黑龙江省瓜类白粉病菌生理小种鉴定及其多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白粉病是瓜类作物广泛发生的一种世界性病害,温室及露地均可发生,由于为害瓜类作物的白粉病菌生理小种分化快,所以明确当地白粉病菌生理小种及其地理分布对引进抗源材料,开展抗病育种及防治等方面均具有重要意义。应用分子标记辅助育种可提高选择效率,加快新抗病品种的培育。
     本实验比较了三种不同纯化保存白粉病菌的方法,结果显示,活体保存法保存时间最长约为3个月,离体打孔法保存时间最短约为1个月,MS添加激素IAA叶碟保存法可大约保存1.5个月,最适合子叶生根的激素IAA浓度为1.5mg/l。三种方法各有利弊,应根据需要选择合适的保存方法。
     2010年采集黑龙省不同生态区不同设施内的甜瓜、黄瓜、南瓜、西瓜等瓜类白粉病病菌17份,利用国际通用的瓜类白粉病鉴定标准对其进行生理小种鉴定,根据13个鉴别寄主的抗感反应,初步确定黑龙江省瓜类白粉病菌存在3个生理小种,即单囊壳白粉菌(Podosphaera xanthii)的生理小种1和生理小种N1,还有一个新生理小种,其中优势小种是生理小种1。对其中部分白粉病菌进行RAPD分析,从119个随机引物中筛选出10个条带清晰重复性好的引物,扩增得到157个位点,其中多态性位点为138个,多态性位点频率为97.89%,说明黑龙江省葫芦科作物白粉菌有丰富的遗传多样性。利用NTSYS-PC软件进行数据分析,结果表明:供试菌株之间遗传相似系数的变化幅度为0.52-0.75,根据遗传相似系数用类平均法(UPGMA)对其聚类,以遗传相似系数0.60为阈值,供试菌株可区分为4个类群。同是生理小种1的菌株部分聚到了同一类,新生理小种与部分生理小种1菌株聚到同一类,同是生理小种N1的两个菌株未聚到同一类;相同地理来源或相同寄主来源的白粉菌也未聚到一类。初步确定瓜类白粉病菌群体基因型与致病性之间不形成对应关系,与菌株地理来源、寄主来源及设施类型亦无明显直接关系。
     应用通用引物对部分黑龙江省瓜类白粉病菌进行转录单位间隔区(IGS)分析,结果表明,不同菌株的IGS区存在长度异质性和数量多态性。应用MspⅠ, AsuⅠ, Hinp1Ⅰ3个限制性内切酶对IGS扩增产物进行酶切(IGS-RFLP),不同菌株的酶切位点不同,电泳后产生多样性丰富的图谱,成为菌株特有的DNA指纹,实验所用的3个限制性内切酶都可以有效地将供试菌株加以鉴别,但未发现不同小种间的特异性标记。利用NTSYS-PC软件对IGS1-RFLP酶切图谱进行数据分析,各菌株之间遗传相似系数的变化幅度为0.46-0.80,说明白粉菌间有丰富的遗传多样性,以遗传相似系数0.60为阈值,供试菌株可区分为3个类群,初步确定瓜类白粉病菌群体基因型与致病性之间不形成对应关系,与菌株地理来源、寄主来源及设施类型亦无明显直接关系。
Powdery mildew is one of the most important disease attacking cucurbits in greenhouse and open-field. The powdery mildew physiological races infect cucurbits change quickly.Consequently, knowledge on the prevalence and geographic distribution of these races has great significances for the choice of appropriate strains, resistance breeding and prevention, using molecular-maker assisted breeding can enhance the selection efficiency and accelerate breeding of resistant variety.
     Compared three different methods for purifing and preserving pathogen, the result showed that preservation time was the longest by live plants, it was about three months; preservation time was the shortest by detached leaves, it was about one month; preservation time was one and half months by detached cotyledon MS medium adding hormone IAA, the best concentration of hormone IAA for cotyledon rooting was 1.5mg/l. Three methods have their advantage and dis advantage respectively, according to requirement selecting proper preservation method.
