用户名: 密码: 验证码:
浮选柱的多流态过程及其分选动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋流-静态微泡浮选柱在煤炭、矿物分选及油水处理等领域得到了广泛应用。但随着工业化程度的日益加深,对该柱式分选过程中不同流态所适配物性特征的研究有待进一步加强。基于此,论文将浮选柱中集成的三种流态单独进行研究,设计了分别以逆流、旋流、管流为主要矿化方式的浮选柱,利用湍流动能以及湍流耗散率衡量浮选过程内部能量状态。建立了以高速摄像仪为核心的气泡观察系统,研究了湍流耗散率对气泡尺寸的影响。利用EDLVO理论分析了颗粒-气泡相互作用总势能与作用距离之间的关系,浮选动力学理论计算了颗粒-气泡间的碰撞、粘附、脱附及捕获概率。结果表明,随着煤泥的可浮性逐渐变差,其单位可燃体回收所消耗的能量逐渐增多。同时,揭示了与不同流场环境相适配的物性特征。三种矿化方式对相同粒级的回收能力比较,逆流、旋流、管流分别对粗粒级、中间粒级和细粒级的回收能力较强。
The Cyclone-Static Microbubble Flotation Column (FCSMC) is widely used in coal, mineral separation, oily wastewater treatment and other fields. However, with the deepening of industrialization, the study on physical characteristics suitable for multi-flow column separation process needs to be strengthened further. For this, the three flow regimes integrated in the FCSMC were studied, respectively. Meanwhile, the three corresponding flotation processes were established. The internal energy feature of flotation process was evaluated by turbulent kinetic energy and turbulent dissipation rate. The bubble viewer with the high-speed camera as the core was set up, and the effect of turbulent dissipation rate on bubble size was stuided. By the EDLVO theory, the relationship between the total interaction potential energy and operating range was analysed. Based on flotation kinetic theory, the probabilities of collision, attachment, detachment and acquisition between particle and bubble were also calculated. The results showed that with the flotability gradually becoming worse, the energy required by per combustible product increased. The coal properties suitable for different flow fields were revealed. Comparising the recovery capacities of the three mineralization ways on the same particle size, the recycling capacities of countercurrent, cyclone and pipe flow were stronger on coarse, intermediate and fine particles, respectively.
引文
[1]查有梁.过程与状态[J].大自然探索,1984,3(1):151~156.
    [2]尼尔·阿德里.我的科学伙伴-能量[M].北京:中国大百科全书出版社,2000:6~7.
    [3]卡罗尔·巴拉德.从蒸汽机到核聚变:发现能量[M].上海:上海科学技术文献出版社,2010:4.
    [4]Desmond T. Mineral comminution:Energy efficiency considerations[J]. Minerals Engineering, 2008,21(8):613-620.
    [5]Drinkwater D, Napier-Munn T, Ballanryne G. Energy reduction through eco-efficient comminution strategies[C].26th International Mineral Processing Congress. India:New Delhi,2012:1223-1229.
    [6]Rinne A, Peltola A. On lifetime costs of flotation operations[J]. Minerals Engineering,2008, 21(12-14):846-850.
    [7]Lelinski D, Govender D, Dabrowski B, and et al. Effective use of energy the flotation process[C].6th Southern African Base Metals Conference In:South Africa, Phalaborwa, 2011:137-148.
    [8]Gorain B K. Developing solutions to complex flotation problems[C].26th International Mineral Processing Congress. India:New Delhi,2012:1657-1675.
    [9]Ragab, S. A. and Fayed, H. Collision frequency of particles and bubbles suspended in homogeneous isotropic turbulence[C].50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. America:Nashville,2012:1-12.
    [10]杨福新.机械搅拌式浮选机能耗分析[J].有色金属(选矿部分),2004,56(5):31-35.
    [11]霍雷克,莫汉蒂.利用浮选柱对煤显微组分的分离[J].煤质技术,1999,14(1):36~39.
