智能社区运行模式的分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式发电是一种新兴的能源利用方式,具有投资小、发电方式灵活、损耗低、利于环保等优点。大量分布式电源的接入,给电网带来了一定的不良影响。微电网是为协调大电网与分布式电源间的矛盾而提出的。微电网将分布式电源、负荷、储能装置及控制装置等结合,形成一个单一可控的单元,同时向用户供给电能。微网对于保障供电可靠性、提高能量利用效率等有独到的优势,但是也存在电能质量、对主网的冲击等问题。储能技术和MAS的发展为此问题的解决提供了一种新的方式。储能技术可以进一步改善微网的运行特性,对微网稳定高效运行有重要意义。MAS拥有自主性、交互性、高效性等优点,能更好的适应主电网和微电网之间的协调控制和优化。
     本文首先介绍了微网中几种重要的分布式电源,如风力发电机、光伏发电、燃料电池、以及储能等,分析了它们对电网的影响。其次,本文建立了微电网中换流器的数学模型,介绍了微电网中换流器的各种控制方式。在前面工作的基础上,在PSCAD/EMTDC中建立了风力发电机、光伏发电、储能以及换流器的仿真模型,重点对风力发电机的功率输出和光伏发电的最大功率输出控制,还有储能的功率控制和V/f控制进行建模和分析。把建立的分布式电源仿真模型加入典型微电网结构中,通过仿真研究储能在微网并网运行模式、孤岛运行模式下的动态运行特性,进而研究储能对微网运行的作用机理。仿真结果表明,储能能快速为系统提供有功、无功支撑,在微网电压频率调节、平抑系统扰动、保障微网稳定运行方面发挥重要的作用。此外,本文提出了以上级电网Agent、微电网Agent、元件Agent组成的三层多代理控制系统,并对底层Agent控制方式在含储能的微电网中的应用进行了设计和仿真验证。
Distributed Generation (DG) is a new style of energy use, with the advantage of low-cost , flexible way of generation, less consuming, environment friendly, etc. Assessments of a large number of DG cause certain adverse effects. Micro-grid was raised for coordinating the conflict between the grid and DG. Micro-grid combines DG, load, energy storage and control device in order to form a single controllable unit for supplying power to user. Micro-grid have unique advantages in the aspect of protecting power supply and improving efficiency of energy use, etc, however it also have some disadvantages, such as the power quality, impact to the main grid, etc. The development of energy storage technology and MAS provide a new way to solve this problem. Energy storage technology can further improve the operational characteristics and has significance of operating Micro-grid stable and efficiently. MAS has the advantages of autonomy, interactivity, efficiency, etc, and can adapt better to the coordinated control and optimization between main grid and Micro-grid.
     In this paper, several important types of DG in Micro-grid were introduced firstly, for instance, wind turbine generation, photovoltaic generation, fuel cell generation, energy storage etc, and their influences to grid were also analysed. Second, a mathematical model of the inverter in Micro-grid was established and the ways of controlling the inverter was also presented. On the basis of the preview work, the simulation model of wind turbine generation, photovoltaic generation, energy storage and inverter was built in PSCAD/EMTDC, focusing on simulation and analysis of the control of output of wind turbine generation and maximum output of photovoltaic generation, and the control of PQ and V/F of energy storage. By implementing DG into typical Micro-grid for analysing the dynamic operating characteristics of energy storage in grid connection mode and islanding mode, the mechanism of energy storage to the operation of Micro-grid was studied. The results of the simulation show that energy storage has important effects on supporting grid with active, reactive power quickly, adjusting V/f, stabilizing grid, ensuring Micro-grid operation stable. In addition, the three stage multi-agent control system consisting of main grid agent, Micro-grid agent and component agent was proposed in this paper, and design the control mode of component agent, then simulate to validate it in Micro-gird with energy storage.
引文
[1]刘杨华,吴政球,涂有庆等.分布式发电及其并网技术综述[J].电网技术,2008,32(15):71-76.
    [2]张维强,宋国乡.基于种新的闷值函数的小波域信号去噪[J].西安电子利技大学学报,2004 31( 21): 296-299.
    [3] Caire, R., et al. Impact assessment of LV distributed generation on MV distribution network. in Power Engineering Society Summer Meeting, 2002 IEEE. 2002.
    [4] Niknam, T., A.M. Ranjbar, and A.R. Shirani. Impact of distributed generation on volt/Var control in distribution networks. in Power Tech Conference Proceedings, 2003 IEEE Bologna. 2003.
    [5] Hatziargyriou, N.D., et al. Management of Microgrids in Market Environment. in Future Power Systems, 2005 International Conference on. 2005.
