模块化空间轴/径向伸缩式轮胎成型鼓导引机构分析与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文密切结合高端子午线轮胎成型装备自主创新的需求,在国家高技术研究发展计划(863计划)和国家自然科学基金项目的资助下,研究一种新型空间轴/径向伸缩式成型鼓导引机构的构型综合、自由度分析、运动学建模、刚体动力学建模等基础问题。在此基础上,结合具体设计案例,提出一种尺度设计的优化算法和设计流程。全文取得如下创造性成果:
     机构创新方面,在系统总结成型鼓导引机构拓扑结构特点以及其运动特性的基础上,基于模块化设计思想,采用“再生运动链”法,系统研究成型鼓导引机构基本驱动单元的构型设计,提出多种机构构型。针对成型鼓导引机构基本单元的设计要求,对构型方案进行优选。
     自由度分析方面,采用基于反螺旋理论的自由度分析原理,分析对基本驱动单元进行结构分解得到的平面六杆机构及三杆四副支链等基本运动链。运用螺旋理论,对各简单平面机构及支链进行局部自由度、虚约束及公共约束的判定,分别计算其自由度,并依据广义运动副替代原则,得到多个子链组合而成的成型鼓导引机构的自由度数及运动属性。
     运动学建模方面,根据成型鼓导引机构运动特性,建立详细完备的驱动关节与各指定输出构件之间的位置、速度及加速度的正、反解模型,求得了雅克比矩阵和海塞矩阵的显式表达式,为成型鼓导引机构的动力学建模提供了运动学基础。
     刚体动力学建模方面,基于机构运动学模型,采用虚功原理建立了成型鼓导引机构的刚体动力学模型,为工程样机设计阶段驱动器的选择、动态设计以及力矩控制的实现奠定了理论基础。
     在成型鼓导引机构优化设计方法研究方面,定义包含内、外瓦驱动机构传动质量指标两个变量的函数来评价成型鼓导引机构的力传递性能,并以此为目标函数,辅以依据机构运动特性建立的约束条件,提出一种以追求力传递性能最优为目标的优化设计方法。结合具体算例,演绎了成型鼓导引机构尺度优化设计流程,仿真结果验证了优化算法的正确性、有效性。
     本文研究成果对拓展可展机构应用领域,丰富可展机构的研究内容,推进高端子午线轮胎成型鼓的自主创新具有重要的理论意义和实用价值。
This dissertation deals with the theory and methodology for the design of a newtype spatial axial/radial telescopic tire building drum guiding mechanism, includingtype synthesis, freedom analysis, kinematics modeling, rigid body dynamicsformulation. On the basis, proposed a dimensional synthesis optimization algorithmsand design flows by a successful design case. The following contributions have beenmade.
     On the basis of the system summarizes of the topology structural as well as itskinematic characteristics of tire building drum guiding mechanism, based on the ideaof modular design and using the Regenerated Motion Chain method, type synthesis ofthe tire building drum guiding mechanism is studied systematically, many newconfigurations for the tire building drum guiding mechanism are obtained. And amechanism is preferred according to the design requirements of the tire building drumguiding mechanism unit.
     Mobility analysis of the guiding mechanism is carried out using the mobilitymethodology based on reciprocal screw theory. The mechanism is decomposed intoseveral planar six linkage and three bar four kinematic pair branch chains. Judging thepartial freedom, virtual constraint and common constraint of all the kinematic chainsbased on screw theory and analyzed their degree of freedom respectively. Accordingto the principle of substitution of the generalized kinematic pair, mobility of thecomplex loop mechanism composed by multiple sub-chain was studied. By structuraldecomposition of the tire building drum mechanism, the number and property ofmobility for the mechanism was obtained.
     According to the kinematic characteristics of the forming drum guidingmechanism, the detailed and complete kinematics models between the driving jointsand specified output components are established, including the forward and inverseequations about position, velocity and acceleration. The explicit expression of the Jacobian matrix and the Hessian matrix are formulated, which are useful fordynamics modeling.
     Based on the kinematics models, the rigid body dynamic model of the guidingmechanism is formulated using the virtual work principle, which provide a theoreticalfoundation for actuator select, dynamic design and realization of the torque control inengineering prototype design stage.
