TiB_2-氧化物复相陶瓷的热压制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiB_2陶瓷具有优良的物理化学性能和机械力学性能,它除了具有非常高的硬度和弹性模量外,还表现出一系列良好的特性——导电性、高熔点、耐磨损、重量轻以及高的化学稳定性,其应用前景十分广阔。但是TiB_2材料较高的制作成本以及较差的烧结性为制备带来了困难,同时TiB_2的常温脆性阻碍了它的实际应用。制备复相陶瓷、添加烧结助剂以及应用先进的成型和烧结技术被认为是提高TiB_2材料的力学性能、改善其烧结性能和降低制备成本的重要方法。
     本文采用OxideⅠ为第二相,以OxideⅡ为烧结助剂,热压烧结制备TiB_2-OxideⅠ复相陶瓷材料,研究了OxideⅠ含量、OxideⅡ含量和烧结工艺对材料结构和性能的影响,分析了材料显微结构和力学性能的关系,同时研究了助烧剂OxideⅡ的加入对材料烧结过程的影响,探讨了烧结过程中一些现象的产生原因。
     添加OxideⅠ作为第二相能显著改善材料的烧结性能,在OxideⅠ含量在为0~20%变化时,材料的相对密度都达到96%以上,同时获得材料力学性能优良,可以发现当OxideⅠ含量为15%时,材料的综合力学性能最佳。
     添加OxideⅡ作为烧结助剂时,OxideⅡ与OxideⅠ发生反应,生成SolideSolutionⅠ(SⅠ),在高温条件下会扩散到TiB_2与TiB_2或者TiB_2与OxideⅠ颗粒之间的孔隙处,在一定程度上提高了材料的致密度。通过OxideⅡ添加量对材料结构和性能影响的研究,发现当OxideⅡ添加量为3%时,获得材料的综合力学性能最佳。OxideⅡ的含量继续增加时,材料的力学性能反而逐渐下降。
     在不同的烧结温度条件下,对添加3%OxideⅡ的TiB_2-15%OxideⅠ复相陶瓷进行烧结,结果发现1600℃烧结获得材料结构均匀,抗弯强度最高。而当烧结温度继续升高时,材料的性能反而下降,出现明显的晶粒生长。
     添加4%OxideⅡ的TiB_2-15%OxideⅠ复相陶瓷,在1600℃进行烧结不同的时间,发现当烧结时间仅为10min时,获得材料性能优良,致密度较高,表明第二相和助烧剂的加入能显著改善材料的烧结性能,能够在较低的温度下快速烧结得到致密材料。
     当OxideⅡ含量较低时,OxideⅡ没有完全参与反应生成SⅠ相;而当其含量达到6%时,OxideⅡ全部参与反应生成SⅠ。反应过程中存在液相流出和粘模现象,分析可能时TiB_2原始粉中存在氧化物杂质和表面吸附氧,在烧结过程中形成的氧化物造成低熔点的共熔相,从而造成了低温的液相流出。
TiB_2 exhibits high electrical conductivity,melting temperature and wear resistance,low specific weight and relatively good chemical stability,besides its extremely high hardness and elastic modulus.TiB_2 ceramics are very promising in modern industry.The main problems that limit the application of TiB_2 ceramics include:high fabrication cost,low sintering activity and inherent brittleness.Adding second ceramic phase,using sintering aids and optimizing fabrication technologies are believed important ways to improve its mechanical properties,sinterability of ceramics and cut down on costing.
     In this paper,TiB_2 ceramics were prepared by hot pressing technology,using OxideⅠas the second phase,OxideⅡas the sintering additive.The effects of OxideⅠcontents,OxideⅡcontents,sintering temperature and sintering parameter on structure and mechanical properties of TiB_2 ceramics were studied.The relationship between microstructure and mechanical properties was analyzed.The effects of OxideⅡadditive on the sintering process was also investigated.The factors of some phenomena in the sintering process were discussed as well.
     The sinter ability of TiB_2 ceramics were greatly improved when OxideⅠwas added as the second phase.The relative density of TiB_2- OxideⅠmultiphase ceramics reached above 96%with OxideⅠcontent between 0%and 20%.These materials can also maintain eminent mechanical properties.In our research we can see that best integrated properties can be obtained with 15%OxideⅠ.
     Solide SolutionⅠ(S I)can be obtained from reaction of OxideⅠand OxideⅡwhen OxideⅡwas added as the sintering additive.This phase can diffuse to holes between granules of TiB_2 and TiB_2 or TiB_2 and OxideⅠunder high temperature,which is good for densification of materials at some extent.The multiphase materials achieved most imaginable proerties with 3%OxideⅡin our research.The mechanical properties was going to decrease when continuously increasing OxideⅡcontents.
     TiB_2- 15%OxideⅠmultiphase ceramics with 3%OxideⅡwas sintered under different temperature.The results showed that best mechanical properties can be acheved when the samles was sintered under 1600℃.When increasing the sintering temperature,properties of materials declined reversely,with grains grow obviously.
