新型两亲功能单体及其疏水缔合聚合物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水溶性疏水缔合聚合物,由于其独特的溶液性质和缔合行为,已成为超分子研究的重要对象,具有重要的理论和应用价值。本论文合成了一种新型可聚合两亲化合物4-(2-(丙烯酰氧基)乙氧基)苯亚甲基三乙基溴化铵(AEBA)。它具有很强的自组装能力,适用于构筑特定架构的分子集合体和聚合物。为此,以两亲化合物AEBA为基础,合成了多种不同功能的疏水缔合聚合物,详细研究了它们的水溶液性质、疏水缔合作用和聚集体微结构;并提出利用AEBA单体与其他亲水单体构成的微多相共聚合新体系,制备高性能疏水缔合聚合物的新方法。
     1.设计并合成了一种新型具有自组装功能的可聚合两亲化合物4-(2-(丙烯酰氧基)乙氧基)苯亚甲基三乙基溴化铵(AEBA),它易溶于水,具有很强的自缔合能力和对外界刺激(pH值、盐浓度)的响应性。宏观溶液性质表明AEBA具有表面活性和增溶作用,它的最小助溶浓度(MHC)约为0.05 M。通过AEBA分子缔合行为和聚集体微结构的研究发现,AEBA在水溶液中逐步缔合形成堆砌状(stack-type)聚集体结构,临界缔合浓度约为1.5×10-3 M。AEBA分子聚集体的尺寸随浓度增大而逐步增长。
     2.研究了单体AEBA与阴离子表面活性剂十二烷基硫酸钠SDS水溶液体系中,两亲分子间的缔合作用、相变化过程和囊泡的形成。实验结果表明,AEBA的加入大大促进了SDS的分子间缔合,使SDS的临界胶束浓度CMC大幅度下降。随着AEBA / SDS摩尔比例的提升,溶液中出现分子聚集体结构“胶束-囊泡-实心微粒”的变化,同时伴随溶液“透明-半透明-混浊”的转变。AEBA / SDS在特定比例条件下,形成囊泡状聚集体,并通过聚集体内AEBA分子的聚合反应锁定了囊泡结构,得到了具有很高稳定性的聚合囊泡。这种复合体系为中空纳米材料的制备提供了一种简便方法。
     3.合成了一种阳离子两亲均聚物P(AEBA)。它具有很高的自缔合能力和盐敏响应性。宏观溶液性质的研究表明,均聚物P(AEBA)在清水中呈现聚电解质的性质,而在盐水中具有聚皂的性质。微观结构的研究十分有趣的发现,两亲聚合物P(AEBA)在水溶液中自缔合形成稳定的珍珠项链(pearl-necklace)状聚集体,随着无机盐的加入,这种项链状聚集体结构中的小球尺寸增大,数量减少,而链长缩短,最终形成中空球型聚集体。首次在实验上完整直观的演示了聚电解质分子聚集体结构“coil-globule”演变过程中存在珍珠项链状中间结构,印证了前人理论推断的结果,具有理论和应用价值。而随聚合物浓度的增加,在清水和盐水中产生了两种不同的分子间缔合聚集体结构,表现出截然不同的宏观溶液性质。
     4.通过微多相共聚合新体系,合成了系列AEBA改性疏水缔合聚丙烯酰胺P(AM/AEBA),共聚物结构中少量单体AEBA (≤3 mol%)以微嵌段的形式无序分布在大分子亲水主链上。共聚物P(AM/AEBA)在水溶液中显示了很强的疏水缔合作用和增粘效果。当聚合物浓度超过临界缔合浓度CAC时,分子间缔合形成交联网状结构,占有较大的流体力学体积,从而引起溶液粘度迅速上升。聚合物链的微结构(疏水嵌段的含量和长度)和分子量是决定共聚物P(AM/AEBA)疏水缔合作用和增粘效果的主要因素。通过控制聚合反应前体系中AEBA分子聚集体的数量和尺寸,可以获得最佳的增粘效果。这种由自组装功能单体构成的微多相共聚合新体系,可取代传统的胶束共聚合体系,制备具有微嵌段结构特征的高性能疏水缔合聚合物,同时也为其他具有微嵌段结构的功能聚合物的制备提供了一种简便又环保的合成方法。
     5.利用上述微多相共聚合新体系,合成了一系列新型AEBA改性阳离子絮凝剂共聚物P(AM/DMC/AEBA)。得到的共聚物中,单体AEBA (≤3 mol%)以微嵌段的形式无序分布在AM和DMC构成的大分子亲水主链上。通过高岭土污水模拟体系的絮凝实验表明,AEBA的微嵌段结构大大增强了高分子链间的疏水缔合作用和架桥能力,使共聚物表现出良好的絮凝分离效果。依据初步结果,可以期望利用这种微多相共聚合新技术,合成更多高性能的共聚物絮凝剂。
Water soluble hydrophobically associating polymers have become an important subject in supermolecule field due to their unique solution properties and association behaviors. In this thesis, a novel polymerizable cation amphiphilic compound, 4-(2-(acryloyloxy) ethoxy) benzyl tri-ethyl ammonium bromide (AEBA), was synthesized. It has strong capacity for self-assembly. AEBA can be used to construct the molecular assembly and polymers with desired architecture. Based on this amphiphilic monomer AEBA, several kinds of novel hydrophobically associating polymers with different functions were constructed. The solution properties, hydrophobic association behaviors and aggregate microstructures were studied in detail. A new microhetergeneous copolymerization system composed of AEBA and other hydrophilic monomers was proposed to prepare high performance hydrophobically associating polymers.
     1. A novel polymerizable amphiphilic compound with self-assembly ability, 4-(2-(acryloyloxy) ethoxy) benzyl tri-ethyl ammonium bromide (AEBA), was designed and synthesized. It exhibits good water solubility, strong self-association ability and response to extra-stimulation (pH, salt). The macroscopic solution properties indicate the surface activity and solubilization of AEBA. Its minimum hydrotrope concentration (MHC) locates near to 0.05 M. The studies of self-association behavior and aggregation microstructure demonstrated that AEBA molecules associate gradually into stack-type aggregates conformation. The critical association concentration CAC is at 1.5×10-3 M. The aggregate size of AEBA increases with concentration.