    [12]马子龙,刘炯天,曹亦俊,等.旋流静态微泡浮选柱用于铜镍尾矿再选的研究[J].金属矿山,2009,44(3):169~172.
    [13]孙永峰,刘炯天,曹亦俊,等.某金矿旋流-静态微泡浮选柱与浮选机浮选试验对比研究[J].矿山机械,2012,40(4):91~93+113.
    [14]周晓华,宋晓娟,刘炯天,等.旋流-静态微泡浮选柱浮选萤石试验研究[J].矿冶,2005,14(2):21~24.
    [15]刘炯天,李小兵,王永田,等.旋流-静态微泡浮选柱浮选某难选钼矿的试验研究[J].中南大学学报(自然科学版),2008,39(2):300-305.
    [16]马子龙,马力强刘炯天,等.旋流-静态微泡浮选柱浮选磁铁矿的研究[J]'国外金属矿选矿,2004,42(11):19~20.
    [17]王大鹏,刘炯天,周长春,等.旋流-静态微泡浮选柱分选铝土矿的半工业试验[J].金属矿山,2009,44(4):46~49.
    [18]翟爱峰,刘炯天,曹亦俊,等.西南某铜矿浮选柱半工业试验研究[J].有色金属(选矿部分),2008,6(2):34-37.
    [19]李琳,刘炯天,王永田,等.浮选柱在赤铁矿反浮选中的应用[J].金属矿山,2007,42(9):59~61.
    [20]刘炯天,王永田,李小兵,等.柴山铅锌矿石旋流-静态微泡柱浮选试验研究[J].金属矿山,2008,43(2):66~69.
    [21]李小兵,刘炯天,王兴涌,等.溶气析出式浮选柱处理含油废水的试验研究[J].中国矿业大学学报,2005,34(4):462~466.
    [22]张敏,朱小林,刘焕彬,等.浮选柱脱墨过程的浮选速率模型[J].造纸科学与技术,2009,28(3):42~44.
    [23]王晓燕.旋流静态微泡浮选柱在重金属废水处理中的应用研究[J].矿业安全与环保,2005,32(6):28~30.
    [24]李振,刘炯天,曹亦俊.浮选过程搅拌调浆技术评述[J].金属矿山,2009,44(10)5-11.
    [25]Zhang H J, Liu J T, Wang Y T, et al. Cyclonic-static micro-bubble flotation column[J]. Minerals Engineering,2013,45:1-3.
    [26]李小兵.基于微泡浮选的多流态强化油水分离研究[D].徐州:中国矿业大学,2011:5-6.
    [27]李琳.贫细赤铁矿的管段高紊流矿化与柱式短流程分选研究[D].徐州:中国矿业大学,2010:7-8.
    [28]周晓华.浮选柱的旋流分选机理与矿物分选实践[D].徐州:中国矿业大学,2005:2.
    [29]马子龙.金川镍矿柱式短流程分选研究[D].徐州:中国矿业大学,2009:6-7.
    [30]Cheng G, Liu J T, Cao Y J, et al. Comparison of the Flotation Performance between Wide and Narrow Particle Size Ranges of Coal[J]. International Journal of Coal Preparation and Utilization,2013,33(6):290-299.
    [31]韩伟.浮选机内多相流特性及浮选动力学性能的研究[D].兰州:兰州理工大学,2009:41~74.
    [32]徐振法,韩伟.机械搅拌式浮选机的流体动力学分析[J].煤矿机电,2009,30(3):51~52.
    [33]刘春艳,程宏志,石焕.XJM-S8型浮选机数值模拟及槽内矿浆流态分析[J].选煤技术,2009,37(3):20~22.
    [34]张敏,刘炯天.柱浮选充填及工业应用[J].金属矿山,2008,43(7):96~99.
    [35]Koh P T, Schwarz M P, Zhu Y, et al. Development of CFD Models of mineral flotation cells[J]. Third International Conference on CFD in the Minerals and Process Industries. Australia, Melbourne,2013:171-175.
