氧化铁鞘细菌分离鉴定与保藏及其氧化机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用试管静止富集培养及生态模拟溢流装置富集培养,结合平板划线、稀释涂布、平板滴加法,成功地从150份水样中分离到94株鞘细菌。研究结果表明,当水样中鞘细菌数量较少时,采用生态模拟溢流装置富集培养分离效果较好。而当水样中鞘细菌数量较多时,直接采用平板划线、平板滴加法就可取得较好的分离效果。若水样中阳性菌较多时,可在富集培养基中加0.5u/ml青霉素钠盐,对于排除杂菌干扰,提高出菌率有明显的效果。
    利用Winogradsky液体试管进行产铁氧化酶鞘细菌的快速初筛,从中筛选出24株产铁氧化酶能力较高的菌株,再经三角瓶液体培养基复筛,获得产酶活性最高的菌株FC9901。试验结果表明,初筛用试管法,以形成铁氧化物沉淀的程度、时间及颜色变化情况来定性表示菌株氧化铁能力的高低,与复筛定量测定酶活的结果相对应,说明Winogradsky液体试管法可以作为试验菌株对铁氧化能力的判断依据。
    采用多相鉴定方法对菌株FC9901细胞形态、培养特征、生理生化反应及各种碳源利用情况进行了研究,根据《伯杰氏细菌鉴定手册》第九版,把该菌株鉴定为第十四群鞘细菌类(sheathed bacteria)球衣菌属(Sphaerotilus)浮游球衣菌(Sphaerotilus natans)。对几种鞘细菌保藏方法进行比较研究,表明蒸馏水液体保藏法保藏时间长且方法简便,是一种有效经济简便的保藏方法。
    对该菌株氧化铁的生化机制进行了研究。结果表明,该菌株的营养类型为化能有机营养型,其能源主要来自有机碳源的氧化,并不能从Fe2+ 氧化过程中获取能量。活性定位研究和pH、温度、抑制剂试验结果表明,该铁氧化活性物质是酶,而且是一种胞外酶。铁的氧化属于酶学催化过程,并遵守酶的动力学原理。对菌株的最适产酶培养基及产酶条件进行了研究。结果表明,菌株最适产酶培养基(g/L)为:柠檬酸铁铵10,NaNO3 1.2, MgSO4·7H2O 0.5,K2HPO4·7H2O 0.5,CaCl2 0.015,ZnSO4?7H2O 0.0005。最适产酶条件为:温度30℃,起始pH7.0,接种量2%,150ml三角瓶装50ml,150rpm振荡培养72h。最适产酶培养基和产酶条件验证试验结果表明其产酶比基础产酶培养基和产酶条件提高了30%。
    采用硫酸铵分级沉淀和透析法对该铁氧化酶进行了初步纯化,同时研究了该酶的酶学性质。该酶最适pH和最适温度分别为7.5和30℃。pH过高或过低都会对该酶的酶活产生较大影响;该酶在30℃室温下可稳定保存150min而活性不会损失。但该酶对高温较敏感,在50℃下加热5min时,活性损失可达65%。金属离子Ca2+、Mg2+、Zn2+对酶有一定的激活和稳定作用;Hg2+对酶有强烈的抑制作用,Cu2+和 Al3+对酶有较强的抑制作用,K+、Fe2+和Na+对酶活力影响不大。
94 strains sheathed bacteria were successfully isolated from 150 water samples by two enrichment methods combined with three isolation methods. the experiment showed that when the quantity of sheathed bacteria in water sample is low, enrichment method is better for isolation, whereas when the quantity of sheathed bacteria in water sample is high, plate streaking and plate dropping maybe more effective. If there is more Gram-positive bacteria in water sample, putting 0.5u/L Penicillin in the enrichment medium is good for isolation.
    Rapid screening of sheathed bacteria with Fe2+ oxidizing activity was done by Winogradsky liquid tube method, and 24 strains were selected .In the 24 strains mentioned above, FC9901 was the best strain which can produce oxidizing enzyme with the highest activity by further screening. The study showed that rapid screening result is consistent with further screening result. It showed that Winogradsky liquid tube method can be used as a basis to judge oxidizing ability of strain.
    The morphological, culture and physiological features of the strain were studied by poly- characterization method. and based on Bergy,s Manual of Determinative Bacteriology(9thed), FC9901 was identified as Sphaerotilus natans in the Sphaerotilus genus. The study on some preservation methods of sheathed bacteria showed that distilled-water preservation method is a effective and simple method.