     2. The intermolecular association, phase transformation and vesicle formation of AEBA / SDS mixture system were investigated. The results show that addition of AEBA significantly promotes the intermolecular association and decreases the CMC of SDS. With an increase of AEBA / SDS molar ratio, a series of structure transformation“micelle-vesicle-solid particle”occurs, accompanying with the change of the solution appearance (“transparent-semiopaque-turbid”). At a certain AEBA / SDS molar ratio, these two amphiphilic compounds associate into vesicles. High stable polymerized vesicles can be obtained by intra-aggregate AEBA polymerization. Obviously, it is a facile method to prepare hollow nanomaterials.
     3. A cation amphiphilic homopolymer P(AEBA) was synthesized. It has high self-association ability and response to salinity. The macroscopic solution properties demonstrated that P(AEBA) behaves as polyelectrolyte in pure water but in salt solution it is similar to polysoap. It is very interesting to find that P(AEBA) spontaneously associates into pearl-necklace-like aggregates conformation in pure water. With the addition of salt, the size of the necklace beads increases while their numbers and the necklace length decrease. Finally, the necklace-like aggregate associates into a hollow globule conformation. It should be noted that the pearl-necklace-like aggregate conformation and the aggregate size transformation are theoretically and practically important. It first provides a visualized intermedia aggregation state of such type in the“coil-globule”transformation process for polyelectrolyte, which was suggested by early theoretic predict. Furthermore, with the increase of polymer concentration, two distinct aggregate structures were observed, which induced different solution properties.
     4. A series of AEBA modified hydrophobically associating polyacrylamides were synthesized using new microhetergeneous copolymerization system. The copolymer P(AM/AEBA) containing a small amount (≤3 mol%) of AEBA exhibits strong hydrophobic associative interactions and thickening efficiency in aqueous solution due to the microblock-like structure of AEBA. As the copolymer concentration above CAC, P(AM/AEBA) forms network structures with large hydrodynamic volume based on intermolecular association, which result in a rapid viscosity enhancement. The polymer chain microstructure (content and length of hydrophobic microblock) and molecular weight are both the main factors to determine the hydrophobic association interactions and thickening effect of P(AM/AEBA). The optimal results can be obtained by properly regulating the number and size of AEBA aggregates before copolymerization, as well as reaction conditions. It should be pointed out that this new microhetergeneous copolymerization system composed of self-assembly monomer can be used to substitute the traditional micellar copolymerization system to prepare high performance hydrophobically associating polymers with microblock structure characteristic. It also provides a facile and environmental friendly method for synthesis other functional polymers with microblock structure.
     5. A novel microhetergeneous copolymerization technique was used to prepare a series of AEBA modified cation flocculant copolymers P(AM/DMC/AEBA) in aqueous solution. The resulting copolymers contain a small amount (≤3 mol%) of AEBA monomer which distributed as microblock manner along the copolymer chains. The flocculation experiments demonstrated that the microblock-like structure of AEBA promotes the intermolecular hydrophobic interactions and bridge-linkage actions of the macromolecules, resulting copolymers exhibits good flocculation and separation effect. Based on the preliminary results obtained, it is reasonable to expect that flocculants copolymers with higher performance can be synthesized using this novel microhetergeneous copolymerization technique.
引文
1.严瑞萱主编。水溶性高分子。北京:化学工业出版社,1998。
    2.蒋锡菱,张劲涛编著。有机分子的簇集和自卷。上海:上海科学技术出版社,1996
    3. Holmerberg K. Surfactants and polymers in aqueous solution. Wiley & Sons, 2003
    4. Alexandrids P, Lindman B. (Eds.) Amphiphilic block copolymers: self-assembly and applications. Elsevier, Amsterdam, 1999
    5. Kosaric N. (Ed.) Biosurfactants. Surfactant Science Series 48. Marcel Dekker, New York, 1993
    6. Piirma I. Polymeric Surfactants. Surfactant Science Series 42. Marcel Dekker, New York, 1992
    7. Porter M R. Handbook of surfactant. Blackie & Sons, London, 1991
    8. Tadros Th F. Polymeric surfactant, in Handbook of applied surface and colloid chemistry. Wiley, Chichester, 2001
    9. Zhang L, Eisenberg A. Multiple morphologies and characteristics of crew-cut micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in solution. Science, 1995, 268, 1728-1731
    10. Lim S P, Luo L, Maysinger D, Eisenberg A. Incorporation and release of hydrophobic probes in biocompatible polycaprolactone-b-poly(ethylene oxide) micelles: implications for drug delivery. Langmuir, 2002, 18, 9996-10004
    11. Gebhart C L, Kabanov A V. Evaluation of polyplexes as gene transfer agents. J. Controlled Release, 2001, 73, 401-416