    [36]Miskovic S. An investigation of the gas dispersion properties of mechanical flotation cells:an in-situ approach[D]. America:Virginia Polytechnic Institute and State University, 2011:20-21.
    [37]程敢,桂夏辉,刘炯天,等.一种浮选功耗测量设备:中国,201120500952.1[P].2012.07.25.
    [38]Cheng G, Liu J T, Ma L Q, et al. Study on energy consumption in fine coal flotation[J]. International Journal of Coal Preparation and Utilization,2014,34(1):38-48.
    [39]Kostoglou M, Karapantsios D T, Matis A K. Modeling local flotation frequency in a turbulent flow field[J]. Advances in Colloid and Interface Science,2006,122 (1-3):79-91.
    [40]谢广元.选矿学[M].徐州:中国矿业大学,2001:418~424.
    [41]Kaifallentus浮选槽中的紊流作用[J].国外锡工业,1995,23(4):17~32.
    [42]曹仁子.柱状气液分离器数值模拟及结构优化[D].大庆:大庆石油学院,2009:5-6.
    [43]库宾斯泰因J.新一代浮选柱的设计、模拟及操作[J].国外金属矿选矿,1994,32(2):1~16.
    [44]程敢,曹亦俊,徐宏祥,等.浮选柱技术及设备的发展[J].选煤技术,2011,39(1):66~70.
    [45]张晓峰.浮选柱多变量控制系统的设计及应用[D].长沙:中南大学,2010:4.
    [46]刘莉君.优质稀缺煤种难选煤泥的分选过程强化研究[D].沈阳:东北大学,2010:21.
    [47]王金玮,刘学军,张晓峰.CCF浮选柱与BF浮选机在钼精选中的差异[J].现代矿业,201 1,27(5):109~112.
    [48]刘炯天,周晓华,王永田,等.选煤设备评述[J].选煤技术,2003,31(6):25-33.
    [49]褚良银,罗倩.水力旋流器式浮选机的研究进展[J].国外金属矿选矿,1993,31(11):6-15.
    [50]康文泽,郭德,沈笑君,等.新型煤泥浮选设备-浮选旋流器[J].煤炭加工与综合利用,1996,14(4):24~26.
    [51]吕玉庭,王劲草.离心力场的浮选机理与浮选实践[J].洁净煤技术,2009,15(2):28~31.
    [52]刘炯天.旋流-静态微泡柱分选方法及应用(之一)柱分选技术与旋流-静态微泡柱分选方法[J].选煤技术,2000,28(1):42~44.
    [53]陶长林.詹姆森浮选柱-浮选工艺的一大技术突破[J].中国矿业,1995,4(1):43~48.
    [54]Hacifazlioglu H, Toroglu I. Optimization of design and operating parameters in a pilot scale Jameson cell for slime coal[J]. Fuel Processing Technology,2007,88(7):731-736.
    [55]杨琳琳,程坤,文书明.浮选柱的研究现状及其进展[J].矿业快报,2008,28(1):4-7.
    [56]李茂林,鲁晏,黄波.应用射流浮选柱分选微细煤泥的试验研究[J].煤炭加工与综合利用,2001,19(2):21~23.
    [57]卢世杰.KYZ型浮选柱机理研究[J].有色金属(选矿部分),2002,54(1):20-23.
    [58]张顺良.选煤用浮选柱的现状与进展[J].汾煤科技,2000,11(2):1-6.
    [59]李琳.贫细赤铁矿的管段高紊流矿化与柱式短流程分选研究[D].徐州:中国矿业大学,2010:86~87.
    [60]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004:113~114.
    [61]江涵.固-液搅拌槽内液相湍流特性研究[D].北京:北京化工大学,2010:2.
    [62]毛根海.应用流体力学[M].北京:高等教育出版社,2006:11.