     An optimal design method is proposed, whose objective function are composedby transmission quality indicators of inner tile driving mechanism and the outwardtile’s, used to evaluate the force transmission performance of guiding mechanism, theconstraint conditions are established based on the motion characteristics of themechanism. This optimal design method is studied with specific examples, and thecorrectness and effectiveness of the optimization algorithm are verified by thesimulation results.
引文
[1]关伟平,加快民航轮胎自主研发与创新提升市场竞争力,现代橡胶技术,2005,31(4):9-14
    [2]王宏志,鲍晨辉,高性能子午线航空轮胎成型机的研制,橡胶技术与装备,2012,38(4):25-28
    [3] Appleby P E, Folden D C, Rlggs R S, Tire building drum, US Patent3644162,1972
    [4]库里,雷丁,雷德赛斯,具有交替的固定部段和可膨胀部段及侧壁插入件的轮廓的可膨胀的轮胎成型鼓, ZL02142513.2,2003
    [5]森克己,单孔式轮胎成型鼓装置鼓的伸缩方法及轮胎成型鼓式装置, ZL96102419.4,1997
    [6]郑伍昌,蔡汉生,连杆式径向伸缩成型机头, ZL02272998.4,2003
    [7]耿玉涛,徐吉亮,耿连国,耿文学,液压导杆式径向折叠全钢巨胎成型机头, ZL200820020630.2,2009
    [8]戴造成,沈国雄,胡铭,二级径向收缩成型机头, ZL200810071027.4,2009
    [9] Mark S, Byerley, Vehicle Tire building drum including bead drum positioning and sidewall formation features, US Patent6457505B1,2002
    [10] William Dudley Currie, Emile Reding, John Kolbjoern Roedseth, Expandable tirebuilding drum with alternating fixed and expandable segments and contours for sidewallinserts, US Patent6863106B2,2006
    [11] William Dudley Currie, Emile Reding, John Kolbjoern Roedseth, Expandable tirebuilding drum with alternating fixed and expandable segments and contours for sidewallinserts, US Patent7128117B2,2006.
    [12] William Dudley Currie, Emile Reding, John Kolbjoern Roedseth, Expandable tirebuilding drum with alternating fixed and expandable segments and contours for sidewallinserts, US Patent7144467B2,2006
    [13]郑伍昌,蔡汉生,连杆式径向伸缩成型机头, ZL02272998.4,2003
    [14] Iyanagi S, Tire building drum, and building system, process setup method for tire built bysame, US Patent20080017298A1,2008
    [15] Painter B, Type building drum, US Patent20090056879A1,2009
    [16] Chiaki O, Tire building apparatus, US Patent4521269,1985
    [17] Landsness C A, Adjustable tire building apparatus, US Patent4547251,1985
    [18] Touchette J W, Tire building drum, US Patent3959064,1976
    [19]黄伟强,周杰,轮胎成型机成型鼓, ZL200710050947.3,2008
    [20] Satoshi Iyanagi. Tire building drum and building system process setup method andmanufactuting method for tire built by same, US Patent20080017298A1,2008
    [21] Brian Painter. Tire building drum, US Patent20090056879A1,2009
    [22] Grain Communication Inc. Global tyre plants, Global Tyre Report2005, London: GrainCommunication Inc,2005:17-29
    [23]刘培华,王联韵等,半钢两段子午胎成型机, ZL200810016391.0,2008
    [24]钟路强.全钢子午巨胎成型机成型鼓, ZL200810107407.9,2009
    [25]黄伟强,周杰.轮胎成型机成型鼓, ZL:200710050947.3,2008
    [26]耿玉涛,徐吉亮,耿连国,耿文学.旋转式径向折叠全钢巨胎成型机头, ZL200820020629.2,2009
    [27] W. D.库里, E.雷丁, J. K.雷德赛斯.具有交替的固定部段和可膨胀部段及侧壁插入件的轮廓的可膨胀的轮胎成型鼓, ZL02142513.2,2003
    [28] D.布罗迪.轮胎成型鼓, ZL02806318.X,2004
    [29] John W. Touchette, Hartville, Ohio, Tire building drum, US Patent3959064,1976
    [30] Chiaki Ozawa, Kodaira. Tire Building Apparatus, US Patent4521269,1985
    [31] Clifford A. Landsness. Adjustable Tire Building Apparatus, US Patent4547251,1985
    [32] Naruhiro Akiyama. Tire Building Drum, US Patent6880603,2005
    [33]谢义忠,轮胎成型机成型鼓, ZL200620083428.8,2006
    [34]孙伟达,特巨型工程子午线轮胎成型机传动系统的优化设计:[硕士论文],天津:天津大学,2011
    [35] Clark A. Roberts, Mark S. Byerley, Tire manufactuting drum having simultanous axialand radial adjustability, US Patent6058999,2000