     Seventeen powdery mildew samples were collected and isolated from mildewed melon, cucumber, pumpkin and watermelon in greenhouse or open field of different ecological regions in Heilongjiang Province in 2010, all those samples were detected using the standard identification hosts of powdery mildew. According to performance on thirteen hosts which are universal in the world, three races on Cucurbitaceae were preliminarily confirmed which included a new physiological race, physiological races 1 and physiological race N1 of Podosphaera xanthii in Heilongjiang Province. Race 1 was the dominant race. Partial isolates of powdery mildew DNA were evaluated using Random Amplified Polymorphic DNA (RAPD) with 10 primers selected from 119 random primers. A total of 157 bands were scored, polymorphic bands were 138, the frequency of polymorphic bands was 97.89%, and it showed that high genetic diversity existed among the isolates of P. xanthii on Cucurbitaceae in Heilongjiang Province. On the basis of RAPD data analyzed by software NTSYS-PC, the similarity coefficient varied from 0.52 to 0.57 and a dendrogram was constructed using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) method. The tested isolates were clustered into 4 groups at the similarity coefficient of 0.60, the isolates of race 1 were clustered into the same group partly, the new race was clustered into the same group with partial race 1 isolates; two isolates of race N1 were not clustered into the same group with partial race 1 isolates. The isolates of the same geographic or host origin were also not clustered into the same group. So, no obvious association was found between DNA polymorphism and pathogen races differentiations as identified by biological tests on cucurbitaceae. Also, no association was found between the results of RAPD analysis and any other of parameter tested: geographic, greenhouse type or host origin.
     Intergenic spacer (IGS) was analyzed for strains of powdery mildew on cucurbits using universal primers, results showed that there were length heterogeneity and polymorphism on IGS. IGS-RFLP digested by MspⅠ, AsuⅠand Hinp1Ⅰshowed that digest sites varied from the strains with profile polymorphism. The IGS-RFLP profile could become distinctive DNA fingerprint for strains. All the tested strains could be effectively identified using restrictive enzymes of MspⅠAsuⅠHinp1Ⅰ. But, no specific RFLP marker was observed between different races. On the basis of IGS1-RFLP data analyzed by software NTSYS-PC, the similarity coefficient varied from 0.46 to 0.80, the isolates were clustered into three groups at the similarity coefficient of 0.60. No obvious association was found between DNA polymorphism and pathogen races differentiations as identified by biological tests on cucurbitaceae, also no association was found between the genetic diversity and any other of parameter tested: geographic, host origin or greenhouse type.
引文
Nicholson P, KezanoorH Z,苏海. 1993.用RAPD分析DNA指纹鉴别玉米小斑病菌O、C、T小种.植物病理学报. (23): 114
    包海清,许勇,杜永臣,等. 2008.海南三亚地区葫芦科作物白粉病菌生理小种分化的鉴定.长江蔬菜. (1): 49~51
    陈建珍.落叶松-杨栅锈菌DNA多态性和同工酶分析.西北农林科技大学:2006.
    陈微. 2000.应用PCR-RFLP和巢式PCR检测黄瓜尖镰孢菌(Fusarium Oxyporum f.sp. Cucumarinum).东北农业大学. 13
    陈作红,张志光,张天晓. 2000.鹅膏菌属真菌RAPD分析及亲缘关系的研究.菌物系统. 19(2): 51~55
    代玉梅,曹军,唐晓萌,等. 2004.高黎贡山旱冬瓜Frankia的IGS PCR-RFLP分析.应用生态学报, 15(2) :186-190
    戴芳澜. 1979.中国真菌总汇.科学出版社. 1~143 单卫星,陈受宜,吴立人,等. 1995.中国小麦条锈菌流行小种的RAPD分析.中国农业科学. 28(5): 1~7.