    12. Harada-Shiba M, Yamauchi K, Harada A, Takamisawa I, Shimokado K, Kataoka K. Polyion complex micelles as vectors in gene therapy-pharmacokinetics and in vivo gene transfer. Gene Therapy, 2002, 9, 407-414
    13. Wang G, Henselwood F, Liu G. Water-soluble poly(2-cinnamoylethylmethacrylate)-b-poly(acrylic acid) nanospheres as traps for perylene. Langmuir, 1998, 14, 1554-1559
    14. Henselwood F, Wang G, Liu G. Removal of perylene from water using block copolymer nanospheres or micelles. J. Appl. Polym. Sci., 1998, 70, 397-408
    15. Wang H, Wang H H, Volker S U, Littrell K C, Thiyagarajan P, Yu L. Syntheses of amphiphilic diblock copolymers containing a conjugated block and their self-assembling properties. J. Am. Chem. Soc., 2000, 122, 6855-6861
    16. Bronstein L M, Chernyshov D M, Karlinsey R, Zwanziger J W, Matveeva V G, Sulman E M, Demidenko G N, Hentze H P, Antonietti M. Mesoporous alumina and aluminosilica with Pd and Pt nanoparticles: Structure and catalytic properties. Chem. Mater., 2003, 15, 2623-2631
    17. Meli M V, Badia A, Gruetter P, Lennox R B. Self-assembled masks for the transfer of nanometerscale patterns into surfaces: Characterization by AFM and LFM. Nano Letters, 2002, 2, 131-135
    18. Glass R, Moeller M, Spatz J P. Block copolymer micelle nanolithography. Nanotechnology, 2003, 14, 1153-1160
    19. Corbierre M K, Cameron N S, Lennox R B. Polymer-stabilized gold nanoparticles with high grafting densities. Langmuir, 2004, 20, 2867-2873
    20. Halperin A, Tirrell M, Lodge T P. Tethered chains in polymer microstructures. Adv. Polym. Sci., 1992, 100, 31-71
    21. Yu K, Zhang L, Eisenberg A. Novel morphologies of“crew-cut”aggregates of amphiphilic diblock copolymers in dilute solution. Langmuir, 1996, 12, 5980-5984
    22. Zhang L, Yu K, Eisenberg A. Ion-induced morphological changes in“crew-cut”aggregates of amphiphilic block copolymers. Science, 1996, 272, 1777-1779
    23. Zhang L, Eisenberg A. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution. Polym. Adv. Technol., 1998, 9, 677-699
    24. Zhang L, Eisenberg A. Crew-cut aggregates from self-assembly of blends of polystyrene-b-poly(acrylic acid) block copolymers and homopolystyrene insolution. J. Polym. Sci. B.: Polym. Phys., 1999, 37, 1469-1484
    25. Zhang L, Eisenberg A. Multiple morphologies and characteristics of“crew-cut”micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solution. J. Am. Chem. Soc., 1996, 118, 3168-3181
    26. Zhang L, Eisenberg A. Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions. Macromolecules, 1996, 29, 8805-8815
    27. Zhang L, Eisenberg A. Thermodynamic vs kinetic aspects in the formation and morphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-b-poly(acrylic acid) block copolymers in dilute solution. Macromolecules, 1999, 32, 2239-2249
    28.朱麟勇,李妙贞,王尔鉴。聚醚树枝体-聚丙烯酸嵌段共聚物的水溶液自组装行为。化学学报,2000,59,291-296
    29.朱麟勇,何勇,朱国良,李妙贞,王尔鉴。聚醚树枝体-线性聚(N-异丙基丙烯酰胺)不对称嵌段共聚物的合成及自组装。化学学报,2001,59,1484-1489
    30. Irsaelachvili J N, Mitchell D J, Ninham B W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc., Faraday Trans. 2, 1976, 72, 1525-1568
    31. Butun V, Billingham N C, Armes S P. Unusual aggregation behavior of a novel tertiary amine methacrylate-based diblock copolymer: formation of micelles and reverse micelles in aqueous solution. J. Am. Chem. Soc., 1998, 120, 11818-11819
    32. Webster O W. The discovery and commercialization of group transfer. J. Polym. Sci. A: Polym. Chem., 2000, 38, 2855-2860
    33. Liu F, Eisenberg A. Preparation and Ph triggered inversion of vesicles from poly(acrylic acid)-block-polystyrene-block-poly(4-vinyl pyridine). J. Am. Chem. Soc., 2003, 125, 15059-15064
    34. Tsuchida E, Abe K. Interactions between macromolecules in solution and intermacromolecular complexs. Adv. Polym. Sci., Springer-Verlag BerlinHeidelberg, 1982, 13-99
    35. Glass J E. (Ed.) Polymers in aqueous media: performance through association. Adv. Chem. Ser. 223, Am. Chem. Soc., Washington DC, 1989
    36. Dowling K C, Thomas J K. A novel micellar synthesis and photophysical characterization of water-soluble acrylamide-styrene block copolymers. Macromolecules, 1990, 23, 1059-1064
    37. Branham K D, Davis D L, Middleton J C, McCormick C L. Water-soluble polymers: 59. Investigation of the effects of polymer microstructure on the associative behavior of amphiphilic terpolymers of acrylamide, acrylic acid and N-[(4-decyl)phenyl]acrylamide. Polymer, 1994, 35, 4429-4436
    38. Ezell S A, McCormick C L. Water-soluble copolymers 39. Synthesis and solution properties of associative acrylamido copolymers with pyrenesulfonamide fluorescence labels. Macromolecules, 1992, 25, 1881-1886
    39. Ezzel S A, Hoyle C E, Creed D, McCormick C L. Water-soluble copolymers 40. Photophysical studies of the solution behavior of associative pyrenesulfonamide labeled polyacrylamides. Macromolecules, 1992, 25, 1887-1895
    40. Volpert E, Selb J, Candau F. Influence of the hydrophobe structure on composition, microstructure, and rheology in associating polyacrylamides prepared by micellar copolymerization. Macromolecules, 1996, 29, 1452-1463