    [36]亓洪亮,郭宗和,胡亮,宋宏鹏.变拓扑并联轮胎成型鼓机构的动力学分析及仿真,山东理工大学学报,201024(3):49-55
    [37] Yang Y D, Yang Y H, Optimal design of a2-DOF planar parallel manipulator, In: Proc. ofthe2010International Conference on Mechanic Automation and Control Engineering,2259-2264, Wuhan, China,2010
    [38]常乐,一种新型径向伸缩式轮胎成型鼓的设计:[硕士论文],天津:天津大学,2010
    [39]张磊,一种新型径向伸缩式轮胎成型鼓的设计与研究:[硕士论文],天津:天津大学,2011
    [40]邓双丰,具有间隙补偿功能的子午线轮胎成型鼓研究:[硕士论文],天津:天津大学,2011
    [41]李长城,一种变拓扑结构的子午线轮胎成型鼓的创新设计:[硕士论文],天津:天津大学,2011
    [42]王云龙,一种轴径向伸缩式成型鼓的运动分析:[硕士论文],天津:天津大学,2012
    [43] Assur L V, Investigation of plane hinged mechanisms with lower pairs from the point ofview of their structureand classification (in Russian): Part I, Bull, Petrograd Polytech, Inst.1913,20:329-386
    [44] Assur L V, Investigation of plane hinged mechanisms with lower pairs from the point ofview of their structureand classification (in Russian): Part II, Bull. Petrograd Polytech,Inst,1913,20:329-386
    [45] Freudenstein, F, Dobrjanskyj L, On a theory for the type synthesis of mechanisms In:Proceedings of the11th International Congress of Appllied Mechanics, Springer, Berlin,1964:420-428
    [46] Crossley F R E, The permutations of kinematic chains of eight members or less from thegraph theoretic point of view, Developments in Theoretical and Applied Mechanics, NewYork, USA, Pergamon Press,1965
    [47] Dobrjanskyj L, Freudenstein F, Some applications of graph theory to the structuralanalysis of mechanisms, ASME Journal of Manufacturing Science and Engineering,1967,89(1):153-158
    [48] Freudenstein F, The basis concepts of polya’s theory of enumeration, with application tothe structural classification of mechanisms, Journal of Mechanisms,1967,2(3):275-290
    [49]宋黎,杨坚,曹惟庆,含复铰平面闭式运动链型综合的组合法,机械工程学报,2004,40(2):37-41
    [50] Marco C, Parenti C, A family of3-DOF translational parallel manipulators, ASMEJournal of Mechanical Design,2003,125(2):302-307
    [51] Huang Z, Li Q C, General methodology for type synthesis of lower-mobility symmetricalparallel manipulators and several novel manipulators, The International Journal ofRobotics Research,2002,21:131-145
    [52]黄真,赵永生,赵铁石.高等空间机构学,北京:高等教育出版社,2006
    [53] Kong X, Gosselin C M, Type synthesis of4-DOF SP-equivalent parallel manipulators: avirtual chain approach, Mechanism and Machine Theory,2006,41(11):1306-1319
    [54] Kim D, Chung W K, Kinematic condition analysis of three-DOF pure translationalparallel manipulators, ASME Journal of Mechanical Design,2003,125:323-331
    [55] Li Q C, Huang Z, Type synthesis of4-DOF parallel manipulators, In: Proceedings of the2003IEEE ICRA, Taipei, Taiwan, September14-19,2003:755-760
    [56] Li Q C, Huang Z, Type synthesis of5-DOF parallel manipulators, In: Proceedings of the2003IEEE ICRA, Taipei, Taiwan, September14-19,2003:103-1208
    [57] Fang Y F, Tsai L-W, Structure synthesis of a class of3-DOF rotational parallelmanipulators, IEEE Transaction on Robotics and Automation,2004,20(1):117-121
    [58] Fang Y F, Tsai L-W, Structure synthesis of a class of4-DOF and5-DOF parallelmanipulators with identical limb structures, The International Journal of RoboticsResearch,2002,21(9):799-810
    [59] Kong X W, Gosselin C M, Type synthesis of3-DOF translational parallel manipulatorsbased on screw theory, ASME Journal of Mechanical Design,2004,126:83-92
    [60] Kong X W, Gosselin C M, Type synthesis of3-DOF spherical parallel manipulators basedof screw theory, ASME Journal of Mechanical Design,2004,126:101-108