    [63]Tabosa E, Runge K, Holtham P. Development and application of a technique for evaluating turbulence in a flotation cell[C].26th International Mineral Processing Congress. India:New Delhi,2012:5377-5390.
    [64]郭梦熊.从流体力学观点研究两种浮选机的效能[J].中国矿业学院学报,1983,12(3):53~65.
    [65]野中道郎.浮选槽内的紊流变动速度计速度相关函数[J].选矿机械,1980,9(4):28~37.
    [66]野中道郎.浮选槽内的湍流能及能量的传递[J].选矿机械,1982,11(3):32~39.
    [67]路展民,李广达,彭五顺,等.气泡-水两相流的激光多普勒测量[J].力学学报,1988,20(6):489-495.
    [68]Pyke B, Fornasiero D, Ralston J. Bubble particle heterocoagulation under turbulent conditions[J]. Journal of Colloid and Interface Science,2003,265(1):141-151.
    [69]曾克文.浮选槽内矿浆紊流强度对浮选影响的理论及应用研究[D].长沙:中南大学,2001:59~66.
    [70]朱友益,张强,阎德中,等.PDA测试浮选柱液-固-气三相流中颗粒的流速分布[J].有色金属:选矿部分,1999,51(1):36-41.
    [71]朱友益,张强,王化军,等.PDA测试浮选柱液-气两相流中气泡的流速分布[J].北京科技大学学报,1999,21(2):1 14~118.
    [72]Wu H, Patterson G K. Laser-Doppler measurements of turbulent-flow parameters in a stirred mixer[J]. Chemical Engineering Science,1989,44(10):2207-2221.
    [73]Duan J, Fornasiero D, Ralston J. Calculation of the flotation rate constant of chalcopyrite particles in an ore[J]. International Journal of Mineral Processing,2003,72(1-4):227-237.
    [74]Pyke B, Fornasiero D, Ralston J. Bubble particle heterocoagulation under turbulent conditions[J]. Journal of Colloid Interface Science,2003,265(1):141-151.
    [75]盛森芝,徐月亭,袁辉靖.近十年来流动测量技术的新发展[J].力学与实践,2002,24(5):1-24.
    [76]冯旺聪,郑士琴.粒子图像测速(PIV)技术的发展[J].仪器仪表用户,2003,10(6):1-3.
    [77]李萌,刘兆东,燕思嘉.流场测量中的PIV技术浅析[J].信息技术,2008,32(5):84~86.
    [78]杨小林,严敬.PIV测速原理与应用[J].西华大学学报-自然科学版,2005,24(1):19~21.
    [79]刘建超.射流浮选柱的数值模拟与试验研究[D].太原:太原理工大学,2010:51~53.
    [80]杨彩云,曾爱武,刘振.运用CFD模拟浮选柱内的流体流动[J].煤化工,2006,34(1):46~49.
    [81]曾鸣,徐志强,皇甫京华,等.射流浮选柱的两相流数值模拟[J].煤炭学报,2008,33(7):794~798.
    [82]闫小康.柱式分选的多流态过程模拟及其流体动力学研究[D].中国矿业大学,2013:102~104.
    [83]刘春艳,李兴海.XJM-S8型浮选机数值模拟及湍流特性分析[J].选煤技术,2010,38(6):1-4.
    [84]徐振法,韩伟.CFD在浮选机内部流动机理研究中的应用[J].矿山机械,2009,37(15):112~115.
    [85]朱友益,张强,卢寿慈.湍流态下浮选矿化速率数学模型[J].武汉冶金科技大学学报,1998,21(4):381~386.
    [86]曾克文.浮选槽内矿浆紊流强度对浮选影响的理论及应用研究[D].长沙:中南大学,2001:7.
    [87]宋海华,胡晖,王进.精馏塔板相界面积的粒数衡算模型[J].化工学报,2003,54(7):959~964.
    [88]卢寿慈.矿物浮选原理[M].北京:冶金工业出版社,1988:242~243.