    41. Morishima Y, Nomura S, Ikeda T, Seki M, Kamachi M. Characterization of unimolecular micelles of random copolymers of sodium 2-(acrylamido)-2-methyl propanesulfonate and methacrylamides bearing bulky hydrophobic substituents. Macromolecules, 1995, 28, 2874-2881
    42. McCormick C L, Nonaka T, Johnson C B. Water-soluble copolymers 27. Synthesis and aqueous solution behavior of associative acrylamide / N-alkylacrylamide copolymers. Polymer, 1998, 29, 731-739
    43. Smith G L, McCormick C L. Water-soluble polymer 80. Rheological and photophysical studies of pH-responsive terpolymers containing hydrophobic twin-tailed acrylamide monomers. Macromolecules, 2001, 34, 5579-5586
    44. Smith G L, McCormick C L. Water-soluble polymers 78. Viscosity and NRETfluorescence studies of pH-responsive twin-tailed associative terpolymers based on acrylic acid and methacrylamide. Macromolecules, 2001, 34, 918-924
    45. Branham K D, Snowden H S, McCormick C L. Water-soluble copolymers 64. Effects of pH and composition on associative properties of amphiphilic acrylamide / acrylic acid terpolymers. Macromolecules, 1996, 29, 254-262
    46. Kopperud H B M, Hansen F K. Surface tension and surface dilatational elasticity of associating hydrophobically modified polyacrylamides in aqueous solutions. Macromolecules, 2001, 34, 5635-5643
    47. Yahaya G O, Ahdab A A, Ali S A, Abu-Sharkh B F, Hamad E Z. Solution behavior of hydrophobically associating water-soluble block copolymers of acrylamide and N-benzylacrylamide. Polymer, 2001, 42, 3363-3372
    48. Zhang Y X, Da A H, Butler G B, Hogen-Esch T E. A fluorine-containing hydrophobically associating polymer I synthesis and solution properties of copolymers of acrylamide and fluorine-containing acrylates or methacrylates. J. Polym. Sci. A., 1992, 30, 1383-1389
    49. Stahler K, Selb J, Candau F. Fluorocarbon polymerizable surfactants: viscometric behavior, micellar polymerization and interactions with associating polymers. Colloids Polym. Sci., 1998, 276, 860-869
    50. Hwang F S, Hogen-Esch T E. Effects of water soluble spaces on the hydrophobic association of fluorocarbon-modified poly(acrylamide). Macromolecules, 1995, 28, 3328-3335
    51. Matsumoto K, Kubota M, Matsuka H, Yamaoka H. Water-soluble fluorin-containing amphiphilic block copolymer: Synthesis and aggregation behavior in aqueous solution. Macromolecules, 1999, 32, 7122-7127
    52. Busse K, Kressler J, Eck D V, Horing S. Synthesis of amphiphilic block copolymers based on tert-butyl methacrylate and 2-(N-methylperfluorobutane- sulfonamido) ethyl methacrylate and its behavior in water. Macromolecules, 2002, 35, 178-184
    53. Latik I, Selb J, Candau F. Compositional heterogeneity effects in hydrophobically associating water-soluble polymers prepared by micellarcopolymerization. Polymer, 1995, 36, 3197-3211
    54. Nagayama T, Hashidzume A, Morishima Y. Characterization of self-association in water of polycations hydrophobically modified with hydrocarbon and siloxane chains. Langmuir, 2002, 18, 6775-6782
    55. Candau F, Selb J. Hydrophobically modified polyacrylamides prepared by micellar polymerization. Adv. Colloid Interface Sci., 1999, 79, 149-172
    56. Kopperud H B M, Hansen F K. Surface tension and surface dilatational elasticity of associating hydrophobically modified polyacrylamides in aqueous solutions. Macromolecules, 2001, 34, 5635-5643
    57. Yahaya G O, Ahdab A A, Ali S A, Abu-Sharkh B F, Hamad E Z. Solution behavior of hydrophobically associating water-soluble block copolymers of acrylamide and N-benzylacrylamide. Polymer, 2001, 42, 3363-3372
    58.戴玉华,吴飞鹏,李妙贞,王尔鉴。新型疏水缔合丙烯酰胺/2-苯氧乙基丙烯酸酯共聚物的合成与性质。高分子学报,2003,4,525-529
    59. Yamamoto H, Mizusaki M, Yoda K, Morishima Y. Fluorescence Studies of Hydrophobic association of random copolymers of sodium 2-(acrylamido)-2- methyl propanesulfonate and N-dodecylmethacryamide in water. Macromolecules, 1998, 31, 3588- 3594
    60. Noda T, Morishima Y. Hydrophobic association of random copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate and dodecyl methacrylate in water as studied by fluorescence and dynamic light scattering. Macromolecules, 1999, 32, 4631- 4640
    61. Braun O, Selb J, Candau F. Synthesis in microemulsion and characterization of stimuli-responsive polyelectrolytes and polyampholytes based on N-isopropyl acrylamide. Polymer, 2001, 42, 8499- 8510
    62. McCormick C L, Middleton J C, Cummins D F. Water-soluble copolymers: 37. Synthesis and characterization of responsive hydrophobically-modified polyelectrolytes. Macromolecules, 1992, 25, 1201-1206
    63. McCormick C L, Salazar L C. Water-soluble copolymers. 43. Ampholytic copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate with[2-(acrylamido)-2-methylpropyl]trimethylammonium chloride. Macromolecules, 1992, 25, 1896- 1900
    64. Chang Y H, McCormick C L. Water-soluble copolymers. 49. Effect of the distribution of the hydrophobic cationic monomer dimethyldodecyl (2-acrylamido ethyl) ammonium bromide on the solution behavior of associating acrylamide copolymers. Macromolecules, 1993, 26, 6121- 6126