    [6] Lasseter, R.H. and P. Paigi. Microgrid: a conceptual solution. in Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual. 2004.
    [7] Lasseter, R.H. MicroGrids. in Power Engineering Society Winter Meeting, 2002. IEEE. 2002.
    [8] Laaksonen H,Saari P,Komulainen R.Voltage and frequency control of inverter based weak LV network microgrid[C].Future Power Systems,2005 International Conference on 16-18 Nov.2005 Page(s):6 pp.
    [9] Katiraei F,Iravani M R.Power management strategies for a microgrid with multipledistributed generation units[J].IEEE Transactions on Power Systems,2006,21(4):1821-1831.
    [10]盛鹍,孔力,齐智平,等.新型电网—微电网(Micro-grid)研究综述[J].继电器,2007,35(12):75-81.
    [11]季阳,艾芊,解大.分布式发电技术与智能电网技术的协同发展趋势[J].电网技术,2010,(12).
    [12]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述[J].电网技术,2003,27(12):71-76.
    [13]李峰,李兴源,郝巍.不间断电力变电站中分布式电源接入系统研究[J].继电器,2007,35(10):13-19.
    [14] Ipakchi A,Albuyeh F.Grid of the Future [J].Power and Energy Magazine,IEEE,2009,7(2):52-56.
    [15]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述[J].电网技术,2003,27(12):71-75.
    [16]刘宣宣.分布式电源对配电系统电能质量的作用机理研究[D].华北电力大学(河北)硕士论文,2007.
    [17] Donnelly M.K.,Dagle J.E.,Trudnowski D.J.,et al.Impacts of the Distributed Utility on Transmission System Stability[J].Power Systems,IEEE Transactions,1996,vol.11:741-746.
    [18]王志群,朱守真,周双喜等.分布式发电对配电网电压分布的影响[J].2006,28(16):56-60.
    [19]陈海焱,段献忠,陈金富.分布式发电对配网静态电压稳定性的影响[J].电网技术,2006,30(19):27-30.
    [20]雷珽.分布式电源的并网策略与协调控制[D].上海交通大学硕士论文,2011.
    [21] Coles L.R.,Chapel S.W.Iannucci J.J.Valuation of Modular Generation, Storage and Targeted Demand Side Management[J].IEEE Transactions on Energy Conversion,1995,10(1):182-187.
    [22]钱科军,袁越,Zhou Cheng-ke.分布式发电对配电网可靠性的影响研究[J].电网技术,2008,32(11):74-78.
    [23] Funabashi T,Yokoyama R.Microgrid field test experiences in Japan[C].IEEE Power Engineering Society General Meeting, Montréal,2006.
    [24] LASSETTER B. Micro-grids[C]. Proceedings of 2001 IEEE Power Engineering Society Winter Meeting. IEEE. 2001:146-149.
    [25] [13]STVENS J. Development of sources and a test bed for CERTS micro grid testing. Proceeding of 2004 IEEE Power Engineering Society General Meeting. IEEE. 2004:2032-2033.
    [26] R. Lasseter,“Micro-grids”[C]. Proceedings of 2002 IEEE Power Engineering Society Winter Meeting. IEEE. 2002:305–308.
    [27]赵久占.我国风力发电开发与管理研究[D].天津大学硕士论文,2004.
    [28]庄慧娟.基于多Agent的WebCL平台设计与实现[D].贵州师范大学硕士论文,2006.
    [29] f271刁瑞盛.风力发电对电网的影响研究[D].浙江大学硕士论文,2006.
    [30] The American Wind Energy Association . Global wind power growth continues to strengthen[EB/OL]. http://www.ewea.org.
    [31] Slootweg J.G.,Haan S.W.H.,Polinder H.,et al.Aggregated modeling of wind parks with variable speed wind turbines in power system dynamics simulations[C].Proceedings 14th Power System Conference.Sevilla,Japan,2002.
    [32]刁瑞盛.风力发电对电网的影响研究[D].浙江大学硕士论文, 2006.
    [33] Rauschenbach H.S.Solar Cell Array Design Handbook[M].Litton Educational Publishing Inc,1980:55-59.
    [34]黄汉云.太阳能光伏发电应用原理[M].北京:化学工业出版社. 2009:6-35.
    [35]赵争鸣,等.太阳能光伏发电及其应用[M].北京:科学出版社. 2005:5-40.
    [36]戴靖.光伏发电并网控制技术[D].南京:航空航天大学.2007.?
    [37] WORK PAKAGE A.Large-scale integration of micro-generation to low voltage grids[C]. Contract No:ENK-CT-2002-00610,Version 3.0,2003;47-48.
    [38] Rauschenbach H S. Solar cell array design handbook [M] .Litton Educational Publishing Inc ,USA ,1980.