    [61] Kong X W, Gosselin C M, Type synthesis of3T1R4-DOF parallel manipulators based onscrew theory, IEEE Transaction on Robotics and Automation,2004,20(2):181-190
    [62] Kong X, Gosselin C M, Type synthesis of3-DOF PPR-equivalent parallel manipulatorsbased on screw theory and the concept of virtual chain, ASME Journal of MechanicalDesign,2005,127(6):1113-1121
    [63] Kong X, Gosselin C M, Type synthesis of4-DOF SP-equivalent parallel manipulators: avirtual chain approach, Mechanism and Machine Theory,2006,41(11):1306-1319
    [64] Fanghella, P, Galletti C, Mobility analysis of single-loop kinematic chains: an algorithmicapproach based on displacement groups, Mechanism and Machine Theory,1994,29(8):1187-1204
    [65] Fanghella P;Galletti C, Metric Relations and Displacement Groups in Mechanism andRobot Kinematics, Journal of Mechanical Design,1995,117(3):470-478
    [66] Hervé J M, Lie group of rigid body displacements, a fundamental tool for mechanismdesign, Mechanism and Machine Theory,1999,34(5):719-730
    [67] Meng J, Liu G F, Li Z X, A geometric theory for analysis and synthesis of sub-6DOFparallel manipulators, IEEE Transactions on Robotics,2007,23(4):625-649
    [68] Lee C C, HERVE J M, Uncoupled actuation of overconstrained3T-1R hybrid parallelmanipulators, Robotica,2009,27(1):103-117
    [69] Rico J M, Aguilera L D, Gallardo J, Rodrguez R, Orozco H, Barrera J M, A more generalmobility criterion for parallel manipulators, Journal of Mechanical Design,2006,128(1):207-219
    [70] Yang T L, Liu A X, Jin Q, Luo Y F, Shen H P, Hang L B, Position and orientationcharacteristic equation for topological design of robot mechanisms, ASME Journal ofmechanical design,2009,131(2):1-17
    [71]杨廷力,机器人机构拓扑结构学,北京:机械工业出版社,2004
    [72] Jin Q, Yang T L, Structural synthesis of a class of five-DOF parallel robot mechanismsbased on single-opened-chain units, In: Proceedings of ASME DETC/CIE Conference,Pittsburgh, PA, Sept.9-12,2001, Paper DAC-21153
    [73] Yang T L, Sun D J, A general degree of freedom formula for Parallel Mechanisms andMultiloop Spatial Mechanisms, ASME Journal of Mechanisms and Robotics,2012,4(1):1-17
    [74] Gao F, Li W M, Zhao X C, Jin Z L, Zhao H, New kinematic structures for2-,3-,4-, and5-DOF parallel manipulator designs, Mechanism and Machine Theory,2002,37(11):1395–1411
    [75]张丽萍,王德伦,混联机械系统方案设计特征状态空间理论与方法,机械工程学报,2006,42(12):26-35
    [76] Yan H S, A methodology for creative mechanism design, Mechanism and Machine Theory,1992,27(3):235-242
    [77] Yan H S, Chen J J, Creative design of a wheel damping mechanism, Mechanism andMachine Theory,1985,20(6):597-600
    [78]颜洪森,机械装置的创造性设计,北京:机械工业出版社,2006
    [79] Kishimoto N, Natori M C, Higuchi K, New Deployable Membrane tructure ModelsInspired by Morphological Changes in Nature, In:47th AIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics, and Materials Conference. Newport, Rhode Island,United states: AIAA,2006:3722-3725
    [80] Kishimoto N, Natori M C. Control and Mechanical Characteristics of HierarchicalModular Structures, In:46th AIAA/ASME/ASCE/AHS/ASC Structures, StructuralDynamics, and Materials Conference. Austin, Texas, United states: AIAA,2005:1967-1980
    [81] Warnaar D B, Chew M. Kinematic Synthesis of Deployable-Foldable Truss Structuresusing Graph Theory, Part1: Graph Generation, ASME Journal of Mechanical Design,1995,117(1):112-116
    [82] Warnaar D B, Chew M. Kinematic Synthesis of Deployable-Foldable Truss Structuresusing Graph Theory, Part2: Graph Generation, ASME Journal of Mechanical Design,1995,117(1):117-122