    65. Biggs S, Selb J, Candau F. Copolymers of acrylamide / N-alkylacrylamide in aqueous solution the effects of hydrolysis on hydrophobic interactions. Polymer, 1993, 34, 580-589
    66. Bock J, Valint Jr P L. Process for preparing hydrophobically associating terpolymers containing sulfonate functionality. U.S. Patent, 4.730.028, 1998
    67. Valint Jr P L, Bock J. Hydrophobically assoiciating terpolymers containing sulfonate functionality. U.S. Patent, 5.089.578, 1992
    68. McCormick C L, Middleton J C, Cummins D F. Water-soluble copolymers 37. Synthesis and characterization of responsive hydrophobically modified polyelectrolytes. Macromolecules, 1992, 25, 1201-1206
    69. McCormick C L, Middleton J C. Water soluble copolymers 38. Synthesis and characterization of electrolyte responsive terpolymers of acrylamide, N-(4-butyl)-phenylacrylamide, and sodium acrylate, sodium-2-acrylamido-2- methylpropane sulphonate or sodium-3-acrylamido-3-metylbutanoate. Polymer, 1992, 33, 4184-4190
    70. Branham K D, Shafer G S, Hoyle C E, McCormick C L. Water soluble copolymer 61. Microstructure investigation of pyrenesulfonamide-labeled polyelectrolytes variation of label proximity utilizing micellar polymerization. Macromolecules, 1995, 28, 6175-6182
    71. Xie X Y, Hogen-Esch T E. Copolymers of N, N-dimethylacrylamide and 2-(N-ethylperfluorooctanesulfonamido)ethyl acrylate in aqueous media and in bulk. Synthesis and properties. Macromolecules, 1996, 29, 1734-1745
    72. Regalado E J, Selb J, Candau F. Viscoelastic behavior of semidilute solutions of multisticker polymer chains. Macromolecules, 1999, 32, 8580-8588
    73. Regalado E J, Selb J, Candau F. Phase behavior and reological properties of aqueous solutions containing mixtures of associating polymers. Macromolecules, 2000, 33, 8720-8730
    74. Volpert E, Selb J, Candan F. Associating behaviour of polyacrylamides hydrophobically modified with dihexylacrylamide. Polymer, 1998, 39, 1025-1033
    75. Glass J E. (Ed.) Associative Polymers in Aqueous Media. ACS symposium series
    765, American Chemical Society, Washington DC, 2000
    76. Semenov A M, Joanny J F, Khokhlov A R. Associating polymers: equilibrium and linear viscoelasticity. Macromolecules, 1995, 28, 1066-1075
    77. Halperin A. On the collapse of multiblock copolymers. Macromolecules, 1991, 24, 1418-1419
    78.戴玉华,吴飞鹏,李妙针,王尔鉴。稳态和动态荧光研究疏水缔合共聚物P(AM/POEA)的自缔合行为和聚集体。化学学报,2004, 62, 823-828
    79. Hill A, Candau F, Selb J. Properties of hydrophobically associating polyacrylamides: influence of the method of synthesis. Macromolecules, 1993, 26, 4521-4532
    80. Turner S R, Sino D B, Bock J. Micellar process for the production of acrylamide-alkyl acrylamide copolymers. U.S. Patent, 4.528.348, 1985
    81. Turner S R, Siano D B, Bock J. Acrylamide-alkylacrylamide copolymers. U.S. Patent, 4.520.182, 1985
    82. Shawki S M, Hamielec A E. Estimation of transfer constants in the aqueous solution polymerization of acrylamide with potassium persulfate initiator. J. Appl. Polym. Sci., 1979, 23, 3341-3345
    83. Candau F, Zekhnini Z, Durand J P. Copolymerization of water soluble monomer in nonionic bicontinuous microemulsion. J. Colloid Interface Sci., 1986, 114, 398-408
    84. Braun O, Selb J, Candau F. Synthesis in microemulsion and characterization of stimuli-responsive polyelectrolytes and polyampholytes based on N-isopropyl- acrylamide. Polymer, 2001, 42, 8499-8510
    85. Biggs S, Hill A, Selb J, Candau F. Copolymerization of acrylamide and a hdydrophobic monomer in an aqueous micellar medium: effect of the surfactant on the copolymer microstructure. J. Phys. Chem., 1992, 96, 1505-1511
    86. Evani S. Water-dispersible Hydrophobic Thickening Agent. U.S. Patent, 4.432.881, 1984
    87. Stahler K, Selb J, Candau F. Fluorocarbon polymerizable surfactants: viscometric behavior, micellar polymerization and interactions with associating polymers. Colloid Polym. Sci., 1998, 276, 860-869
    88. Polowinski S. Copolymerization of methacrylic acid with methyl methacrylate on a polyethylene glycol matrix. Eur. Polym. J., 1983, 19, 679-681
    89. Frisch H L, Xu Q H. Copolymerization of styrene and methacrylic acid in the presence of poly(2-vinyl pyridine) with different molecular weights. J. Polym. Sci. A., Polym. Chem., 1993, 31, 1339-1341
    90. O’Driscoll K F, Capek I. Methyl methacrylate copolymerization in the presence of a template. J. Polym. Sci. C., Polym. Lett., 1981, 19, 401-407
    91. Polowinski S. Template copolymerization of methacrylic acid and acrylic acid. Acta. Polym., 1992, 43, 99-101
    92. Rainaldi I, Cristallini C, Ciardelli G, Giusti P. Copolymerization of acrylic acid and 2-hydroxyethyl methylacrylate onto poly(N-vinylpyrrolidone): Template influence on comonomer reactivity. Macromol. Chem. Phys., 2000, 201, 2424-2431
    93. Charalambopoulou A, Bokias G, Staikos G. Template copolymerization of N-isopropylacrylamide with a cationic monomer: influence of the template on the solution properties of the product. Polymer, 2002, 2637-2643