    [39]赵福鑫,魏彦章.太阳电池及其应用[M].北京:国防工业出版社,1985.
    [40] Singer S ,Bozenshtein B ,Surazi S. Characterization of PV array output using a small number of measured parameters [J ] .Solar Energy ,1984 ,32 (5) :603-607.
    [41]闫立伟.微电网中光伏发电动态特性研究[D].重庆大学:重庆大学硕士论文,2010.
    [42]毕道治.中国燃料电池的发展[J].电源技术,2000, 24(2): 103-107.
    [43] S. J. Chiang, K. T. Chang, C. Y. Yen. Residential photovoltaic energy storage system[J].IEEE Trans. Ind.Elec. ,1998,6:385-394.
    [44] H. P. Kan, K. T. Chau, M. Cheng. Development of doubly salient permanent magnet motor flywheel energy storage for building integrated photovoltaic system[J].Proceeding of IEEE Applied Power Electronic Conference and Exposition,2001,1:314-320.
    [45]李春艳.?微网中固体氧化物燃料电池发电系统建模及控制策略研究[D].?重庆:?重庆大学硕士论文,2011.?
    [46]雷珽.?分布式电源的并网策略与协调控制[D].?上海:上海交通大学大学硕士论文,2011.?
    [47]曾杰.?可再生能源发电与微网中储能系统的构建与控制研究[D].?武汉:华中科技大学硕士论文,2009.
    [48] Salameh Z.M.,Casacca M.A.,and Lynch W.A. A mathematical model for lead-acidbatteries [J].IEEE Transaction Energy conversion, 1992, 7(1):93-98.
    [49] Linden D., Ed.Handbook of Batteries [M] .New York: McGraw-Hill.1995.
    [50] IEEE 1547-2003, IEEE standard for interconnecting distributed resource with electric power systems[S].
    [51]陈谦.新型多端直流输电系统的运行与控制[D].南京:东南大学博士学位论文,2004.
    [52]胡兆庆.基于VSC的HVDC控制及其动态特性研究[D].武汉:华中科技大学博士论文,2005.
    [53]陈谦,唐国庆,胡铭.采用dq0坐标的VSC-HVDC稳态模型与控制器设计[[J].电力系统自动化,200428(16):61-66.
    [54]徐德鸿.电力电子系统建模及控制[M].北京:机械工业出版社,2005.
    [55]魏晓光,汤广福,魏晓云等.VSC-HVDC控制器抑制风电场电压波动的研究[J].电工技术学报,2007,22(4):150-156.
    [56]王云玲.基于超级电容器储能的电能质量调节器研究[D].武汉:华中科技大学硕士论文,2007.
    [57]郑宏.三电平光伏并网逆变器的控制策略研究[D].镇江:江苏大学硕士论文,2010.
    [58]王光亮.能量缓冲器及其在微电网控制中的应用[D].华北电力大学:华北电力大学硕士论文. 2009.
    [59]李建林,付勋波,胡书举.变速恒频双馈风力发电系统应用研究[J].电源技术应用,2007.
    [60]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制[J].电力系统自动化,2003 ,27(20):62-67.
    [61] P.M. Anderson, Anjan.Bose; Stability Simulation of Wind Turbine Systems[J]. IEEE Transactions on Power Apparatus and Systems. PAS 102 (12), 1983:3791-3795.
    [62] Murdoch.A, Winkelman.J.R, Javid, S.H, et al. Control Design and Performance Analysis of a 6 MW Wind Turbine Generator [J]. IEEE Transactions on Power Apparatus and Systems, PAS 102 (5), 1983:1340-1347.
    [63] B. Singh, S. S. Murthy, and S. Gupta,“Analysis and design of STATCOM based voltage regulator for self excited induction generator,”IEEE Trans. Energy Convers., vol. 19, no. 4, pp. 783–790,Dec. 2004.
    [64] B. Singh, S. S. Murthy, and S. Gupta,“Modeling and analysis of STATCOM based voltage regulation for self-excitation induction generator with unbalanced loads,”in Proc. TENCON 2003, Conf. Convergent Technol. Asia-Pacific Reg., vol. 3, pp. 1109–1114.
    [65] F.Valenciaga and Paul.P.Puleston,“Supervisor Control for a Stand-Alone Hybrid Power Generation System Using Wind andPhotovoltaic Energy,”IEEE Trans.Energy Conversion, vol.20, no.2,pp.398-405, June 2005.
    [66] G. E. Valdarannma, P. Mattavalli, and A. M. Stankonic,“Reactive power and unbalance compensation using STATCOM with dissipativity based control,”IEEE Trans. Control Syst. Technol., vol. 19, no. 5, pp. 598–608,Sep. 2001.