    [89]Govender D, Lelinski D, Traczyk F. Hybrid energy flotation-on the optimization of fine and coarse particle kinetics in a single row[C].26th International Mineral Processing Congress. India:New Delhi,2012:1686-1704.
    [90]Pyke B, He S H, Duan J M, Skinner W M, Fornasiero D, Ralston J. From turbulence and collision to attachment and detachment:general flotation model [C]. Proceedings of JKMRC International Student Conference,2004, Hawaii:77-89.
    [91]Mao L Q. Application of extended DLVO Theory:Modeling of flotation and hydrophonocity of Dodecane [D]. America:Virginia Polytechnic Institute and State University,1998:45-48.
    [92]B.д.萨梅金.浮选理论现状与远景[M].北京:冶金工业出版社,1984:199.
    [93]孟样利.表面活性剂对微细粒一水硬铝石与气泡相互作用的影响[D].长沙:中南大学,2011:4.
    [94]周凌锋,张立明,甘正如.浮选柱强化细粒分选的研究[J].有色金属(选矿部分),2004,56(4):33-35.
    [95]Emerson I Z. Particle and bubble interactions in flotation systems[D]. America:Auburn University,2007:22-23.
    [96]Yoon R H, Luttrell G H. The effect of bubble size on fine Particle flotation[J]. Mineral proeessing and Extraetive Metallurgy Review,1989,5(1-4):101-122.
    [97]桂夏辉.煤泥分选过程强化及两段式分选研究[D].徐州:中国矿业大学,2012:95~96.
    [98]胡熙庚,黄和慰,毛钷凡.浮选理论与工艺[M].长沙:中南工业大学出版社,1991:90.
    [99]Koh P T L, Smith L K. The effect of stirring speed and induction time on flotation[J]. Minerals Engineering,2011,24(5):442-448.
    [100]Mao L Q. Application of extended DLVO Theory:Modeling of flotation and hydrophonocity of Dodecane [D]. America:Virginia Polytechnic Institute and State University,1998:24.
    [101]邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选[M].长沙:中南工业大学出版社,1993:32.
    [102]任浏祎.细粒锡石颗粒-气泡间相互作用及其对浮选的影响[D].长沙:中南大学,2012:87~91.
    [103]李进良,李承曦,胡仁喜.精通FLUENT 6.3流场分析[M].北京:化学工业出版社,2009:14.
    [104]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004:18~22.
    [105]唐家鹏FLUENT 140超级学习手册[M].北京:人民邮电出版社,2013:39-42+99-179.
    [106]Yianatos J B. Column Flotation Modelling and Technology[C]. International Colloquium: Developments in Froth Flotation. South Africa:Cape Town,1989:1-30.
    [107]陈延禧,沈曼丽,陈艳英,等.用激光衍射法研究电解气泡的大小及其分布[J].化学学报,1992,50(10):967~972.
    [108]卿黎.胶磷矿柱浮选试验及理论研究[D].昆明:昆明理工大学,2010:24~28.
    [109]黄光耀.水平充填介质浮选柱的理论与应用研究[D].中南大学,2009:61.
    [110]黄根.浮选调浆的界面效应及过程强化研究[D].徐州:中国矿业大学,2013:52.
    [111]闫小康,刘炯天,周长春.旋流-静态浮选柱管流段的两相流数值模拟[J].煤炭学报,2012,37(3):74~75.
    [112]李琳.贫细赤铁矿的管段高紊流矿化与柱式短流程分选研究[D].徐州:中国矿业大学,2010:64.
    [113]路迈西,徐尔康.FXZ-1型浮选柱的研究和工业应用[J].选煤技术,1999,27(2):8-10.
    [114]朱友益,张强,赵耿.一种测试浮选柱中气泡尺寸及含气率的方法[J].国外金属矿选矿,1996,34(11):30~34+11.