    董金皋,李洪连,朱杰华. 2001.农业植物病理学(北方本).中国农业出版社. 20~40
    董甜,张惠文,张粤等. 2006.长白山四种赤杨丛枝菌根真菌侵染多样性的巢式PCR-RFLP.应用生态学报. 17(10): 1796~1800
    段会军,姬惜珠,张彩英,等. 2005.几种瓜类枯萎病菌专化型的AFLP分析.河北农业大学学报. 2(5): 71~74
    冯东昕,李宝栋. 1996.主要瓜类作物抗白粉病育种研究进展.中国蔬菜. (1):55~59方中达. 1979.植物病理研究方法.农业出版社
    冯洁,孙文姬,石磊岩,等. 2000.菌物系统.中国棉花枯萎菌生理小种的RAPD分析. 19(1): 45~50
    冯洁,孙文姬,石磊研,等. 2000.中国棉花枯萎病菌生理小种的RAPD分析.菌物系统.19(2): 45~50
    甘丽萍,王生荣. 2004. RAPD标记在植物病原真菌遗传多样性及生理分化研究中的应用. 甘肃农业大学学报. 39(1): 72~76
    郜瑞敏,袁虹霞,邢小萍,等. 2009.河南省小麦胚病优势病原菌链格孢菌(Alternariaspp.)遗传多样性分析.植物病理学报. 39(6): 569~577
    郝保军,王保通,李强,等. 2010.小麦条锈菌水源11类群的RAPD分析及SCAR标记的建立.植物病理学报. 40(1): 1-6
    贺字典,陈捷,高增贵,等. 2007.玉米丝黑穗病菌RAPD分析的引物筛选. (4): 53~56
    黄晨阳,张金霞,郑素月,等. 2005.刺芹侧耳(Pleurotuseryngii) rDNA的IGS2多样性分析.农业生物技术学报. 13(5): 593~595
    梁宏,彭友良,张国珍,等. 2006.腥黑粉菌属3种检疫性真菌rDNA-IGS区的扩增及其序列分析.植物病理学报. 36(5):407~412
    刘爱媛.豌豆离体叶片鉴定白粉病抗性方法. 2002.植物保护学报. 29(2): 119~123
    刘明,王继华,王同昌. 2003. DNA分子标记技术.东北林业大学学报. 31(6): 65~67
    刘秀波,崔琦,崔崇士. 2005.瓜类白粉病抗性育种研究进展.东北农业大学学报. 36(6): 794~798
    吕佩珂,刘文珍,段半锁,等. 2000.中国蔬菜病虫原色图谱续集.第二版.远方出版社. 79
    罗琼. 2002.小麦白粉菌群体多样性RAPD分析及无毒性遗传分析.中国农科院硕士论文. 25~27
    潘欣. 2004.四川省松树散斑壳菌的种类及其rRNA基因ITS区的PCR、克隆和序列分析.四川农业大学硕士论文. 23~26
    朴春根,唐文华,曾士迈,等. 1996. RAPD技术和聚类分析在小麦条锈病菌生理小种研究中的应用.植物病理学报. 26(3): 205~210
    秦旭升,刘学敏,于荣利. 2003.运用PCR-RFLP标记检测南瓜疫病菌.东北农业大学学报. 34(4): 368~371.
    秦振宇,吴绍熙,吕桂霞,等. 2000. PCR-RFLP鉴别念珠菌、曲霉和隐球菌的探讨.临床皮肤科杂志. 29(2): 76~78
    邱夷鹏,李海涛,张子君,等. 2009.番茄抗晚疫病基因Ph-3的RAPD标记.园艺学报. 36(8): 1227~1232
    任本权. 2003.落叶松-杨栅锈菌遗传多样性分析.陕西杨陵.西北农林科技大学硕士论文. 25~26
    宋敦伦,张军,陈建新. 2002. DNA分子标记及其在冬虫夏草中研究中的应用.食用菌学报. 9(3): 52~56
    唐伯让,朱文珍. 1995.小麦离体叶段鉴定白粉病抗性方法的研究. 22(4): 309~314
    田呈明,李振岐,康振生. 2000.落叶松-杨栅锈菌遗传分化的RAPD分析.林业科学. 36(5): 54~58.
