分段沉积/雕铣快速成形工艺中的材料选择与匹配问题及工艺实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分段沉积/雕铣快速成形是一种基于堆积成型和传统成型相结合的复合成型方法,同时具有了堆积成型的柔性和传统成型的高精度。在该工艺中,按照工件可加工区域进行分段,对干涉区域和非干涉区域分别采用对工件材料直接加工和在支撑材料上复制型腔的方法进行加工,工件材料和支撑材料分别采用不同的材料。因此选择一对合适的零件材料和支撑材料是实现该工艺过程的基本前提。因此,本文主要致力于寻找一种合适的材料,来满足这种技术的加工需要。在此基础上,优化分段沉积/雕铣成型的工艺方法,进而实现一些特殊零件的制造。
     首先,材料的选择应该满足严格的匹配关系,即工件材料固化的峰值温度不能超过支撑材料的熔点,两种材料应当互不相溶,加工完毕后,工件材料可以方便的从支撑材料中分离,而且支撑材料能够对工件材料起到很好的装夹作用。通过对多种材料匹配的分析,分别选择热固性的环氧树脂和热塑性可机加工蜡作为工件材料和支撑材料。根据单纯的环氧树脂在热匹配和切削性能上存在的不足,提出以铝粉作为填料的填充型环氧树脂替代纯环氧树脂作为零件材料,并通过正交实验的方法对填充型环氧树脂在不同组成成分材料的固化时间、峰值温度、收缩性、导电性、拉伸强度、应力—应变行为以及加工性能等分别进行了测试,通过合理化分析,选择最佳材料配比方案。
     其次本文深入分析了分段沉积/雕铣成形工艺中材料变形问题,如塔形效应、整体变形、翘曲变形等,提出了一些具体的工艺改进措施,如采用封闭式堆积,应用隔热恒温型腔抑制工件翘曲等。对不同材料区域间隙的产生、内尖角/锐边的产生以及工件各层间工艺的调整做了深入的探讨,并通过一系列的工艺措施实现材料的高效粘接,同时对刀具的选择应用提出新的观点和看法。
     最后论述了三维实体模型分段的基本策略和软件开发的思路。对实现分段沉积/雕铣快速成形工艺的一体化加工成型装备研制方案作了系统的分析,实现了各单元技术的集成,利用自主开发的一体化装置,开展了大量的验证性加工实验,提交了部分典型零件的加工实例。
The Decomposed Deposition and Sculpture (DDS) is a type of compound forming method, which is based on the combination of material deposition process and traditional CNC machining. It has the characteristics both of the high accuracy of traditional machining and the high flexibility of Rapid Prototyping technology. This process is carried out by decomposing a CAD solid model into a sequent segments according to the part's interfere and non-interfere area. The interfere area is processed directly, and the non-interfere area are processed by copying impression on the support material. The part material and the support material are different. Thus choosing a couple of appropriate materials of part and support is the premise for realizing the craft's process. Therefore, this thesis concentrates on looking for a couple of appropriate materials to satisfy the process demand. On this foundation, the Decomposed Deposition and Sculpture's technical method is optimized, and a lot of special parts' manufacture is realized.Firstly, the choice of the materials should satisfy the strict match relation, namely the peak value of part material solidified temperature can't exceed the melting point of the support material, and two kinds of materials should not dissolve mutually. After process completely, the part material can conveniently separate from the support material, and the support material can made the packing clips function to the part material. Through analysis of various of match materials, hot-solidified epoxy colophony and thermoplastic and machinable wax are chosen as part material and support material. According to the shortage of pure epoxy colophony in the hot-match and machinability, that the filled-material with aluminum power takes place the pure epoxy colophony as part material is advanced, and by the way of orthogonal experiments the performance of the different component filled-material, including time of solidify, peak value temperature, contractibility, electrical conductivity ability, stretch-strength, stress-deformation, machinability etc. are tested. Through rationalization analysis, the best project of material matching is selected.Secondly, the material shrinkage and distortion are deeply studied in the thesis, some
    measures of technology are put forward to. The thorough study on the generation of clearance in different material zones, inside sharp-angle and craft adjustment of each layer of the part has been done. Through a series of technological measures, the efficient material cementation is realized. In addition, the new viewpoints and opinions of cutter's choice and application are advanced.Finally, the regulations of decomposition of three dimensional solid and the software exploitation strategies are discussed. The incorporate equipment design project for the SSD is systematicly analyzed, and all the unites integration is realized. By making use of the self-determination exploitation incorporate equipment, some verification experiments were developed, and a part of typical parts' process examples were handed over.
