应用于风电并网的VSC-HVDC控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着风力发电技术的不断发展以及风电场容量的持续增加,风电的并网技术也变得日趋重要。在众多风电并网技术中,柔性直流输电技术(VSC-HVDC)能够为风电场及交流系统提供一定的无功功率支持,十分适用于风电场与电网间的互联。本文着重研究了双馈风力发电机的矢量控制和用于风电并网的VSC-HVDC的无源控制策略。
     本文分析、介绍了风电并网的输电方式,并详细阐述了基于VSC-HVDC风电并网的技术优势。为分析风电场的特点,研究了双馈发电机的特性及其矢量控制,并通过Matlab/Simlink的仿真表明,双馈风力发电机的矢量控制策略能够实现有功功率、无功功率的独立控制以及最大风能捕获。
     本文针对VSC-HVDC系统的数学模型,证明了VSC系统是无源系统,根据系统的控制要求,设计了两种无源控制器:一种是基于欧拉-拉格朗日(EL)的无源控制器,在该控制策略下,风电场侧换流器均采用定有功功率和定无功功率控制,省去了外环PI控制器,简化了控制率,电网侧换流器均采用定直流电压和定无功功率控制,以实现直流电压的恒定和无功功率传输;另一种是基于端口受控的哈密顿模型(PCHD)的无源控制器,该控制方法就是通过选取期望的互联与阻尼配置和哈密顿函数,以实现对参考值的跟踪。最后,利用Matlab/Simlink对基于VSC-HVDC的风电并网系统进行了整体仿真,结果表明VSC-HVDC系统能够在一定的程度上隔离电网故障对风电场的影响,并能为风电场提供一定的无功支持;两种控制器均能实现有功功率、无功功率的独立控制,且具有良好的暂态控制性能。
With the continuous development of the wind power generation technology and the increasing expansion of the capacity of the wind farm, the wind power transmission is becoming gradually important. Among many grid connection technologies of wind farms, HVDC-Flexible transmission (VSC-HVDC) provides reactive support for the wind farms and AC systems. It is very suitable for interconnection between the wind farms and grid. This paper focuses on the vector control of doubly-fed wind power generator and passive-based control strategy of VSC-HVDC.
     The transmission methods of Grid Connection technology of Wind Farms are analyzed in this paper. And the advantages of VSC-HVDC used in grid-connected wind farms are elaborated. To analyze the characteristics of the wind farm, the performance and vector control of doubly-fed generator are studied. The simulation results in Matlab/Simlink show that the vector control strategy of doubly-fed wind generator can realize the independent control for active power and reactive power and the maximal power capture.
     The mathematical model of VSC-HVDC system is built and VSC system is proved to be a passive system in this paper. Two passive controllers of inner loop are designed according to the requirements of the control system. One is passive controller based on Lagrange (EL) model, the outer ring of the PI controller is eliminated by using the given active power and constant reactive power control on the side of the wind farm rectifier to simplify the controller, it can achieve the DC constant voltage and the reactive power transmission by using the constant DC voltage and reactive power control on the side of the grid inverter under the control strategies; the other is passive controller based on port controlled Hamiltonian model (PCHD). By selecting the desired interconnection and damping configuration, the control method is to track reference value using Hamiltonian function. Finally, Matlab/Simulink simulation results show that the VSC-HVDC system can realize grid fault isolation. And it provides a certain amount of reactive power for wind farms. The designed two controllers can achieve independent control for active power and reactive power with good transient performance.
引文
[1]王长贵,崔容强,周篁.新能源发电技术[M].北京:中国电力出版社,2003.
    [2]孟庆和.风力发电技术[J].风力发电.2002(2):24-29.
    [3]李兴源.高压直流输电系统[M].北京:科学出版社,2010.
    [4]吴维鑫.轻型高压直流输电系统的非线性控制策略研究[D].成都:西南交通大学,2011.
    [5]Jacobson B, Fischer de Toledo P, Asplund G.500MW city center infeed with voltage source converter on Role of HVDC[C], FACTS and Emerging Technologies in Evolving Power System,Bangalore,2005.
    [6]Reed G, Pape R,Takeda M. Advantages of Voltage Sourced Converter(VSC) based design concepts for FACTS and HVDC-link applications[C].Pro IEEE Eng Soc General Meeting. Toronto, Canada,2003:1816-1821.