     Study on the Fe2+ oxidizing mechanism of sheathed bacteria showed that the trophy kind of sheathed bacteria is chemoorganotrophs. The energy is come from oxidize of organic, not gain energy from Fe2+ oxidation .Fe2+ oxidizing activity in the spent culture medium was sensitive to pH, heat, NaN3, pronase, SDS, NaCl, HgCl2. It showed that Fe2+oxidation is a kind of enzyme catalyzed process. The study on localization of activity showed that Fe2+ oxidizing activity is a extra cellular enzyme. Based on above experiment ,We study the optimal medium and condition of enzyme production. The optimum medium consisted of 10g citrate per litre ,1.2g NaNO3 per litre ,0.5gMgSO4 per litre,0.5g K2HPO4?7H2O per litre ,0.005g CaCl2per litre,0.0005gZnSO4?7H2O per litre. The optimum condition of shaking flask producing enzyme were the temperature 30℃ ,initial pH 7.0, medium volume 50ml medium /150ml flask, inoculum's concentration is 2%, rate of shaking is 150rpm,culture period 72 hours. The enzyme producing activity could reached maximum level, oxidation rate could reached 91.5% after modification of medium and condition. It was increased 30% to first.
     Crude oxidizing enzyme was obtained from ammonium sulfate precipitation and dialyze. Biochemical properties of the enzyme were examined as follows, the optimum temperature and pH for oxidizing activity was 30℃ and7.5.The enzyme was easy to lose activity in strong acid or strong alkaline circumstance . The enzyme could keep its original activity after 150min at 30℃.But it was sensitive to high temperature. About 65% activity of the original activity is lost after 5 min at 50℃. Different metal ions showed different effects on the oxidizing activity :Ca2+ 、Mg2+ 、Zn2+ increased the oxidizing activity ,whereas Cu2+、Hg2+ 、Al3+ cause inhibition .K+ 、Na+ 、Fe2+ effected on the activity is not obvious.
引文
[1]Holt,J.G.et al., Bergey`s Manual Of Determinative Bacteriology, 9 th ed .,1994
    [2]Ghiorse,W.C.,Biology of iron and manganese despositing bacteria. Ann .Rev.Microbiol ,1984, 38:515-550.
    [3]Wolf,R.S,Vatter, J.Bacteriol, 1956,72:248-252
    [4]Mulder,E.G.J. Appl Bacteriol. ,1964 ,27:151-173.
    [5] Mulder,E.G,Van veen W.C, Antonie Van Leeuwenhoek, 1963,29:121-153.
    [6]De.Vrind-De Jong.E.W, P.L.A.M-Corstjens, Oxidation of manganese and iron by Leptothrix discophora: Use of TMPD as an indicator of metal oxidation , Appl.Environ. Microbiol ,1990, 56: 3458-3462.
    [7]Corstjens,P.L.A.M ,J.P.M.De Vrind., Enzymatic iron oxidation by Leptothrix discophora : identification of Mn2+ oxidizing protein from Leptothrix discophora ss-1 , Appl.Environ.Microbiol , 1992, 58:450-454.
    [8]Adams.L.F and W.C.Ghiorse , Characterization of extracellular Mn2+ oxidizing protein with copper domains., J.Bacterial , 1987 , 169:1279-1285.
    [9]Boogard.F.L and J.P.M.de Vrind., Manganese oxidation by Leptothrix discophroa ss-1 , J.Bacteriol ,1987, 169:489-494.
    [10]Corstjens,P.L.A.M , J.P.M.De Vrind., Identification molecular analysis of the Leptothrix discorphora ss-1 mofA gene: a gene putatively encoding a manganese oxidizing protein with copper domains. Geomicrobiology Journal , 1997, 14(2):91-108.
    [11]翁稣颖,戚蓓静等编著,环境微生物学,北京:科学出版社,1985,208-216
    [12]周群英等,活性污泥球衣菌生态特征的研究,生态学杂志,1984,(2):17-20.
    [13]李惠珍,许旭萍等,铁锰氧化鞘细菌的生境条件及分离鉴定,水生生物学报,1999,23(4):311-315.
    [14]许旭萍,李惠珍等,闽东一水电站输水管道阻塞原因探讨,生态学报, 1999,19(1):84-89.
    [15]薛林贵,王维国等,利用原生质体技术选育聚β-羟基丁酸高产菌株的研究,微生物学通报,1999,26(3):172-175.
    [16]郭春君,一株球衣菌细胞产PHB条件的研究,天津微生物,1993,(1):11-14.
    [17]张立新等,从球衣菌中分离提取PHB的研究,微生物学杂志,1993 ,13 (1):30-33
    [18]Ehrlich H.L., Geomicrobiogy, Marcel Dekker .Inc ., New York, 1990, 283-440.