引文
[1] 王先逵,制造技术的未来,中国机械工程,1994,5(5):2-4
    [2] 任守榘,信息时代制造业及信息的价值,中国机械工程,1996,7(2):3-6
    [3] 房贵如,刘维汉,先进制造技术的总体发展过程和趋势,中国机械工程,1995,6(3):7-10
    [4] 汪应洛,新世纪的生产系统——精简、灵捷、柔性生产系统,中国机械工程 1995,6(5):7-9
    [5] 颜永年,张伟,卢清萍,基于离散/堆积成形概念的RPM原理与发展,中国机械工程,1994,5(4)64-66
    [6] 盛晓敏,邓朝晖,先进制造技术,北京:机械工业出版社,2002.7
    [7] 朱林泉,白培康,朱江淼,快速成型技术与快速制造技术,北京:国防工业出版社,2003.1
    [8] 顾永华,基于沉积/雕铣一体的实体分段快速成形机理与关键技术研究,华侨大学硕士论文,2003.6
    [9] J. G. Conley and H. L. Marcus, "Rapid Prototyping and Solid Freeform Fabrication,", ASME Transactions -Journal of Manufacturing Science and Engineering, vol. 119, no.4B, November 1997, pp. 811-816.
    [10] J. P. Kruth, " Material Incress Manufacturing by Rapid Prototyping Techniques," CIRP Annals, vol. 40, no. 2, 1991, pp. 603-614.
    [11] Stacey Au and Paul K. Wright, "A Comparative Study of Rapid Prototyping Technology," Intelligent Concurrent Design: Fundamentals, Methodology, Modeling, and Practice, DE-vol. 66, ASME, New Orleans, Louisiana, November/December 1993, pp. 73-82.
    [12] 周惦武,徐翔,周述积,快速成型技术的研究进展与发展趋势,铸造设备研究,2003.4(2),51~54
    [13] Marshall Burns, Automated Fabrication: Improving Productivity in Manufacturing, Englewood Cliffs, New Jersey: PTR Prentice Hall, 1993.
    [14] D. Kochan, ed., Solid Freeform Manufacturing, Manufacturing Research and Technology Series, vol. 19, Amsterdam: Elsevier, 1993.
    [15] Paul F. Jacobs, Rapid Prototyping & Manufacturing: Fundamentals of Stereo Lithography, Dearborn, Michigan: Society of Manufacturing Engineers, 1992.
    [16] Paul F. Jacobs, Stereo lithography and other RP&M Technologies: From Rapid Prototyping to Rapid Tooling, Dearborn, Michigan: Society of Manufacturing Engineers, 1996.
    [17] J. J. Beaman, J. W. Barlow, D. L. Bourell, R. H. Crawford, H. L. Marcus, and K. P. McAlea, Solid Freeform Fabrication-A New Direction in Manufacturing, Dordrecht: Kluwer Academic Publishers, 1997.
    [18] Friedrich B. Prinz, Chair, Rapid Prototyping in Europe and Japan, Vol. Ⅰ, Analytical Chapters, Baltimore: International Technology Research Institute, Loyola College in Maryland, March 1997.
    [19] Rapid Prototyping Report - The Newsletter of the Desktop Manufacturing Industry, San Diego: CAD/CAM Publishing, Inc.
    [20] Terry Wohlers, Rapid Prototyping and Tooling State of the Industry: 1998 Worldwide Progress Report, Fort Collins, Colorado: Wohlers Associates, Inc., 1998.