    94. Zhang Y X, Wu F P, Li M Z, Wang E J. Novel approach to synthesizing hydrophobically associating copolymer using template copolymerization: the synthesis and behaviors of acrylamide and 4-(w-propenoyloxyethoxy) benzoic acid copolymer. J. Phys. Chem. B., 2005, 109, 22250-22255
    95. Larrabee C E, Sprague E D. Radiation-induced polymerization of sodium 10-undecenoate in aqueous micelle solutions. J. Polym. Sci. C., Polym. Lett.,1979, 17, 749-751
    96. Paleos C M, Stassinopoulou C I, Malliaris A. Comparative studies between monomeric and polymeric sodium 10-undecenoate micelles. J. Phys. Chem., 1983, 87, 251-254
    97. Hamid S, Sherrington D. Polymerized micelles: fact or fancy? J. Chem. Soc. Chem. Commun., 1986, 936-938
    98. Roque J P, Boyer B, Lamaty G, Leydet A, Senhaji O. Polymerized surfactants IV: Micellar catalysis in the presence of telomers and polymers derived form methacrylic surfactants. New J. Chem., 1996, 20, 137-142
    99. Gan L M, Chew C H. Polymerization in the transparent water-in-oil solution (I) methyl methacrylate and the copolymerizable cosurfactant. J. Dispersion Sci. Technol., 1983, 4, 291-312
    100. Dreja M, Tieke B. Microemulsions with polymerizable surfactants.γ-ray induced copolymerization of styrene and 11-(acryloyloxy) undecyl (trimethyl) ammonium bromide in three-component cationic microemulsion. Macromol. Rapid Commun., 1996, 17, 825-833
    101. Peiffer D G. Cationic-hydrogen bonding type hydrophobically associating copolymers. U.S. Patent, 4.847.342, 1989
    102. Peiffer D G. Hydrophobically associating polymers and their interactions with rod-like micelles. Polymer, 1990, 31, 2353-2360
    103. Schulz D Z, Maurer J J, Bock J. Process for the formation of novel acrylamide acrylate copolymers. U.S. Patent, 4.463.151, 1984
    104. Schulz D Z, Berluche E, Maurer J J, Bock J. Novel acrylamide acrylate copolymers. U.S. Patent, 4.792.593, 1988
    105. Candau F, Stahler K, Selb J, Barthelemy P, Pucci B. Novel Hydrocarbon and Fluorocarbon Polymerizable Surfactants: Synthesis, Characterization and Mixing Behavior. Langmuir, 1998, 14, 4765-4775
    106. Stahler K, Selb J, Candau F. A study of multicompartment polymeric micelles. Mater. Sci. Eng. C., 1999, 10, 171-178
    107. Candau F, Stahler K, Sebl J. Multicompartment Polymeric Micelles Based onHydrocarbon and Fluorocarbon Polymerizable Surfactants. Langmuir, 1999, 15, 7565-7576
    108. Neuberg C. Hydrotropy. Biochem. Z., 1916, 76, 107-176
    109. Neuberg C. Hydrotropic phenomena. J. Chem. Soc., 1916, 110, 555-559
    110. Travis K H, Eric W K. Hydrotropic solution. Curr. Opin. Colloid Interface Sci., 2007, 12, 121-128
    111. Roy B K, Moulik S P. Effect of hydrotropes on solution behavior of amphiphiles. Curr. Sci., 2003, 85, 1148-1155
    112. Gonzalez Y I, Stjerndahl M, Danino D, Kaler E W. Spontaneous vesicle imidazoline compounds. Langmuir, 2004, 20, 7053-7063
    113. Dhara D, Chatterji P R. Effect of hydrotropes on volume phase transition in poly(N-isopropylacrylamide) hydrogel. Langmuir, 1999, 15, 930-935
    114. Oyaizu K, Shiba Y, Nakamura Y, Yuasa M. Highly stable polymerizable vesicles in anionic surfactant/ammonium salt mixtures in the presence of cross-linking monomers for convenient preparation of hollow nanospheres. Langmuir, 2006, 22, 5261-5265
    115. Balasubramanian D, Srinivas V. Aggregation behavior of hydrotropic compounds in aqueous solution. J. Phys. Chem., 1989, 93, 3865-3870
    116. Hansen O, Rosenholm J B. Volumetric investigation of the hydrotropic action of aqueous sodium propionate solutions on pentanol at 298 K. J. Chem. Soc., Faraday Trans. 1., 1986, 82, 77-88
    117. Huh K M, Lee S C, Cho Y W, Lee J, Jcong J H, Park K. Hydrotropic polymer micelle system for delivery of paclitaxel. J. Control Release, 2005, 101, 59-68
    118. Kline S R. Polymerization of rodlike micelles. Langmuir, 1999, 15, 2726-2732
    119. Lee S C, Acharya G, Lee J, Park K. Hydrotropic polymers: synthesis and characterization of polymers contain picolylnicotinamide moieties. Macromolecules, 2003, 36, 2248-2255
    120. Ooya T, Lee J, Park K. Hydrotropic dendrimers of generations 4 and 5: synthesis, characterization, and hydrotropic solubilization of paclitaxel. Bioconjug. Chem., 2004, 15, 1221-1229
    121. Souza T P, Zanette D, Kawanami A E, Rezende L D, Ishiki H M. Amaral A T, et al. pH at the micellar interface: synthesis of pH probes derived from salicylic acid, acid-base dissociation in sodium dodecyl sulfate micelles, and Poisson-Boltzmann simulation. J. Colloid Interface Sci., 2006, 297, 292-302
    1. Neuberg C. Biochem. Z., 1916, 76, 107-176
    2. Neuberg C. J. Chem. Soc., 1916, 110, 555-559
    3. Travis K H, Eric W K. Curr. Opin. Colloid Interface Sci., 2007, 12, 121-128
    4. Roy B K, Moulik S P. Curr. Sci., 2003, 85, 1148-1155
    5. Gonzalez Y I, Stjerndahl M, Danino D, Kaler E W. Langmuir, 2004, 20, 7053-7063
    6. Dhara D, Chatterji P R. Langmuir, 1999, 15, 930-935
    7. Oyaizu K, Shiba Y, Nakamura Y, Yuasa M. Langmuir, 2006, 22, 5261-5265
    8. Balasubramanian D, Srinivas V. J. Phys. Chem., 1989, 93, 3865-3870