    [19]Nealson K. H., Microbioal oxidation and reduction of manganese and iron , Biomineralization and biological metal accumulation, In P. Westbroek and E.W.de Jong(ed.)., D.Reidel Publishing Co.,Dordrechl,The Netherlands,1989, 459-479.
    [20]王绍军等,中国地方病杂志,1986,5(4):256
    [21]李哲泓等,中国地方病杂志,1986,5(3):175
    [22]李孝光等,中国地方病杂志,1987,6(2):67
    [23]Simon,M. et al .,Metabolism of trace metals in man,Rennert,O.M. et al .,eds.,CRC,1984,81.
    [24]夏青,张旭辉主编,水质标准手册,北京:中国环境科学出版社,1990.
    [25]川崎水质研究所 编,凌绍森译, 水质管理指标, 北京:中国环境科学出版,1988 .
    [26]许胜先,天然锰砂去除工业冷却水中的铁锰污染,环境工程,1999,17(1):20-22.
    [27]张冯滨等,电凝聚法除铁研究,水处理技术,1997,01
    [28]姜湘山等,双曝双过滤除铁锰工艺,工业用水与废水,1997,02
    [29]徐正本,张可兰,絮凝沉淀法除铁锰,环境与健康杂志,1994,11(4):158-160
    [30]余克平, 地下水除铁除锰新技术的研究,水处理技术,1998,24(3):162-166.
    [31]胡国强,许胜先等人,工业冷却水中除铁除锰的试验研究,给水排水,1999,25(6):41-43
    [32] 中西弦,锰砂和氯连续再生接触过滤除锰法,日本仙台第十届上下水道研究发表会,1959.
    [33]高井雄, “用水の除铁除锰处理”,日本《用水と废水》,Vol.24 No.2- Vol27 No.12.
    [34]李圭白,地下水除铁除锰的若干新展, 给水排水,1983, 3
    [35]张杰等,强氧化剂除锰原理与应用,给水排水,1997,23(3):16-18
    [36 ]Corstjen P L A M..phD thesis, Univ. Leiden, the Netherland,1993.
    [37]De Vrind-de Jong E W,De Vrind J P M,Boogerd F C,et al. In:Crick R E(ed.),Origin,Evolution and Modern Aspects of Biomineralization in Plants and Animals.1990,486-496.
    [38]Arnold R G,Olson T M.,Hoffmann M K.,Biotechnol Bioeng,1988,32:1081-1096.
    [39]Myers C R .,Myers J M .,J Bacteriol.,1992,174:3429-3438.
    [40]张杰,戴镇生,地下水除铁除锰现代观, 给水排水,1996,22. (10):13-16.
    [41]朴真三等,自来水厂除锰滤池Mn2+氧化细菌的分离及其活性的研究,吉林大学自然科学学报,1997,10(4):87-90
    [42]朴真三等,鞘铁菌除锰和固定化,吉林大学自然科学学报,1996,(2):79-82.
    [43]史君贤等,锰细菌对锰铁金属离子的转 移作用,海洋学报,1996,18(1):85--89
    [44]鲍志戎等,自来水厂除锰滤砂的催化活性分析,环境科学,1997,18(1):
    38-41。
    [45]Gregory, E.,Staley,J.T. Appl.Environ . Microbiol, 1982.,44:509-511.
    [46] Nealson,K.H., In krumbein W.E. ed.,1978.,Enrironment of biogeochemisty and geomicrobiology:Methods .,Metal and Assessment. 1978.,3:917-1055., Ann Arbor.MI:Ann Arbor Sci.
    [47]Mulder,E.G,1974,In Buchanan,R.E.etal., Bergey's Mannual of determination bacteriology, Baltimore:Willams &Wilkins, 1974, pp129-133 ,8thed.
    [48]Giorse,W.C., Hirsch . P., Appl. Environ, Microbiol., 1982,43:1464-1472.
    [49]Hirsch .P. Arch Mikrobiol. ,1968, 60:201-216.
    [50]Mulder,E.G ., Rev. Ecol Biol.Soc., 1972,9:321-348.
    [51]Gebers,R. Int.J.Syst.Bacteriol., 1981,31:302-316.
    [52]Zavarzin,G.A.Hirsch.P. in Buchanan,R.E.eds., Bergey's Mannual of determination bacteriology, Baltimore:Willams &Wilkins, 1974, 8thed.
    [53]Ehrlih,H.L., In Environmental Biogeochemistrry ed.J.D.Nriagu., Ann Arbop.MI:Ann Arbor Sci.1976.,2:633-644.
