on evolutionary optimization(1st ICEO) [C]. New York: Proceedings of the IEEE International Conference on Evolutionary Computation (ICEC). 1996, pp.611-615.
    [150]Ploak E, Higgins J E. Maynes D Q. A barrier function method for minimax problems [J]. Mathematical Programming,1992,54:155-176.
    [151]Lemarechal C, Mifflin R. Nonsmooth Optimization[M]. Oxford. England:Pergamon. 1978.
    [152]Hock W, Schitkowski K. Test Examples for Nonlinear Programming Sodes [M]. Berlin: Springer-Verlag,1981.
    [153]Asaadi J A. A computational comparison of some nonlinear programs [J]. Mathematical Programming,1973,4:144-154.
    [154]Madsen K, Schjaer-Jacobsen H. Linearly constrained minimax optimization [J]. Mathematical Programming,1978,14:208-223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700