    [83] Chen Y, You Z, Connectivity of Bennett Linkages,43rd AIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics, and Materials Conference, Denver, Colorado: AIAA,2002:2318-2324
    [84] Chen Y, Song C Y, A spatial6R linkage derived from subtractive Goldberg5R linkages,Mechanism and Machine Theory,2011,46(8),:1097-1106
    [85] Song C Y, Chen Y, A family of mixed double-Goldberg6R linkages, Proceedings of theRoyal Society A: Mathematical Physical And Engineering Sciences,2012,468(2139):871-890
    [86] Chen Y, You Z, Two-fold symmetrical6R foldable frame and its bifurcations,International Journal of Solids and Structures,2009,46(25-26):4504-4514
    [87] Liu S Y, Chen Y, Myard linkage and its mobile assemblies, Mechanism and MachineTheory,2009,46(10):1950-1963
    [88] Chen Y, You Z, On mobile assemblies of Bennett linkages, Proceedings of the RoyalSociety A: Mathematical Physical And Engineering Sciences,2008,464(2093):1275-1293
    [89] Chen Y, You Z, An Extended Myard Linkage and its Derived6R Linkage, ASME Journalof Mechanical Design,2008,130(5):1-8
    [90] Zhao J S, Chu F L, Feng Z J. The mechanism theory and application of deployablestructures based on SLE, Mechanism and Machine Theory,2009,44(2):324-335
    [91] Zhao J S, Wang J Y, Chu F L, Feng Z J, Dai J S, Structure synthesis and statics analysis ofa foldable stair, Mechanism and Machine Theory,2011,46(7):998-1015
    [92] Deng Z H, Huang H L, Li B, Liu R Q, Synthesis of deployable/foldable single loopmechanisms with revolute joints, ASME Journal of Mechanisms and Robotics,2011,3(3):
    [93]杨毅,丁希仑,四棱锥单元平板式可展开收拢机构的运动特性分析,航空学报,2010,31(6):1257-1265
    [94]杨毅,丁希仑,基于空间多面体向心机构的伸展臂设计研究,机械工程学报,2011,47(5):26-34
    [95]田大可,刘荣强,邓宗全,郭宏伟,空间可展开天线基本单元构型的数综合方法,沈阳工业大学学报,2012,4:1-8
    [96] Kutzbach K, Mechanische leitungsverzweigung, maschinenbau. Der Betreib,1929,8(21):710-716
    [97] Grübler M, Allgemeine eigenschaften der zwanglaufigen ebenen kinematischen ketten:Part I. Zivilingenieur,1883,29:167-200
    [98] Grübler M, Allgemeine Eigenschaften Der Zwanglaufigen Ebenen Kinematischen Ketten:Part II, Zivilingenieur,1885,64:179-223
    [99] Paul B, A unified criterion for the degree of constraint of plane kinematics chains, ASMEJournal of Applied Mechanics,1960,27(1):196-200
    [100] Oxol O G, A new structural formula for mechanisms and its theoretical and practicalimportance, Latvian Academy of Sciences,1962,11:113-129
    [101] Manolescu N, For a united point of view in the study of the structural analysis ofkinematics chains and mechanisms, Journal of Mechanisms,1968,3(3):149-169
    [102] Gronowicz A, A method of identification of mobility properties of kinematic chains,Mechanism and Machine Theory,1981,16(2):127-135
    [103] McCarthy J M, Geometric Design of linkages, New York: Springer Verlag,2000
    [104] Bagci C, Degree of freedom of motion in mechanisms, ASME Journal of Engineering forIndustry,1971,93(2):140-148
    [105] Freudenstein F, Alizade R, On the Degree-of-freedom of mechanisms with variablegeneral constraint, In: The Fourth World Congress on the Theory of Mechines andMechanisms, Newcastle upon Tyne,1975
    [106] Waldron K J, Kinzel G. L, Kinematics, Dynamics and Design of Machinery, New York:John Wiley and Sons,1999:17-26
    [107] Davies T H, Mechanical networks I passivity and redundance, Mechanism and MachineTheory,1983,18(2):95-101
    [108] Hervé J M, Analyse Analyse structurelle des mécanismes par groupe des déplacements,Mechanism and Machine Theory,1978,13(4):437-450