    [54]Bromfield,S.M.,Skerman,V.B.D., Soil Sci., 1950,69:337-348.
    [55]Douka,C.E. Soil Biol. Biochem, 1977,9:89-97.
    [56]Schweisfurth.,R. Z.Allg.Mikrobiol., 1973. ,13:341-347.
    [57]Svorcova.L., Acta Hydrochim .,Hydribiol., 1983.,11:37-72.
    [58]Hanert,H.J., Starr.M.P.etal eds.,A Handbook on habitats,isolation and identification of bacteria.,New York .,Springer., 1981,pp1049-1059.
    [59]Nealson,K.H.,Ford.J., Geomicrobiol .J., 1980.,2:21-37.
    [60]Van Veen., W.L., Antonie van Leenwenhoek ., 1973.,39:657-662.
    [61]Ehrlich.,H.L., App.Mickobiol . 1963.,11:15-19.
    [62]Timonin.,M.T., Sci.,Agr., 1950,30:324-325.
    [63]Letunova.,S.V.,Ulubekova,M.V.Shcherbakov,V.I.,Microbiology.UUSR.,1978.,47:273-278.
    [64]Frolund .Annemette. The seasonal variation of the neuston of a small pond., Bot Tidsskr,1977.,72(1):45-56.
    [65]Wintterbourn,et al., Structure and grazing ofstone organic layers in some acid streams of southern England., Freshwater Biol.,1985.,15(3):363-374.
    [66]Gouy,J.L. et al ,Several iron bacterial isolation in southwest of France :Ecology and role in the enviroment ., Ann Limnol,1984., 20(3):147-156
    [67]Barbic,F and I.Savic . , Ecology of iron and manganese bacterial in potable groundwater springs.Mikrobiology (zemun) ,1995., 31(2):129-158.
    [68]Stokes J.L., Studies on the filamentous sheathed iron bacterium Sphaerotilus natants., J.Bacterial , 1954., 67:278-291
    [69]Phaup J. D , The biology of sphaerotilus species , Water Research , 1968 , 2:597-614.
    [70]Mulder,E.G and M.H.Deinema , The sheathed bacteria. A Handbook on habitats , isolation,and identification of bacteria. Springer- verlag, Berlin ,1981, 425-440
    [71]Emerson.D and W.C.Ghiorse. Isolation , cultural maintenance ,and taxonomy of manganese-oxidizing activity associated with the sheath, Appl. Environ Microbiol, 1992, 58:4001-4010
    [72]Rouf,M.A. and J.L.Stokes., Morphology ,nutrition and physiology of Sphaerotilus discophorus . Arch .Mikrobiol. , 1964, 49:132-149.
    [73]Ziegler,Manfred e tal ,.Isolation and morphological cytological characterization of filamentous bacteria from bulking sludge.Water Res,1990., 24(12):1437-1452.
    [74]Crombach,W.H.J., W.L.Van Veen et al., DNA base composition of some sheathed bacteria. Antonie Van Leeuwenhoek J.Microbiol. Serol . 1974, 40:(2):217-220.
    [75]Siering.P.L.and W.C.Ghiorse. , Development and application of 16srRNA-targeted probes for detection of iron and manganese oxidizing sheathed bacterial in environmental example, Appl . Environ .Microbiol. 1997, 63(2):644-651.
    [76]Siering.P.L.and W.C.Ghiorse , Phylogency of the Sphaerotilus-Leptothrix group inferred from morphorogical comparisons, genomic fingerprinting and 16srDNA sequence analyse., International Jorunal of systematic bacteriology., 1997, 46(1):173-182.
    [77]Siering.P.L.and W.C.Ghiorse ,PCR detection of a putation manganese oxidation gene in enviromental sample and assessment of mofA gene homology among diverse manganese oxidazing bacteria.Geomicrobiology Journal .14(2):109-125.
    [78]Spring ,Stefan , Peter Kaempfer. et al., Polyphasic characterization of the genus Leptothrix mobilis sp. Nov. and Leptothrix discophora sp. Nov. nom. Rev ., Systematic and Applied Microbiology .,1996, 19(4):634-643.
    [79]Breed,R.S.et al., Bergey`s Manual Of Determinative Bacteriology, 7 th ed .,1957
    [80]Buchanan,R.ER,Gibbons,N.E,eds, Bergey's Mannual of determination bacteriology,Baltimore:Willams &Wilkins, 1974, pp 1268. 8thed.
    [81]Adams.L.F, and W.C. Ghiorse , Physiology and ultrastructure of Leptothrix discophora ss-1. Arch Microbiol. 1986. 145:126-135.