    [115]徐永根,刘焕彬,闫东波,等.废纸脱墨浮选柱中气泡大小的测量方法[J].造纸科学与技术,2006,25(6):115~119.
    [116]胡华,朱德权,刘永民,等.电解质对溶液中气泡大小的影响[J].清华大学学报(自然科学版),1995,35(3):106~110.
    [117]Randall E W, Goodall C M, Fairlamb P M, et al. A method for measuring the sizes of bubbles in two-and three-phase systems[J]. Journal of Physics E:Scientific Instruments, 1989,22(10):827-833.
    [118]Dobby S G, Yianatos B J, Finch A J. Estimation of bubble diameter in flotation columns from drift flux analysis[J]. Canadian Metallurgical Quarterly,1988,27(2):85-90.
    [119]李艳.微细粒高岭石颗粒与气泡相互作用研究[D].长沙:中南大学,2009:17~18.
    [120]罗德里盖斯R T.气泡尺寸分布检测新方法[J].国外金属矿选矿,2004,42(10):39~43.
    [121]冀邦杰,严冰,胡巍,等.实验室气泡大小的测量[J].舰船科学技术,2008,30(2):79-84.
    [122]张悦规,谢家钊.浮选机充气程度的测定方法[J].有色金属(选矿部分),1984,6(1):34~37.
    [123]Chen F, Gomez C O, Finch J A. Bubble size measurement in flotation machines[J]. Minerals Engineering,2001,14(4):427-432.
    [124]Miskovic S. An investigation of the gas dispersion properties of mechanical flotation cells: an in-situ approach[D]. America:Virginia Polytechnic Institute and State University, 2011:47-48.
    [125]Johansson G, Pugh R J. The influence of particle size and hydrophobicity on the stability of mineralized froths[J]. International Journal of Mineral Processing,1992,34(1-2):1-21.
    [126]Zhang W. Water overflow rate and bubble surface area flux in flotation[D]. Canada:McGill University,2009:11.
    [127]秦岭.多级鼓泡塔流体力学参数的测量与混合特性的研究[D].北京化工大学,2010:13.
    [128]刘艳艳.表面活性剂对浮选气泡动力学特性影响的实验研究[D].西安:长安大学, 2011:27~39.
    [129]程文,周孝德,郭瑾珑,等.水中气泡上升速度的实验研究[J].西安理工大学学报,2000,16(1):57~60.
    [130]王红一.水中气泡图像处理方法及运动特性研究[D].天津:天津大学,2011:60-77.
    [131]Tan Y H, Rafiei A A, Elmahdy A, et al. Bubble size, gas holdup and bubble velocity profile of some alcohols and commercial frothers[J]. International Journal of Mineral Processing, 2013,119:1-5.
    [132]Li H, Prakash A. Influence of slurry concentrations on bubble population and their rise velocities in three-phase slurry bubble columns[J]. Powder Technology,2000,113(1-2): 158-167.
    [133]Prakash A, Margaritis A, Li H. Hydrodynamics and local heat transfer measurements in a bubble column with suspension of yeast[J]. Biochemical Engineering Journal,2001,9(2): 155-163.
    [134]Ityokumbul M T, Salama A I A, Altaweel A M. Estimation of bubble size in flotation columns[J]. Minerals Engineering,1995,8(1-2):77-89.
    [135]曲星武,王金城.煤的X射线分析[J].煤田地质与勘探,1980,8(2):33~40.
    [136]李毓琼,程昭.邯邢煤田煤的X射线衍射分析[J].焦作矿业学院学报,1991,3(1):14~20.
    [137]陶有俊,赵跃民.强化重力场中细粒煤脱硫研究[M].徐州:中国矿业大学出版社,2007:48-53.
    [138]Barraza J, Pineres J. A pilot-scale flotation column to produce beneficiated coal fractions having high concentration of vitrinite maceral[J]. Fuel,2005,84(14-15):1879-1883.