     The effects of hold time on microstructure and mechanical properties were studied at the same system.With 10 minutes of holding time,materials got high relative density and excellent mechanical properties.These means that the addition of second phase and sintering additive can greatly improve the sintering ability of TiB_2 ceramics.It can be densified quicky under relatively lower temperature.
     It was discovered in our research that OxideⅡdidn't react with OxideⅠcompletely in forming S I when additive content was low.While 6%OxideⅡwas added,OxideⅡcompletely reacted to form S I.We also found outflow of liquid phase and agglutination of sintering mould during sintering process.These phenomena should be attributed to oxide impurities and surface adsorption of oxygen,which can form eutectic phases with low melting points.They would flow out under temperature as low as 1600℃.
引文
[1]高荣根.二硼化钛基金属陶瓷的开发与应用.硬质合金,1998,15(4):235-239
    [2]向军辉,肖汉宁.TiB_2材料的研究现状及其应用.陶瓷工程,1992,29(4):39-44
    [3]刘利,傅正义.硼化钛系复合材料研究进展.粉末冶金技术,2000,18(3):217-220
    [4]苏继楷.高技术TiB_2陶瓷粉末的应用与发展.中国搪瓷,2000,21(4):43-45
    [5]章桥新,毛天尔,汪声瑞.TiB_2基烧结材料的研究现状与进展.材料科学与工程,1993,11(4):43-52
    [6]张伟,蒋勇.新一代金属陶瓷的制造、性能及应用.稀有金属与硬质合金,1997,129:55-60
    [7]《高技术新材料要览》编辑委员会编.高技术新材料要览.北京:中国科技出版社,1993:30-31
    [8]Matkovich,Economy.V.I.Boron and Refractory Borodes.New York:Springer,1977:50-60
    [9]沈鸿才.结构陶瓷及应用[M].北京:国防工业出版社,1988:220-330
    [10]王为民.二硼化钛基陶瓷的自蔓延高温合成与加工:[博士学位论文].武汉:武汉工业大学,1998
    [11]王皓.固溶复合二硼化钛陶瓷的结构、制备与性能:[博士学位论文].武汉:武汉工业大学,1999
    [12]张金咏.TiB_2及其金属复合材料的制备、结构与性能:[硕士学位论文].武汉:武汉工业大学,1999
    [13]P.S.kislyi,M.A.kuzenkova.High temperature oxidation resistance of zirconium boride/molybdenum disilicide alloys.Poroshkovaia metallurgiia,1965,10(5):75-79
    [14]P.Angelini,P.F.Becher.Processing and microstructural development in liquid phase sintered and pure TiB_2 ceramics.Science of Hard Materials,1984,P109
    [15]C.B.Finch,P.F.Becher,et al.Effect of Impurities on the Densification of Submicrometer TiB_2 Powders.Advanced Ceramic Materials,1986,11:50
    [16]C.B.Finch,V.J.Tennery.Crack formation and swelling of TiB_2-Ni ceramics in liquid aluminium.Journal of the American Ceramic Society,1982,7(65):C-100
    [17]Telle,R.;Petzow,G.Strengthening and toughening of boride and carbide hard material composites,Materials Science & Engineering A.1988,A(105-106):97-104
    [18]J.A.Nelson,et al.Metal bonded titanium diboride,Washingtin,1952
    [19]R.Meyer,H.Pastor.Frittage et al.Compression a chaud des dibornres de titante et de Iircoum,planseeber,1969,p111
    [20]B.Yuriditsky.TiB_2-Based Cermets.Int.J.Refract.Hard Met,1990,9(1):32-35
    [21]Weon-Ju.Kim,et al.Two-step sintering of a TiB_2-Ni cermet.J.of Mater.Sci.,1996,31(21):5805-5809
    [22]傅正义等.TiB_2-xAl复合材料的结构形成分析.金属学报,1994,30(8):373-378
    [23]郭景坤,诸培南.复相陶瓷材料的设计原则.硅酸盐学报,1996,24(1):7-13
    [24]郭景坤.从复合材料到多相材料.材料研究学报,2000,14(2):123-126
    [25]郭景坤.陶瓷材料的强化与增韧新途径的探索.无机材料学报,1998,13(1):23-24
    [26]T.Watanable,K.Shoubu.Mechanical properties of hot-pressed TiB_2-ZrO_2 composites.Journal of American Ceramic Society,1985,68(2):c34-c36.
    [27]S.Torizuka,J.Harada,H.Yamamoto,et al.Effects of SiC addition on the mechanical properties and sinterability of TiB_2-(2 MOL%Y_2O_3-ZrO_2)composite.Journal of the Ceramic Society of Japan,1992,100(5):691-696
    [28]王月花.基于自蔓延高温合成制备TiB_2复相陶瓷:[硕士学位论文].武汉:武汉工业大学,1997
    [29]M.A.Meyers,E.A.Olevsky,J.Ma,et al.Combustion synthesis/densification of an Oxide Ⅰ-TiB_2 Composite.Mater.Sci.Eng.,2001,311(12):83-99
    [30]D.Brodkin,S.R.Kalidindi,M.W.Barsoum,et al.Microstructural evolution during transient plastic phase processing of titanium carbide-titanium boride composites.Journal of the American Ceramic Society,1996,79(7):1945-1952.