    [7]张桂斌.新型直流输电及其相关技术研究[D].杭州:浙江大学,2001.
    [8]陈海荣,张静,潘武略.基于VSC的高压直流输电系统的非线性控制[J].电力建设,2008,29(12):18-24
    [9]张桂斌,徐政,王广柱,基于VSC的直流输电系统的稳态建模及其非线性控制.中国电机工程学报,2002,22(1)
    [10]张凯,李庚银,梁海峰,李广凯.基于电压源换流器HVDC系统稳态控制及仿真[J].电力自动化设备,2005,25(3):79-83
    [11]梁海峰,李庚银,李广凯,等.向无源网络供电的VSC-HVDC系统的系统仿真研究[J].电网技术,2005,29(8):45-50.
    [12]陈海荣,徐政.向无源网络供电的VSC-HVDC系统的控制器设计[J].中国电机工程学报,2006,26(23):42-48.
    [13]Ooi B T, Wang Xiao. Boost type PWM HVDC transmission system [J]. IEEE Trans on Power Delivery,1991,6(4):1557-1563.
    [14]杨用春,赵成勇.向无源网络供电的VSC-HVDC控制性能实验研究[J].电力系统保护与控制,2009,37(21):31-35,66.
    [15]刘洪涛.新型直流输电的控制和保护策略研究[D].杭州:浙江大学,2003.
    [16]文俊,张一工,韩民晓.轻型直流输电—一种新一代的HVDC技术[J].电网技术,2003,27(1):47-51.
    [17]周国梁.基于电压源换流器的高压直流输电系统控制策略研究[D].北京:华北电力大学,2004.
    [18]陈海荣.交流系统故障时VSC-HVDC系统的控制与保护策略研究[D].浙江大学,2008.
    [19]N. B. Negra, J. Todorovic, T. Ackermann. Loss evaluation of HVAC and HVDC transmission solutions for large offshore wind farms [J]. Electric Power Systems Research,2006,76(11): 916-927.
    [20]Robinson J, Joos G. VSC HVDC transmission and offshore grid design for a linear generator based wave farm[C]. Canadian Conference on Electrical and Computer Engineering,2009:54-58.
    [21]魏晓光,汤广福,魏晓云,等.VSC-HVDC控制器抑制风电场电压波动的研究[J].电工技术学报,2007,22(4):150-156.
    [22]赵成勇,胡冬良,李广凯,龙文.多端VSC-HVDC用于风电场联网时的控制策略[J].电网技术2009,33(17):135-140.
    [23]0. Giddani, P. Adam,0. Anaya. Grid integration of offshore wind farms using multi-terminal DC transmission systems (MTDC) [C].5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010),2010:1-6.
    [24]H. Jiang, A. Ekstrom. Multiterminal HVDC systems in urban areas of large cities [J].IEEE Transactions on Power Delivery,1998,13(4):1278-1284.
    [25]魏晓云,魏晓光,徐凤阁.基于VSC-HVDC的风力发电场交直流棍合并网技术[J].中国电力,2006,39(9):45-48.
    [26]魏晓光.电压源换流器高压直流输电控制策略及其在风电场并网中的应用研究[D].北京:中国电力科学研究院,2007.
    [27]叶杭冶.风力发电机组的控制技术(第二版)[M].北京:机械工业出版社,2006.
    [28]郑康,潘再平.变速恒频风力发电系统中的风力机模拟[J].机电工程,2003,20(6):40-43.
    [29]胡家兵,贺益康,刘其辉.基于最佳功率给定的最大风能追踪控制策略[J].电力系统自动化,2005,29(24):32-38.
    [30]Yi Wang, Lie Xu. Control of DFIG-Based Wind Generation Systems under Unbalanced Network Supply[C]. IEEE EMDC,2007:430-435.
    [31]M.Machmoum, R.le Doeuff. Steady-state analysis of a doubly fed a synchronous machine supplied by acurrent-controlled cyclocon vertor in the rotor[J]. IEEE Proceedings, Part B,1992,139(2): 114-122.
    [32]王久和.无源控制理论及其应用[M].北京:电子工业出版社,2010.
    [33]Carles B, Arnau D C, Enric F. IDA-PBC controller for a bidirectional power flow full-bridge rectifier[C]. Proc. of the 44th IEEE Conference on Decision and Control,2005:422-425.