    [109] Rico J M, Ravani B, On mobility analysis of linkages using group theory, ASME Journalof Mechanical Design,2003,125(1):70-80
    [110] Rico J M, Gallardo J, Ravani B, Lie algebra and the mobility of kinematics chains,Journal of Robotic Systems,2003,20(8):477-499
    [111] Angeles J, Gosselin C M, Détermination du degré de Liberté des chaines cinématiques,Transactions of the Canadian Society for Mechanical Engineering,1988,12(4):219-226
    [112] Baker J E, On relative freedom between links in kinematics chains with cross-jointing,Mechanism and Machine Theory,1980,15(5):397-413
    [113] Tsai L W, Robot Analysis: The mechanics of serial and parallel manipulators, New York:Wiley-Interscience Publication,1999
    [114] Huang Z, Li Q C, Type synthesis of symmetrical lower-mobility parallel mechanismsusing constraint-synthesis method, The International Journal of Robotics Research,2003,22(1):59-79
    [115] Zhao J S, Zhou K, A new method to study the degree of freedom of spatial parallelmechanisms, The International Journal of Advanced Manufacturing Technology,2004,23(4):288-294
    [116] Dai J S, Li D L, Zhang Q. X., Mobility analysis of a complex structured ball based onmechanism decomposition and equivalent screw system analysis, Mechanism andMachine Theory,2004,39(4):445–458
    [117]黄真,刘婧芳,李艳文.论机构自由度,北京:科学出版社,2011
    [118] Gupta K C, Roth B, Design Consideration for Manipulator Workspace, ASME Journey ofMechanical Design,1982,104(04):704-712
    [119] Boudreau R, Gosselin C M, The synthesis of planar parallel manipulators with a geneticalgorithm, ASME Journal of Mechanical Design,1999,121(4):533-537
    [120] Murray A P, Pierrot F, Dauchez P, A planar quaternion approach to the kinematic synthesisof a parallel manipulator:Parallel manipulators, Robotica,1997,15(4):361-365
    [121] Zhao J, Zhang S, Dong J, Feng Z-J, Zhou K, Optimizing the kinematic chains for a spatialparallel manipulator via searching the desired dexterous workspace, Robotics andComputer-Integrated Manufacturing,2007,23(01):38-46
    [122] Huang T, Li M, Li Z X, et al, Optimal kinematic design of2-DOF parallel manipulatorswith well-shaped workspace bounded by a specified conditioning index,IEEE Transactions on Robotics and Automation,2004,20(3):538-543
    [123] Gosselin C M, Eric L, On the kinematic design of spherical three Degree-of-Freedomparallel manipulators, The International Journal of Robotics Research,1993,12(04):394-402
    [124] Gosselin C M, Angeles J. The optimum kinematic design of a planar three Degree ofFreedom parallel manipulators, ASME Journal of Mechanisms, Transmissions,Automations. Design,1988,110(01):35-41
    [125] Ma O, Angeles J, Optimum architecture design of platform manipulators, In: FifthInternational Conference on Advanced Robotics, Pisa, Italy,1991:1130-1135
    [126] Bhattacharya S, Hatwal H, Ghosh A, On the optimum design of Stewart platform typeparallel manipulators, Robotica,1995,13(2):133-140
    [127] Khatib O, Bowling A, Optimization of the inertial and acceleration characteristics ofmanipulators, In: IEEE International Conference on Robotics and Automation,Minneapolis, MN, USA,1996:2883-2889
    [128] Liu X J, Jin Z L, Gao F, Optimum design of3-DOF spherical parallel manipulators withrespect to the conditioning and stiffness indices, Mechanism and Machine Theory,2000,35(9):1257-1267
    [129]万小平,袁茹,王三民,环形可展开卫星天线的多目标结构优化设计,机械科学与技术,2005,24(8):914-916
    [130]杨彦东,杨玉虎,一种新型轴/径向伸缩式成型鼓及其尺度设计,天津大学学报,2012,45(12):1045-1050
    [131]方国华,黄显峰,多目标决策理论、方法及其应用,北京:科学出版社,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700