    [139]夏文成,杨建国,朱宾,等.磨矿对氧化煤浮选效果的影响[J].煤炭学报,2012,37(12):2087-2091.
    [140]赵振保,杨晨,孙春燕,等.煤尘润湿性的实验研究[J].煤炭学报,2011,36(3):442~446.
    [141]王泽南,谢广元.FCMC型浮选柱处理难浮煤的探讨[J].煤炭工程,2006,54(5):86-88.
    [142]杨孟达.煤矿地质学[M].北京:煤炭工业出版社,2006:148.
    [143]张双全.煤化学[M].徐州:中国矿业大学出版社,2009:99.
    [144]黄波.煤泥浮选技术[M].北京:冶金工业出版社,2011:46~47.
    [145]Tao D, Luttrell G H, Yoon R H. A parametric study of froth stability and its effect on column flotation of fine particles[J]. International Journal of Mineral Processing,2000, 59(1):25-43.
    [146]Johansson G, Pugh R J. The influence of particle size and hydrophobicity on the stability of mineralized froths[J]. International Journal of Mineral Processing,1992,34(1-2):1-21.
    [147]沈笑君,刘元晖.浮选捕收剂与起泡剂的相互作用研究[J].洁净煤技术,2009,15(1):14~16.
    [148]阎志成.煤用浮选机充气量的测定[J].煤炭加工与综合利用,2000,18(6):12~14.
    [149]索罗金Aφ.充气量和浮选效率[J].选煤技术,1989,17(3):47~49.
    [150]Finch J A. Column flotation:A selected review-part IV:Novel flotation devices[J].Minerals Engineering,1995,8(6):587-602.
    [151]顾少雄,陈爱.我国煤炭可浮性评方法[J].选煤技术,1991,19(6):8-12.
    [152]煤炭工业协会科技发展部.中华人民共和国煤炭行业标准[M].煤炭工业出版社,2010:631~639.
    [153]郭梦熊,霍卫东,安征,等.不同挥发分煤的浮选理论与实践[J].煤炭科学技术,1999,27(1):46~48.
    [154]霍卫东,刘晓阳,郭梦熊.煤实际可浮性的新评价方法[J].煤炭科学技术,2000,28(4):16~18.
    [155]霍卫东,赵志军,郭梦熊.四种不同煤的可浮性[J].选煤技术,1999,27(2):15-17.
    [156]李幼川.现代洗选煤技术工艺流程、设备选型计算、技术检查与经济效益评估实用手册[M].北京:当代中国音像出版社,2008:7.
    [157]周丽.泡沫层中矿物颗拉的运动规律及行为研究[D].昆明:昆明理工大学,2004:1-2.
    [158]Cheng G, Ma L Q, Gui X H, et al. Study on Kinetic Modelling for Fine Coal Flotation[J]. International Journal of Coal Preparation and Utilization,2013,33(1):12-25.
    [159]胡为柏.浮选[M].冶金工业出版社,1989:80~81.
    [160]陈子鸣.浮选动力学研究之二浮选速度常数分布密度函数的复原[J].有色金属(选冶部分),1978,30(11):27~33.
    [161]陈子鸣,吴多才.浮选动力学研究之一矿物浮选速度模型[J].有色金属(冶炼部分),1978,30(10): 28-33.
    [162]郭梦熊.浮选[M].徐州:中国矿业大学出版社,1989:178.
    [163]李琳.贫细赤铁矿的管段高紊流矿化与柱式短流程分选研究[D].徐州:中国矿业大学,2010:89.
    [164]闫小康,刘炯天,周长春.旋流-静态浮选柱管流段的两相流数值模拟[J].煤炭学报,2012,37(3):506~510.
    [165]曾克文.浮选槽内矿浆紊流强度对浮选影响的理论及应用研究[D].长沙:中南大学,2001:9-10.
    [166]王大鹏.中低品位胶磷矿柱式浮选过程强化与短流程工艺研究[D].徐州:中国矿业大学,2011:51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700