    [21] 王万龙,激光分层实体制造技术研究,清华大学博士论文,1995,6,3-8
    [22] 刘光富,张曙,快速成型制造技术的发展与展望,制造业自动化,2002.6,24(6)
    [23] 冯培锋,陈扼西,王仲仁,形状沉积制造及其运用,制造技术与机床,2003.7,37~40
    [24] 陈扼西,快速原型技术及其在我国的发展,集美大学学报(自然科学版),2001.12,16(4),340~344
    [25] Terry Wohlers, Wohlers Report 2002, http://www.wohlersassociates.com
    [26] Terry Wohlers, Wohlers Report 2003, http://www.wohlersassociates.com
    [27] 江开勇,熔融挤压堆积快速成形的质量控制原理研究,天津大学博士论文,1999.7
    [28] John Kietzrnan, Rapid prototyping polymer parts via Shape Deposition Manufacturing, dissertation for doctor's degree, Stanford University, U. S., February 1999
    [29] Alexander H Nickel, Analysis of Thermal Stresses in Shape Deposition Manufacturing of Metal Parts, Dissertation for Doctor Degree, October, 1999
    [30] A.G. Cooper, S. Kang, J. Stampfl, F.B. Prinz, Fabrication of Ceramic Parts for a Miniature Jet Engine Application using Mold SDM, Ceramic Transactions, Vol. 108, pp389-398, 2000.
    [31] John Kietzman, Part Strength Improvement in Polymer Shape Deposition Manufacturing, Rapid Prototyping Journal, Volume 7. Number 3. 2001 . pp. 130-137
    [32] Fabrication of Turbine Compressor Shaft Assembly for Micro Gas Turbine Engine, Master's Thesis, Stanford University, December 2000
    [33] 严烈编著,Mastercam8模具设计教程,冶金工业出版社,北京,2000,12
    [34] 龚云表,石安富,合成树脂与塑料手册,上海科学技术出版社,1993,8
    [35] 沈开猷,不饱和聚酯树脂及其应用,化学工业出版社,北京,2001,1,
    [36] 周菊兴等,不饱和聚酯树脂生产及应用,化学工业出版社,北京,2000,4,103-156
    [37] V. K. Stokes, "Vibration Welding of Thermoplastics. Part Ⅲ: Strength of Polycarbonate Butt Welds," Polymer Engineering and Science, Vol. 28, No. 15, Mid-August 1988, pp. 989-997.
    [38] 孙曼灵,吴良义,环氧树脂应用原理与技术,机械工业出版社,2002,9
    [39] 胡玉明,吴良义,固化剂,化学工业出版社,北京,2004(4):70-77
    [40] China epoxy colophony industry online2004, http://www.epoxy-e.cn
    [41] 王晓洁,谢群炜,张炜等,环氧树脂基体固化研究,FRP/CM,2001,3,NO.2
    [42] 马兆允,快速成型工艺用光固化功能性材料的研究,南京理工大学硕士学位论文,2002,12(1):8-17
    [43] 肖棋,江开勇,熔融挤压堆积成形质量分析,机械设计与制造,1999,No.4
    [44] 龚云表,石安富,合成树脂与塑料手册,上海科学技术出版社,1993,8
    [45] 设计院总工程师室,塑料检验方法标准汇编,技术标准出版社,北京,1973,29-30
    [46] 王荣秋,固化树脂收缩率测定的几种方法,纤维复合材料,1994,No.2
    [47] 姚兴芳,巴信武,彭政等,环氧树脂固化过程两种固化机理的渡越,高分子材料科 学与技术,2002, 11,Vol.18,NO.6