    9. Srinivas V, Rodley G A, Ravikumar K, Robinson W T, Turnbull M M, Balasubramanian D. Langmuir, 1997, 13, 3235-3239
    10. Huh K M, Lee S C, Cho Y W, Lee J, Jcong J H, Park K. J. Control Release, 2005, 101, 59-68
    11. Lee S C, Huh K M, Park J H, Park K. US Patent 50 158 271, 2005
    12. Lee S C, Acharya G, Lee J, Park K. Macromolecules, 2003, 36, 2248-2255
    13. Ooya T, Lee J, Park K. Bioconjug. Chem., 2004, 15, 1221-1229
    14. Ooya T, Moo H K, Saitoh M, Tamiya E, Park K. Sci. Technol. Adv. Mater., 2005, 6,
    452-456
    15. Zhu Z Y, Gonzalez Y I, Xu H X, Kaler E W, Liu S Y. Langmuir, 2006, 22, 949-955
    16. Liu S, Gonzalez Y I, Danino D, Kaler E W. Macromolecules, 2005, 38, 2482-2491
    17. Souza T P, Zanette D, Kawanami A E, Rezende L D, Ishiki H M, Amaral A T. J Colloid Interface Sci., 2006, 297, 292-302
    18. Kawashima Y, Kameo K, Kato M, Hasegawa M, Kazuyuki T, Katuo H, Hirono S, Moriguchi I. Chem. Pharm. Bull., 1992, 40, 774-777
    19. Ford-Moore A H. Organic Syntheses, 1950, 30, 10-14
    20. Wang L J, Liu X J, Li Y Z. Macromolecules, 1998, 31, 3446-3453
    21.赵国玺.表面活性剂物理化学.第一版.北京:北京大学出版社, 1984, 65-105
    22. Srinivas V, Balasubramanian D. Langmuir, 1998, 14, 6658-6661
    23. Bauduin P, Renoncourt A, Kopf A, Touraud D, Kunz W. Langmuir, 2005, 21, 6769-6775
    24. Valdes-Aguilera O, Neckers D C. Acc. Chem. Res., 1989, 22, 171-177
    25. Kalyanasundaram K, Thomas J K. J. Am. Chem. Soc., 1977, 99, 2039-2044
    26. Nicholas J T, Ahmad Y. J. Am. Chem. Soc., 1978, 100, 5951-5952
    27. Infelta P P. Chem. Phys. Lett., 1979, 61, 88-91
    1. Kaler E W, Murthy A K, Rodriguez B E, Zasadzinski J A N. Science, 1989, 245, 1371-1373
    2. Fendler J H. Membrane Mimetic Chemistry, New York: Wiley, 1982
    3. Lorente E, Rodriguez A, Aicart E, Junquera E. Colloid Polym. Sci., 2007, 285, 1321-1329
    4. Oyaizu K, Shiba Y, Nakamura Y, Yuasa M. Langmuir, 2006, 22, 5261-5265
    5. Morgan J D, Johnson C A, Kaler E W. Langmuir, 1997, 13, 6447-6451
    6. Jung M, Ouden I-den, Montoya-Goni A, Hubert D H W, Frederik P M, M. van Herk A, German A L. Langmuir, 2000, 16, 4185-4195
    7.赵国玺。物理化学学报, 1992, 8, 136-138
    8. Gerber M J, Kline S R, Walker L M. Langmuir, 2004, 20, 8510-8516
    9. Heldt N, Zhao J, Friberg S, Zhang Z, Slack G, Li Y. Tetrahedron, 2000, 56, 6985-6990
    10. Zhu Z Y, González Y I, Xu H X, Kaler E W, Liu S Y. Langmiur, 2006, 22, 949-955
    11. Liu S Y, González Y I, Danino D, Kaler E W. Macromolecules, 2005, 38, 2482-2491
    12. Kim Tae-H, Choi Sung-M, Kline S R. Langmiur, 2006, 22, 2844-2850
    13. González Y I, Stjerndahl M, Danino D, Kaler E W. Langmiur, 2004, 20, 7053-7063
    14. Bales B L, Tiguida K, Zana R. J. Phys. Chem. B., 2004, 108, 14948-14955
    15.赵国玺。表面活性剂物理化学,第一版,北京:北京大学出版社,1984
    16. McLachlan A A, Marangoni D G. J. Colloid Interface Sci., 2006, 295, 243-248
    17.周文婷,徐晓明,蓝琴,韩国彬。化学学报,2007,65,2279-2284
    18. Yin H Q, Lei S, Zhu S B, Huang J B, Ye J P. Chem. Eur. J., 2006, 12, 2825-2835
    1. Forster S, Antonietti M. Adv. Mater., 1998, 10, 195-217
    2. Yekta A, Duhamel J, Brochad P, Adiwidjaja H, Winnik M A. Macromolecules, 1993, 26, 1829-1836
    3. Kumacheva E, Rharbi Y, Winniki M A, Guo L, Tam K C, Jenkins R D. Langmuir, 1997, 13, 182-186
    4. Zhang Y, Wu C, Fang Q, Zhang Y X. Macromolecules, 1996, 29, 2494-2497
    5. Chen J, Jiang M, Zhang Y X, Zhou H. Macromolecules, 1999, 32, 4861-4866
    6. Schoonbrood H A S, Unzue M J, Beck Ole-J, Asua J M. Macromolecules, 1997, 30, 6024-6033
    7. Guyot A, Tauer K. Adv. Polym. Sci., 1994, 111, 43-65
    8. Herold M, Brunner H, Tovar G E M. Macromol. Chem. Phys., 2003, 204, 770-778
    9. Dessipri E, Tirrell D A, Atkins E D T. Macromolecules, 1996, 29, 3545-3551
    10. Hester J F, Banerjee P, Mayes A M. Macromolecules, 1999, 32, 1643-1650
    11. Kramer M C, Sterger J R, Hu Y, McCormick C L. Macromolecules, 1996, 29, 1992-1997
    12. McCormick C L. (Ed.) Stimuli-responsive water soluble and amphiphilic polymers, ACS symposium series 780, Washington DC, 2000
    13. Baskar G, Chandrasekar K, Reddy B S R. Polymer, 2004, 45, 6507-6517
    14. Yamamoto H, Tomatsu I, Hashidzume A, Morishima Y. Macromolecules, 2000, 33, 7852-7861
    15. Noda T, Morishima Y. Macromolecules, 1999, 32, 4631-4640
    16. Yamamoto H, Morishima Y, Macromolecules, 1999, 32, 7469-7475
    17. Yamamoto H, Mizusaki M, Yoda K, Morishima Y. Macromolecules, 1998, 31, 3588-3594
    18. Morishima Y, Nomura S, Ikeda T, Seke M, Kamachi M. Macromolecules, 1995, 28, 2874-2881
    19. Wu H W, Kawaguchi S, Ito K. Colloid Polym. Sci., 2004, 282, 1365-1373
    20. Samakande A, Hartmann P C, Sanderson R D. J. Colloid Interface Sci., 2006, 296, 316-323
    21. Cochin D, Candau F, Zana R. Macromolecules, 1993, 26, 5755-5764
    22. Cochin D, Zana R, Candau F. Macromolecules, 1993, 26, 5765-5771
    23. Morimoto H, Hashidzume A, Morishima Y. Polymer, 2003, 44, 943-952
    24.赵国玺。表面活性剂物理化学。北京:北京大学出版社,1984
    25.李晶,吴飞鹏,王尔鉴。影响科学与光化学。已接收,2009
    26. Cochin D, Candau F, Zana R. Macromolecules, 1993, 26, 5564-5575
    27. Kathmann E E L, Davis D D, McCormick C L. Macromolecules, 1994, 27, 3156-3161
    28. Strauss U P, Gershfeld N L. J. Phys. Chem., 1954, 58, 747-753