    [31]唐建新,左开芬.过波塑性相工艺制造Ti-B-C复合陶瓷材料.清华大学学报(自然科学版),1998,38(12):73-75
    [32]S.Ding,G.Wen,T.Lei,Y.Zhou.Design and thermodynamics on in-situ TiB_2 reinforced B_4C matrix composites.Materials Science and Engineering(China),2003,21:165-169
    [33]S.Torizuka,K.Sato,H.Nishio,et al.Effect of SiC on Interracial Reaction and Sintering Mechanism of TiB_2,Journal of the American Ceramic Society,1995.78(6):1606-1610
    [34]Eul.Son.Kang,Cheel.Woo.Jang,Chae.Hyun.Lee,et al.Effect of Iron and Boron Carbide on the Densification and Mechanical Properties of Titanium Diboride Ceramics.Journal of the American Ceramic Society,1989,72(10):1868-1872
    [35]CH.Murthy.T.SR,Basu.B.Processing and properties of TiB_2 with MoSi_2 sinter-additive:a first report.Journal of the American Ceramic Society,2006,89(1):131-138.
    [36]Hynng-Jong.Kim,Heon-Jin.Choi,June-Gunn.Lee.Mechanochemical Synthesis and Pressureless Sintering of TiB_2-AlN Composites.Journal of the Amedcan Ceramic Society,2002,85(4):1022-1024
    [37]王小民,李明轩.复合材料的超声检测和评价.应用声学,1998,17(6):39-44
    [38]Ross H.Plonick,Elizabeth A.Richards.Combustion synthesis route to TiB_2- Oxide I[J].Mater.Resa.Bull.,2001,36(4):1487-1493
    [39]Sanchen J M,Azcona I,Castro F.Mechanical properties of titanium diboride based cermets[J].Journal of Materials Science,2000,55(8):9-14
    [40]Nelson.D.Commbs.Material[J].Advanced Ceramics,1983,17(1):1301-1308
    [41]傅正义.金属-陶瓷复合材料的自蔓延高温合成与制备:[博士学位论文].武汉:武汉工业大学,1994
    [42]傅正义,王为民,王皓,袁润章.TiB_2系金属陶瓷的SHS-QP制备[J].硅酸盐学报,1996,24(6):654-659
    [43]王为民,梅炳初,傅正义等.热压自蔓延高温合成制备TiB_2/NiAl金属间化合物基复合材料[J].复合材料学报,1996,13(1):30-34
    [44]王为民,傅正义,袁润章.自蔓延高温合成TiB_2/NiAl复合材料的显微结构分析[J].硅酸盐学报,1996,24(4):70-75
    [45]Laszloj.Kecskes,Thomaskottke and RusNiiler.Microstructural Properties of Combustion-Synthesized and dynamically Consolidated Titanium Boride and Titanium Carbide[J].J.Am.Ceram.Soc.,1990,73(5):1274-1282
    [46]D.A.Hoke,Marc A.Meyers.Consolidation of Combustion-Synthesized Titanium Diboride-Based Materials[J].J.Am.Ceram.Soc.,1995,78(2):375-381
    [47]P.Angelini,P.E.Becher,P.E.Becher et al.Processing and microstructural characterization of TiB_2 liquid phase sintered with Ni and Ni_3Al[J].Materials Research Soc,1984,24(5):299-305
    [48]Maria Cecilia Correa de Sá e Benevides de Moraesa,Carlos Nelson Elias,Jamil Duailibi Filhob,et al.Mechanical Properties of Alumina-Zirconia.Composites for Ceramic Abutments.2004,7(4):643-649
    [49]Mitomo.M,Uenosono.S.Microstructural Development during Gas pressure sintering of α-silicon nitride.Journal of the American Ceramic Society,1992,75(1):103-108
    [50]施剑林.固相烧结--Ⅰ气孔显微结构模型及其热力学稳定性,致密化方程.硅酸盐学报,1997,25(5):499-511
    [51]施剑林.固相烧结--Ⅱ粗化与致密化关系及物质传输途径.硅酸盐学报,1997,25(6):657-667
    [52]丁硕,温广武,雷廷权.自生法制备纳微米颗粒增强B_4C基复合材料的研究[J].材料工程,2002(5):14-21.
    [53]Junichi Matsushita.Oxidation of TiB_2 based ceramic composites in air,J.Ceram.Soc.Jpn Inter Ed,1990,98:323
    [54]Mark.A.Janney.Mechanical properties and oxidation behavior of Hot-pressed SiC/TiB_2composite,Am.Ceram.Soc.Bull,1987,66(2):322

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700