    [48] 吴良伟,CAD模型驱动高聚物熔融挤压快速成技术研究,清华大学博士论文,1998,10,14-17
    [49] 李仲阳,快速成型的精度分析与自适应分层的研究,广东工业大学学报,2000,Vol.17,No.2
    [50] 李占利,李军民,快速成型制造的数学本质及理论误差控制策略,西安公路交通大学学报,2001,Vol.21,No.3
    [51] 黄旗明,快速成形LOM精度控制研究,机械与电子,1998,No.3
    [52] 纪丰伟,张根宝,提高分层实体制造精度和效率的研究,机械设计与制造工程,1999,Vol.28,No.4
    [53] 黄旗明,LOM工件热变形分析与度量,机械,2001,Vol28,No2,51-52
    [54] 黄旗明,LOM制件热变形测试及改善措施,制造技术与机床,2000,No.6
    [55] 李湘生等,SLS成形件的收缩模型和翘曲模型,中国机械工程,2001,Vol12,No8
    [56] 吴传保等,高分子材料选区激光烧结翘曲的研究,2002,Vol.30,No.8
    [57] 尹希猛等,立体光造型中层片翘曲变形分析,中国机械工程,1994,Vol5,No4
    [58] 王素琴等,激光快速成型工件翘曲变形与成型材料的研究,材料科学与工程,1999,Vol.17,No.4
    [59] 段玉岗等,激光快速成型中影响光固化材料收缩变形的研究,化学工程,2000,Vol.28,No.6
    [60] 段玉岗等,激光快速成形中时间效应与零件翘曲性关系研究,机械工程学报,2001,Vol.37,No.6
    [61] 武殿梁等,光固化快速成型过程中零件变形的数值模拟,西安交通大学学报,2001,Vol.35,No.3
    [62] 黄传跃,叠层板的翘曲修正模型,复合材料学报,1995,Vol.15,No.4
    [63] 戴棣,乔新,复合材料层合板的非同步固化翘曲变形分析,南京航空航天大学学报,Vol.32,No.1
    [64] 黄峡宏等,聚合物注塑残余应力研究进展,力学进展,Vol.30,No.2
    [65] 郭志英,李德群,注塑制品翘曲变形的研究,塑料科技,2001,No.1
    [66] 郭志英,注塑制品翘曲变形数值分析模型,中国机械工程,2002,Vol.13,No.17
    [67] 郭志英,李德群,注塑制品翘曲变形有限元数值模拟的误差分析,华中理工大学学报,2000,Vol.18,No.8
    [68] 李海梅等,注射压力对塑件残余应力和翘曲变形的影响,模具工业,1999,No.7(221)
    [69] 李海梅等,注塑件的翘曲变形分析与成形尺寸预测,中国机械工程,Vol.13,No.10
    [70] 李海梅等,减少塑件翘曲变形的一种方法,模具工业,1997,No.6
    [71] 贺曼罗等,胶粘剂与其应用,中国铁道出版社,北京,1987,5
    [72] 龚克成等,高聚物胶粘基础,上海科学技术出版社,上海,1983,4
    [73] 程兆瑞等,李铮国,塑料粘接技术手册,中国轻工业出版社,北京,1992,6
    [74] 夏文干等,胶粘剂和胶粘技术,国防工业出版社,北京1980,6
    [75] 翟海潮等,粘接与表面粘涂技术,第二版,化学工业出版社,北京,1997,8
    [76] 陈根座等,胶粘应用手册,电子工业出版社,北京,1994,3
    [77] 范忠仁、陈世忠、黄起腾等,非金属切削刀具,机械工业出版社,北京,1990,9 (2):229—275
    [78] 陈隆德,赵福令,机械精度设计与检测技术,机械工业出版社,北京,2000,10 (1):91—172
    [79] 黄常标,分段沉积/雕铣快速成形三维实体分段算法与刀具轨迹规划研究,华侨大学硕士论文,2004.4
    [80] LinChen, Shuo-Yan Chou, and Tony C. Woo. Separating and intersecting spherical polygons; Computing machinability on three, four and five-axis numerically controlled machines. ACM Transactions on Graphics, 12(4): 305—326, October 1993
    [81] Tony C. Woo. Computational geometry on the sphere with application to automated machining. Journal of mechanical Design, 114: 288—295, June 1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700