    29. Ovejero G, Perez P, Romero M D, Guzman I, Diez E. Eur. Polym. J., 2007, 43, 1444-1449
    30. Solomatin S V, Bronich T K, Bargar T W, Eisenberg A, Kabanov V A, Kabanov A V. Langmuir, 2003, 19, 8069-8076
    31. Kantor Y, Kardar M. Europhys. Lett., 1994, 27, 643-648
    32. Kantor Y, Kardar M. Phys. Rev. E, 1995, 51, 1299-1312
    33. Dobrynin A V, Rubinstein M. Macromolecules, 1999, 32, 915-922
    34. Dobrynin A V, Rubinstein M. Macromolecules, 2000, 33, 8097-8105
    35. Dobrynin A V, Rubinstein M. Macromolecules, 1996, 29, 2974-2979
    36. Fendler J H. Membrane Mimetic Chemistry, New York: Wiley, 1982
    1. Shalaby S W, McCormick C L, Butler G B. (Eds.)“Water-soluble Polymers: Synthesis, Solution Properties and Applications”, in ACS Symposium Series 467, Washington DC: American Chemical Society Press, 1991
    2. Glass J E. (Ed.)“Associative Polymers in Aqueous Media”, in ACS Symposium Series 765, Washington DC: American Chemical Society Press, 2000
    3. McCormick C L. (Ed.)“Stimuli-Responsive Water Soluble and Amphiphilic Polymers”, in ACS Symposium Series 780, Washington DC: American Chemical Society Press, 2000
    4. Umar Y, Al-Muallem H A, Abu-Sharkh B F, Ali S A. Polymer, 2004, 45, 3651-3661
    5. Castelletto V, Hamley I W, Xue W, Sommer C, Pedersen J S, Olmsted P D. Macromolecules, 2004, 37, 1492-1501
    6. Shashkina Y A, Zaroslov Y D, Smirnov V A, Philippova O E, Khokhlov A R, Pryakhina T A, Churochkina N A. Polymer, 2003, 44, 2289-2293
    7. Xue W, Hamley I W, Castelletto V, Olmsted P D. Eur. Polym. J., 2004, 40, 47-56
    8. Candau F, Selb J. Adv. Colloid Interface Sci., 1999, 79, 149-172
    9. Hill A, Candau F, Selb J. Macromolecules, 1993, 26, 4521-4532
    10. Volpert E, Selb J, Candau F. Macromolecules, 1996, 29, 1452-1463
    11. Feng Y J, Billon L, Grassl B, Khoukh A, Fancois J. Polymer, 2002, 43, 2055-2064
    12. Feng Y J, Billon L, Grassl B, Khoukh A, Borisov O, Fancois J. Polymer, 2005, 46, 9283-9295
    13. Lu S H, Feng Y J, Huang Z Y. J. Appl. Polym. Sci., 2008, 110, 1837-1843
    14. Feng Y J, Billon L, Grassl B, Khoukh A, Fancois J. Polym. Int., 2002, 51, 939-947
    15. Gao B J, Guo H P, Wang J, Zhang Y. Macromolecules, 2008, 41, 2890-2897
    16. Biggs S, Hill A, Selb J, Candau F. J. Phys. Chem., 1992, 96, 1505-1511
    17. Selb J, Candau F. In: Glass J E. editor.“Associative Polymers in Aqueous Media”, ACS Symposium Series, 765, Washington DC: American Chemical Society Press,2000 (Chapter 6)
    18. Ye L, Luo K, Huang R. Eur. Polym. J., 2002, 36, 1711-1715
    19. Taylor K C, Nasr-El-Din H A. J. Pet. Sci. Eng., 1998, 19, 265-280
    20. Guyot A. Colloids Surf. A., 1999, 153, 11-21
    21. Guyot A. Adv. Colloid Interface Sci., 2004, 108-109, 3-22
    22. Guyot A, Tauer K. Adv. Polym. Sci., 1994, 111, 43-65
    23. Schulz D Z, Kaladas J J, Maurer J J, Bock J, Pace S J, Schulz W W. Polymer, 1987, 28, 2110-2115
    24. Chang Y, McCormick C L. Macromolecules, 1993, 26, 6121-6126
    25. Cochin D, Zana R, Candau F. Macromolecules, 1993, 26, 5765-5777
    26. Cochin D, Candau F, Zana R. Macromolecules, 1993, 26, 5755-5764
    27. Jiang X H, Chen Z, Lu Y J, Feng Y J. Chinese J. Synth. Chem., 2006, 14, 568-570
    28. Gao B J, Jiang L D, Kong D L. Colloid Polym. Sci., 2007, 285, 839-846
    29. Biggs S, Hill A, Selb J, Candau F. J. Phys. Chem., 1992, 96, 1505-1511
    30. Dai Y H, Wu F P, Li M Z, Wang E J. Acta Chimica Sinica, 2004, 62, 823-828
    31. Turro N J, Yekta A. J. Am. Chem. Soc., 1978, 100, 5951-5952
    32. Malliaris A. Progr. Colloid Polym. Sci., 1987, 73, 161-167
    33. Schulz D N, Maurer J J, Bock J. U.S. Patent, 4.463.151, 1982
    34. Peiffer D G. U.S. Patent, 4.847.342, 1989
    35.李晶,吴飞鹏,王尔鉴。影响科学与光化学,印刷中,2009
    36. Cardona C M, Wikes T, Ong W, Kaifer A E, McCarley T D, Pandy S, Baker G A, Kane M N, Baker S N, Bright F V. J. Phys. Chem. B., 2002, 106, 8649-8656
    37. Kramer M C, Welch C G, Steger J R, McCormick C L. Macromolecules, 1995, 28, 5248-5254
    38. Xue W, Hamley I W, Castelletto V, Olmsted P D. Eur. Polym. J., 2004, 40, 47-56
    39. Regalado E J, Selb J, Candau F. Macromolecules, 1999, 32, 8580-8588
    40. Yekta A, Xu B, Duhamel J, Adiwidjaja H, Winnik M A. Macromolecules, 1995, 28, 956-966
    41. Alargova R G, Kochijashky I I, Sierra M L, Zana R. Langmiur, 1998, 14, 5412-5418
    42. Kalyanasundaram K, Thomas J K. J. Am. Soc. Chem., 1977, 99, 2039-2044
    43. Miguel M da G, Burrows H D, Lindman B. Progr. Colloid Polym. Sci., 2002, 120, 13-22
    1.马青山编著。絮凝化学和絮凝剂。北京:中国环境科学出版社,1988
    2.甄丽丽,邵常东,张剑,刘福胜。精细石油化工进展,2001,12,18-20
    3.刘明华编著。有机高分子絮凝剂的制备及应用。北京:化学工业出版社,2006
    4. GB 12005.1-1989,聚丙烯酰胺特性粘度测试方法[S]
    5.陈鸿。高分子絮凝剂的合成和絮凝性能研究。四川大学硕士论文,成都,2000
    6. Candau F, Selb J. Adv. Colloid Interface Sci., 1999, 79, 149-172
    7. Hill A, Candau F, Selb J. Macromolecules, 1993, 26, 4521-4532
    8. Li J, Wu F P, Wang E J. Chinese J. Polym. Sci., 2009, in the press
    9.戴玉华,吴飞鹏,李妙贞,王尔鉴。化学学报,2004,62,823-828
    10. Gao B J, Guo H P, Wang J, Zhang Y. Macromolecules, 2008, 41, 2890-2897

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700