    王建设,唐晓伟. 2002.甜瓜白粉病抗源鉴定与抗性遗传分析.华北农学报. 17(3): 124~128
    王娟,邓建新,宫国义,等. 2006.甜瓜抗白粉病育种研究进展.中国瓜菜. (1): 33~36
    王娟,宫国义,郭绍贵,等. 2006.北京地区瓜类白粉病菌生理小种分化的初步鉴定.中国蔬菜. (8): 7~9
    王凯,韦善忠,罗江,等. 2003. DNA分子标记及其进展.黑龙江八一农垦大学学报. 15(1): 39~43.
    王强.甜瓜抗白粉病基因的SSR标记及生理小种鉴定研究.甘肃农业大学硕士论文.25-26
    王永飞,马三梅,刘翠平,等. 2001.遗传标记的发展和分子标记的检测技术.西北农林科技大学学报(自然科学版). 29(6): 130~136
    咸丰,张勇,马建祥,等. 2010.陕西关中地区瓜类白粉病菌生理小种的鉴定.西北农林科技大学学报(自然科学版),38(10): 116~125
    肖仲久,徐如宏,任明见,等. 2006.贵州小麦白粉菌RAPD分析.山地农业生物学报. 25(6): 501~505
    徐志蒙,寿伟林,黄凯美,等. 1999.白粉病菌的生理小种及其对不同基因型甜瓜的致病性(英文).浙江农业学报. 11(5): 245~248.
    许修宏. 2000.大豆疫霉根腐病菌生理小种鉴定及抗源筛选研究.东北农业大学硕士论文. 12-14
    杨炜华. 2002.杏果实黑斑病病原鉴定及相关连格孢菌的RAPD分析.山东农业大学硕士论文. 31
    袁庆华,张文淑,李敏.苜蓿褐斑病的离体叶接种研究. 2001.草地科学. 9(1): 21~24
    岳海梅,庄华,旺姆. 2010.小孢子链格孢的IGS-RFLP分析.肃农业大学学报. 45(5): 83~87
    云晓鹏,李子钦,赵存虎. 2006. AFLP在我国植物病原真菌分子生物学研究中的应用. 10:9~12
    曾大兴,戚佩坤,姜子德. 2001.香蕉炭疽菌菌株亲缘关系的RAPD分析.菌物系统. 20(3): 324~329
    张勃. 2008.小麦条锈菌生理小种RAPD体系优化及CY32的SCAR标记的建立.西北农林科技大学硕士论文. 23~24
    张桂华,杜胜利,王鸣,等. 2004.与黄瓜抗白粉病相关基因连锁的AFLP标记的获得.园艺学报. 31(2): 189~192
    张海英,许勇,王永建. 2001.分子标记技术概述(上).长江蔬菜. 2: 4~6
    张金霞,黄晨阳,张瑞颖,等. 2004.中国栽培白灵侧耳的RAPD和IGS分析.菌物学报. 23(4): 514~519
    张瑞颖. 2004.香菇菌株多相鉴定鉴别技术研究.中国农业大学硕士论文. 9
    张玉勋,焦自高,王崇启,等. 2000.厚皮甜瓜白粉病苗期接种方法及抗性鉴定.北方园艺, (1):48
    张增艳,曾祥艳,林志珊,等. 2005.小麦新种质YW243抗条锈病新基因的AFLP标记. 中国农学通报. 21(12): 56~59.