    [82]Ali..H, and. J.L.Stokes., Stimulation of heterotrophic and autotrophic growth of Sphaerotilus discophorus by manganous ion ., Antonie Van Leenwenhoek J.Microbiol.Serol , 1971 , 37:519-528.
    [83]Prave.P., Untersuchungen uber die Stoff-Wechselphysiologie des Eisenbakteriums Leptothrix ochracea kutzing ., Arch. Mikrobiol , 1957, 27:33-62
    [84]Dubinina, G.A., Functional role of bivalent iron and manganese oxidation in Leptothrix pesudoochraceae., Microbiology USSR , 1979, 47:631-636.
    [85]Adams.L.F, and W.C.Ghiorse., Influence of manganese on growth of sheathless strain of Leptothrix discophora , Appl. Environ. Microbiol , 1985, 49:556-562.
    [86]Van Veen , W.L.E.G.,et al ., The Sphaeotilus -Leptothrix group of bacteria., Microbiol Rev ., 1978.,42:329-356.
    [87]Lindstrom,M.E.Engebrecht,J..,Nealson.,K.H.,FEMS.,Microbiol.Lett.,1983.,19:1-6
    [88]Emerson ,D., Ph.D.thesis.,Cornell University Ithaca ,New York. 1989.
    [89]李圭白,刘超,地下水除铁除锰(第二版),北京:中国建筑工业出版社,1989,79-92
    [90]Ehrlich,H.L,in microbial chemoautotrophy .,Ohio.st Univ Press.1984.
    [91]朴真三等,自来水厂细菌固定化除锰及其水质条件研究,环境科学,1998,19(5):37-40.
    [92]Home, P.A,Phys Technol, 1985,16:32-36.
    [93]Steinbuchel,A.Valetin.,H.E.FEMS Micribiol Lett.,1995,128:219-228.
    [94]Takada.M; H. Matsuoka.. et al., Biosynthesis of poly-3-hydroxyralerate by sphaerotilus nantans . Applied Microbiology and Biotechnology, 1995, 43 (1): 31-34.
    [95]Takada.M; H. Matsuoka.. et al., Biosynthesis of poly(3-hydroxybutyrate-co -3-hydroxyralerate) by mutant of sphaerotilus natans., Applied Microbiology and Biotechnology, 1995, 44(2) : 37-42.
    [96]周大石,丝状细菌与活性污泥膨胀现象,环境科技,1992,12(2):49-52.
    [97]许晓路,活性污泥丝状菌膨胀起因分析及控制措施,环境科学,1992,3(6):57-61.
    [98]Tsai,yi-chen et al., Substrate utilization characteristics of predominant filamentous and floc-forming bacteria isolation from a chemical fiber factory wastewater treatment plant.,Water Science and Technology,1998,37(4-5):291-295.
    [99]Chyou,Ming-Sen et al .,A study on the causes of water well incrustation .,Rep Taiwan sugar Res Insto ,1984 ,(106):7-22.
    [100]Abeliovich,Aharon.,Avoiding ochre deposits in soil drainage pipes .,Agric Water manage.,1985,10(4)327-334.
    [101]Slowik et al ,Bioaccummulation of copper and lead by sphaerotilus natans.,Acta Microbiol Pol ,1981,30(2):183-194.
    [102]Sidorowicz,et al.,Bioaccummulation of copper by polysaprobic zone bacteria sphaeotilus natans., Pol Arch Hydrobiol .,1979,26(4):583-586.
    [103]Medon,P.,U.et al .,Growth rate of the bacterium sphaerotilus natans in lead -containing medium and affected of calcium ions. Environ Res ,1984,35(1):228-236.
    [104]Leonowicz-Babiak,et al .,Bioaccumulation of lead and zinc in polyscprobic zone bacateria sphaerotilus natans ,Pol Arch Hydrobiol .,1980,27(1):89-94.
    [105]Lodi,A.C,et al ,Cadmium,Zinc,Copper,Sliver and Chromium removal from wasterwater by sphaerotilus natans., Bioprocess Engineering ,1998,19(3):197-203. [106]Stoessel,Fred ., On the ecology of ciliates and filamentous bacteria.,Aquat Sci, 1989,51(3):235-248.
    [107]Lemly,A.Dennis ., Bacterial growth on stream inset:potential foruse in bioassessment.,Journal of the North American Benthological society., 1998.,17(2):228-238.
    [108]国家环保局主编,水和水监测分析方法,北京:中国环境科学出版社,1989.
    [109]宋仁元等译,APHA AWWA&WPCF合编,水和废水标准检验法(第十五版), 北京: 中国建筑工业出版社,1985.
     福建师范大学硕士学位论文

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700