    [67] Singh, B.; Kasal, G.K.“Solid State Voltage and Frequency Controller for a Stand Alone Wind Power Generating System”,Power Electronics, IEEE Transactions on Volume 23, Issue 3, May2008 Page(s):1170– 1177.
    [68]吴竞之.基于鼠笼电机全功率风力发电的系统分析与研究[D].上海:上海交通大学硕士论文,2011.
    [69]李晶.变速恒频双馈风电机组动态模型及并网控制策略的研究[D].北京:华北电力大学博士学位论文.
    [70]苏建徽,余世杰,赵为等.硅太阳电池工程用数学模型[J].太阳能学报,2001,22(4): 409-412.
    [71]程军照,吴夕科,李澍森,等.采用Boost的两级式光伏发电并网逆变系统[J].高电压技术,2009,35(8):2048-2052.
    [72]吴冰冰.适于微网动稳特性的光伏发电系统的能量控制研究[D].北京:华北电力大学硕士论文,2010.
    [73] Salameh Z M, Casacca M A, Lynch W A. A mathematical model for lead-acid batteries [J].IEEE Trans on Energy Conversion .1992,7(1):93-98.
    [74]王中秋.分布式储能对微网运行特性的作用研究[D].北京:华北电力大学硕士论文,2011.
    [75]梁海峰,李庚银,李广凯,等.向无源网络供电的VSC-HVDC系统仿真研究.电网技术,2005(8): 45-50.
    [76] JIANCT H,EKSTROM A. Multiterminal HVDC systcms in urban areas of large city[J].IEEE Trans.on Power Delivery,1998,13(4):1278-1284
    [77] LU Wei-xing, OOI B T. Multiterminnal LVDC system for optimal acquisition of power in wind-farm using induction generators[J]. IEEE Trans. on Power Electronics, 2002,17(4):558-563.
    [78] HO RLE N , ERIKSSON K. Electrical supply for offshore installations made possible by use of VSC technology[A]. CIGRE Session 2002[C/CD].Paris:CIGRE, 2002.14-117.
    [79]吴俊宏.多端柔性直流输电控制系统的研究[D].上海:上海交通大学硕士论文,2010.
    [80] BUCHHOLZ B,HUEBEL I,POVH D,etal. Medium-voltage direct-current (MVDC) coupling in the liberalized market[A]. CIGRE Session 2002[C/CD]. Paris : CIGRE ,2002.14-203.
    [81] LU Wei-xing, OOI B T. Multi-terminal HVDC as enabling technology of premium quality powerpark[A]. Power Engineering Society Winter Meeting [C]. New York, USA: IEEE, 2002. 719-724.
    [82] Meah, K.; Ula, A.H.M. Simulation study of the Frontier Line as a multi-terminal HVDC system[J]. Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE 20-24 July 2008 Page(s):1– 7.
    [83] Lu Weixing. Control and application of multi-ternimal HVDC based on voltage-source converter[D]. Montreal, Canada: McGill University, 2003.
    [84] TANG Weizhong, LASSETER R H. An LVDC industrial power distribution system without central control unit//Proceedings of 31th IEEE Annual Power Electronics Specialists Conference: Vol 2, June 18-23, 2000, Galway, UK. Piscataway, NJ, USA: IEEE, 2000:979-984.
    [85]章健,艾芊,王新刚.多代理系统在微电网中的应用[J].电力系统自动化,2008,32(24):80-82.
    [86] Weixing Lu; Boon-Teck Ooi. DC over voltage control during loss of converter in multiterminal voltage-source converter-based HVDC (M-VSC-HVDC)[J]. Power Delivery, IEEE Transactions on Volume 18, Issue 3, July 2003 Page(s):915– 920
    [87] Lie Xu; Williams, B.W.; Liangzhong Yao. Multi-terminal DC transmission systems for connecting large offshore wind farms[J] Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE,20-24 July 2008 Page(s):1– 7.
    [88] Weixing Lu; Boon Teck Ooi; DC voltage limit compliance in voltage-source converter based multi-terminal HVDC[J]. Power Engineering Society General Meeting, 2005. IEEE,12-16 June 2005 Page(s):1322– 1327.
    [89] Weiss L,Fraction Mathis W, Trajkovic L. A Generalization of Bravton-Moser's Mixed Potential[J].IEEE Trans. on Circuits and Systems 1:Fundamental Theory and Applications,25 (4):42 3-427.
    [90] Weixing Lu; Boon-Teck Ooi; DC overvoltage control during loss of converter in multiterminal voltage-source converter-based HVDC (M-VSC-HVDC)[J]. Power Delivery, IEEE Transactions on Volume 18, Issue 3, July 2003 Page(s):915– 920.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700