    张振文,李华. 1996.欧亚种葡萄白粉病抗性鉴定方法研究.四川农业大学学报. 14(3): 331~334
    赵勇,李武,周志华,等. 2005.应用PCR-RFLP及PCR-DGGE技术监测农田土壤微生物短期动态变化.南京农业大学学报. 28(3):53~57
    郑文明,刘峰,康振生,等. 2000.中国小麦条锈菌主要流行菌系的AFLP指纹分析.自然科学进展. 10(6): 532~537
    郑耘. 2000.新疆甜瓜白粉病及品种抗病性研究.新疆农业大学硕士论文. 15
    周凤珍,王永健. 1987.黄瓜白粉病抗病鉴定方法的研究.蔬菜. (1):10~11
    周永力,吕国忠,刘伟成,等. 1998.采用PCR-RFLP和RAPD对球壳孢目真菌系统学的研究.菌物系统, 17(2):160~163.
    Albee S R, Mueller G M, Kropp B R. 2006. polymorphisms in large intergenic spacer of the nuclear ribosomal repeat identify Laccaria proxima strains. Mycologia. 88: 970~976
    Anderson J B, Sailey S S, Pulkkila P J, 1990. Variation in ribosomal DNA among biological species of Armillaria, a genus of root-infecting fungi. Evolution. 43: 1652~1662
    Austen R D Ganley and Barry S. 1998. Extraordinary ribosomal spacer length heterogeneity in a Neotyphodium endophytehybrid: Implications for concerted evolution. Genetics. 150: 1625~1637
    Ballantyne, B. 1975. Powdery mildew on cucurbitaceae : Identity, distribution, host range and sources of resistance. Proc.Linn.Soc. New S Wales 99: 100~120
    Bardin M, Carlier J, Necot P C. 1999. Genetic differentiation in the French population of Erysiphe cichoracearum, a causal agent of powdery mildew of cucurbit. Plant Pathology. 48(4): 531-540
    Bardin M, Doginont C, Nicot P, et al. 1999. Genetic analysis of resistance of melon line P1124112 to Sphaerotheca fuliginea and Erysiphe cichoraceacum studied in recmbinant inbred lines. ActaHort. 492: 163~168
    Bardin M, Nicot P C, Normand P and Lemaire J M, 1997. Virulence variation and DNA polymorphism in Sphaerotheca fuliginea causal agent of powdery mildew of Cucurbits. European Journal of Plant Pathology. 103(6): 545~554
    Bertrand, F and Pitrat, M. 1989. Screening of a muskmelon germplasm for susceptibility to 5 pathogens of powdery mildew, in: Proc. Cucurbitaceae 89. Evaluation and Enhancement of Cucurbit Germplasm (Charleston, SC, USA). 140~142
    Bruns J D, White T J, Tayor J W. 1991. Fungal molecular systematics.Annual Review of Ecology and Systematics. Annual Review of Ecology and Systematics. 22: 525~564
    Bunyard B A, Nicholson M S, Royse D J. 1996. Phylogeny of the genus Agaricus inferred from restriction analysis of enzymatically amplified ribosomal DNA. Fungal Genet Biol. 20: 243~253
    Burgess T, Wingfiele M J, Wingfiele B W. 2001. Simle sequence repeat markers distinguish among morphotypes of sphaeropis sapinea. Applied and Environmental Microbiology. 67: 354~362
    Chen X M, Line R F, Leung H. 1993. Relationship between virulence variation and DNA polymorphism in Pucciniastriiformis. Phytopathology. 83(12): 1489~1497
    Cohen R, Burger Y, Katzir N.2004. Monitoring Physiological Races of Podosphaeraxanthii (syn.Sphaerothecafuliginea),the Causal Agent of Powdery Mildew in Cucurbits :Factors Affecting Race Identification and the Importance for Research and Commerce. Phytoparasitica. 32(2):174~183
    Cohen R, Katzir N, Schreiber S, et al. 1996.Occurrence of Sphaerotheca fuliginea race 3 on cucurbits in Israel. Plant Dis. 80: 344
    Cohen Y , Eyal H. 1995. Differential expression of resistance to powdery mildew incited by races 1 or 2 of Sphaerotheca fuliginea in Cucumis melo genotypes at various stages of plant development. Phytoparasitica. 23: 223~230
    Cohen Y, Eyal H. 1988. Reaction of muskmelon genotypes to races 1and 2 of Sphaerotheca fuliginea in Israel. Cucurbit Cenet. 7: 58~59
    Davis A R, Thomas C E, Levi A, et al. 2002. Watermelon resistance to powdery mildew race 1. Cucurbitaceae. Alexandria Virginia: ASHS press. 192~198
    DelPino D, Olalla L, Perez-Garcia A. 2002. Occurrence of race and pathotypes of Cucurbit powdery mildew in Southeastern Spain. Phytoparasitica. 30(5): 459~466.