    [34]Abbas A M, Lehn P W. PWM based VSC-HVDC Systems:A Review[C].Power and Energy society general meeting,2009:1-9.
    [35]Spain A,Steimer P K, Simond J J.Modeling,sinmulation,and test of a three-level voltage-source inverter with output LC filter and direct torque control [J]. IEEE Transations on Industry Applications,2007,43(2):469-475.
    [36]Liu Liming, Zhu Pengcheng, Yong Kang. Power-Flow Control Performance Analysis of a Unified Power-Flow Controller in a Novel Control Scheme[C]. IEEE Transaction on power delivery, 2007,22 (3):1613-1619.
    [37]邹超.基于逆系统理论的新型高压直流输电的控制策略研究[D].成都:西南交通大学,2009.
    [38]Wu Lei, Wang Jiuhe, Tang Yi. Passivity-based control of three-phase voltage source PWM rectifier under unbalanced supply voltage amplitude[J]. International Conference on Computer Design and Appliations,2010,3:357-360.
    [39]Li Guangkai, Zhao Chengyong, Gengying. Research of nonlinear control strategy for VSC-HVDC system based on Lyapunov stability theory[C].Proceedings of Electric Utility Deregulation and Restructuring and Power Technologies. Nanjuing,2008:2187-2191.
    [40]邱大强,李群湛,马庆安.基于直接功率控制的VSC-HVDC系统换流控制器设计[J].高电压技术,2010,36(10):2601-2606.
    [41]汤广福.基于电压源换流器的高压直流输电技术[M].北京:中国电力出版社,2009.
    [42]李升来.轻型高压直流输电系统控制策略研究[D].成都:西南交通大学,2012.
    [43]赵成勇,胡冬良,李广凯,等.多端VSC-HVDC用于风电场联网时的控制策略[J].电网技术,2009,33(17):135-140
    [44]吴俊宏,艾芊.多端柔性直流输电系统在风电场中的应用[J].电网技术,2009,33(4):22-27.
    [45]Temesgen M.Haileselassie,Marta Molinas.Multi-Terminal VSC-HVDC System for Integration of Offshore Wind Farms and Green Electrification of Platforms in the North Sea[C].Nordic Workshop on Power and Industrial Electronics,2008
    [46]Shu Zhou,Jun Liang,J.B.Ekanayake,et al.Control of Multi-Terminal VSC-HVDC Transmission System for Offshore Wind Power Generation[C]. Universities Power Engineering Conference(UPEC),2009
    [47]C.Feltes and I.Erlich.Variable Frequency Operation of DFIG based Wind Farms connected to the Grid through VSC-HVDC Link[C].Power Engineering Society General Meeting,2007.IEEE 24-28 June 2007 Page(s):1-7
    [48]王琦,陈小虎等.大型风电机组和电力系统联网及相关问题[J],现代电力,2005,22(5):23-28.
    [49]Nomura S, Ohata Y, Hagita T, et al. Wind farms linked by SMES systems[J]. IEEE Trans, on Applied Superconductivity,2005,15(2):1951-1954.
    [50]Li W, Joss G, Abbey C. Attenuation of wind power fluctuations in wind turbine generators using a DC bus capacitor based filtering control scheme[C]. Proceedings of IEEE 41st IAS Annual Meeting, Florida,2006.
    [51]杨思祥,李国杰,阮思烨,等.应用于DFIG风电场的VSC-HVDC控制策略[J].电力系统自动 化,2007,31(19):64-67.
    [52]尹明.基于VSC-HVDC的风电场联网技术研究[D].北京:华北电力大学,2008.
    [53]Jiao L, Joos G, Abbey C. Multi-terminal DC (MTDC) systems for wind farms powered by doubly-fed induction generators (DFIGs)[C]. Proceeding of the IEEE PESC, Germany,2004.
    [54]文劲宇,陈霞,姚美齐,等.适用于海上风场并网的混合多端直流输电技术研究[J].电力系统保护与控制,2013,41(2):55-61.
    [55]李国杰,阮思烨.应用于并网风电场的有源型电压源直流输电系统控制策略[J].电网技术2009,33(1):52-55.
    [56]常勇,徐政,郑玉平.大型风电场接入系统方式的仿真比较[J].电力系统自动化,2007,31(14):71-75.
    [57]姚伟,程时杰,文劲宇.直流输电技术在海上风电场并网中的应用[J].中国电力,2007,40(10):70-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700