    Dixon G R. 1981. Vegetabie crop disease AVI Pub. Co. Westport Connecticut. 404~407
    Dunham S M, Dell T E, Molina R. 2003. Analysis of rDNA Sequences and microsatellite allele frequencies reveals a Cryptic chanterelle species Cantharelluscus cascadensis sp.nov.from the American Pacific Northwest.Mycological Research. 107: 1163~1177
    Ferriere H, Molot P M. 1988. Sensibilite dumelon a Sphaerotheca fuliginea enfection de Letage foliaire. Phytopathology. 121: 250~254
    Goodwin S B, Drenth A, Fry W E. 1992. Cloning and genetic analyses of two highly polymorphic, moderately repetitive nuclear DNA from phytophthora infestans. Curr Genet. 22(2): 107~115
    Grajal-Martin M J. 1993. Use of random amplified polymorphic DNA (RAPD) to characterize race 2 of Fusarium oxysporium f.sp.pisi. Phytopathology. (83): 612~614
    Greaves DR, Patient RK. 1985. (AT)n is an interspersed repeat in the Xenopus genome.The EMBO Journal. 4: 2617~2626
    Groppe K, Sanders L, Wiemken A. et al. 1995. A microsatellit marker for studying the ecology and diversity of fungal endophytes(Epichloe spp.)in grasses. Apllied and Environmental Microbiology. 61:3943~3949.
    Hennequin C, Thieny A, Tichard GF. et al. 2001. Microsatellite typing as a new tool for Identification of Saccharomyces cerevisiae strains. Journal of Clinical Microbiology, 39: 551~559
    Hibbet D S, Fukumasa N Y, Tsunoda A, et al. 1995. PHylogenetic diversity in shiitake inferred from nuclear Ribosomal DNA sequences. Mycologia. 87: 618~638
    Hosoya K, Kuzuya M, Muraka T, et al. 2000. Impact of resistant melon cultivars on Sphaerotheca Fuliginea. Plant Breeding. 119: 286~288
    Hosoya K, Narisawa K, Pitral M, et al. 1999. Race identification in powdery mildew, Sphaerotheca Fuliginea, on melon, Chcumis melo, in Japan. Plant Breeding. 118: 259~262
    Hu J, Quiros C F. 1991. Identification of broccoli and cauliflower cultivars with RAPD marker.Plant Cell Reports. 10: 505~511
    James D, Creight M C. 2002. Reactions of 20 melon cultigens to powdery mildew race 2U.S. Cucurbitaceae, Alexandria Virginia: ASHS press. 72~77
    James D M, Pitrat M, Thomas CE, et al. 1987. Powdery mildew resistance genes in muskmelon. Journal of the American Society For Horticultural Science. 112(1): 63~65
    James TY, Moncalvo JM, Li S, et al. 2001. Polymorphism at the ribosomal DNA spacers and its relation to breeding structure of the widespread mushroom Schizophyllum commune. Genetics. 157: 149~161
    Jone C J, Edwards K J, Castaglione S, et al. 1997. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Molecular Breeding. 3(5): 381~90
    Kahn.M. 1978. Coccinia cordifolia and lagenaria leucanthe, differential hosts for powdery mildew of cucurbits. Plant Disease. 47: 482
    Kaye C, Milazzo J, Rozenfeld S et al. 2003.The development of simple sequence repeat markers for Magnaporthe grisea and their Integration into an established genetic linkage map. Fungal Genetics and Biology. 40:207~214
    Mahmood T, lqbal A, Nazar N, et al. 2011. Assessment of genetic variability among selected species of Apocynaceae. Biologia. 66(1): 64~67
    Martin F. 1999. Selosse M A and Le Tacon F. The nuclear rDNA intergenic spacer of the ectomycorrhizal basidiomycete Laccaria bicolor: structural analysis and allelic polymorphism. Microbiology. 145: 1605~1611
    Mohamed YF. 1995. Causala gents of Powdery mildew of Cueurbits in Sudan. PlantDisease. 79(6): 634~636
    Mwenje E, Wingfield B D, Coetzee M P, et al. 2003. Molecular characterisation of Arrndlaria species from Zimbabwe. Mycological Research. 107: 291~296
    Nei M, Li W H. 1979. Mathematical model for studying genetic variations in terms of restriction endonucleases. Proc Natl Acad Sci USA. 76: 5269~5273
    Paule M R, Lofquist A K. 1996. Organization and expression of eukaryotic ribosomal RNA genes: In Zimmerman R A, Dahlberg A E eds., Ribosomal RNA: Structure, Evolution, Processing, and function in Protein Biosynthesis. Boca Raton: CRC Press. 395~420
    Pramateftaki P V, Antoniou P P, Types M A. 2000. The complete DNA sequence of the nuclear ribosomal RNA gene complex of verticillium dahliae:intraspecific heterogeneity within the intergenic spacer region. Fungal Genetics and Biology. 29:19~27
    Saito T, Tanaka N, Shinzawa T. 2002. Characterization of subrepeat regions with rDNA intergenic spacers of the edible basidiomycete Lentinula edodes. Biosci Biotechnol Biochem. 66(10): 2125~2133
    Sittcrly W R. 1978. Powdery midew of cucurbits. The Powdery Mildews. D.M. Spender, ed. Academic Press, London. 359~379
    Sugita T, Ikeda R, Shinoda T. 2001. Diversity among strains of Cryptococus neoformans var. gattii as revealed by a sequence analysis of multiple genes and a chemotype analysis of capsular polysaccharide. Microbiol Immumol. 45(11): 757~768
    Sugita T, Tanaka N, Shinzawa T. 2003. Characterization of subrepeat regions with rDNA intergenic spacers of the edible basidiomycete Lentinula edodes. Biosci Biotechnol Biochem. 66(10): 2125~2133
    Thomas C E, Nugent P E. 1983. Resistance to powdery mildew incited by race 3 of
    Sphaerotheca fulinginea in the US plant introduction collection of Cucumismelo. Hortsci. 18: 172 Thomas C E. 1978. A new biological race of powdery mildew of cantloups. Plant Disease Reporter. 62(3): 223
    Thomas C E. 1988. Physiological specialization in downy and powdery mildews of the Eucarpia meeting on cucurbit genetics and freedly Align cucurbit. Genetics and breeding. Avigaon France. 12: 88~92
    Torres A M. 1993. Identifying tore cultivars using random amplified polymorphic DNA marker. Hortscience. 28: 333~334
    Vakalounakis D J, Klirenomou E, Papadakis A. 1994. Species spectrum, host range and distribution of powdery mildews on Cucurbitaceae in Crete. Plant Pathology. 43(5): 813~818
    Valerio H M, Resende M A, Weikert-Oliveira R C B, et al. 2005. Virulence and molecular diversity in Colletotrichum graminicola from Brazil. Mycopathologia. 59(3): 449~459
    Wet J, Burgess T, Slippers B, et al. 2003. Multiple gene genealogies and Microsatellite markers reflect relationships between morphotypes of Sphaeropsis sapinea and distinguish a new species of Diplodia. Mycological Research. 107: 557~566.
    Zietkiewicz E, Rafalski A, Labuda D. 1994. Genome fingerprinting by simple sequence repeat (SSR) anchored polymerise chain reaction amplification. Genomics. 20: 176~183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700