基于数据驱动的密闭鼓风炉故障诊断及预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
密闭鼓风炉铅锌冶炼过程是一个复杂的物理化学变化过程,具有多变量、非线性、强耦合、大滞后、不确定性等特点,由于原料复杂,成分不稳定,导致炉况波动大、故障多,从而影响铅锌产量和质量。因此,研究密闭鼓风炉的故障诊断与预测新技术,对于保证生产的安全稳定运行,提高企业的经济效益具有重要的现实意义。
     本文针对密闭鼓风炉生产过程的特点,利用生产现场采集的大量数据,研究了基于数据驱动的故障检测诊断及预测的新方法。根据密闭鼓风炉生产过程中不同类型故障的特征,提出了基于核密度估计的主元分析故障检测方法、基于主元分析与支持向量机的故障诊断方法、基于案例推理的不完备信息故障诊断方法、基于WLS-SVM的Hammerstein故障预测方法,并将其应用于密闭鼓风炉的实际生产中,取得了明显的效果。主要工作包括以下几个方面:
     (1)针对密闭鼓风炉冶炼过程测量数据呈现非正态分布,传统主元分析方法故障检测率低的问题,提出了一种基于核密度估计的主元分析故障检测方法。首先,为了提高建模数据的质量,采取指数加权滑动平均和异常值剔除的方法,对数据进行预处理,建立密闭鼓风炉故障检测的主元模型;然后,采用核密度估计的方法计算主元模型控制限,有效降低了传统方法因控制限不准确引起的故障漏报或误报率,提高了密闭鼓风炉检测系统的敏感度和准确率。
     (2)针对密闭鼓风炉数据变量繁多,变量间相关性强的问题,提出了一种主元分析和支持向量机相结合的密闭鼓风炉故障诊断方法。首先利用主元分析方法对过程数据进行特征提取,建立主元分析的检测模型,根据T~2和Q统计量判断检测过程是否超出了正常的控制限,若有故障发生,则检测程序将给予警告提示,提示过程出现了异常操作状况;然后将代表过程特征的主元分量送入到多支持向量机分类器中,利用改进“一对其余”算法进行故障诊断。结果表明,该故障诊断方法具有良好的性能,诊断率更高,所需时间更短。
     (3)针对密闭鼓风炉数据存在不完备信息的问题,提出了基于案例技术的不完备信息故障诊断方法。通过基于距离或基于关联度测量的方法,测量未知特征向量与历史数据库中的样本之间的相似度,检索出最优相似的样本,填补缺失特征值得到完备的样本。结果表明,该方法能够解决采集样本中特征值缺失的问题,具有较高的故障诊断率。
     (4)针对密闭鼓风炉铅锌冶炼过程存在非线性、时变性,使用传统方法构建预测模型性能较差的问题,提出基于加权最小二乘支持向量机(WLS-SVM)的Hammerstein故障预测模型的方法。首先根据最小二乘支持向量机(LS-SVM)的误差分布对误差进行加权,采用WLS-SVM回归方法构造Hammerstein模型非线性函数部分,再运用奇异值分解的方法辨识Hammerstein模型参数。在此基础上,建立密闭鼓风炉的故障预测模型,通过对炉子关键参数进行预测,实现对炉况的预测,降低了故障发生率。
     (5)设计和开发了基于数据驱动的密闭鼓风炉铅锌冶炼过程故障诊断及预测系统。实际应用结果表明:该系统实现了炉况运行状态和运行趋势的检测预报,实现了异常炉况的报警与诊断,有利于密闭鼓风炉的稳定运行。
The smelting process of the Imperial Smelting Furnace (ISF) involves various complex physicochemical reactions, characterized by properties like multivariate, nonlinearity, strong coupling, large delay and uncertainty, etc. The complex and unstable component of the raw materials lead to the furnace running unsteadily, which consequently cause the poor output and quality of Lead-Zinc. Therefore, research on the new effective methods for the ISF fault diagnosis and prediction has an important and practical significance for guaranteeing the production safety and stability and improving industry economy profits.
     In view of the characteristics of Imperial Smelting Process (ISP), this thesis focuses the research on new methods of fault detection, fault diagnosis and prediction based on the data-driven technique. These methods presented are as follows: the improved fault detection method based on principal component analysis (PCA); the fault diagnosis approach based on PCA and multi-class classifiers of SVM; a novel fault diagnosis strategy for the incomplete samples based on Case-Based Reasoning (CBR) technique and SVM; the new fault prediction method based on Hammerstein model using weighted least squares support vector machines (WLS-SVM). All the methods are applied to the fault diagnosis and prediction system in the melting process of the imperial smelting furnace (ISF), and achieve good performances. The major innovation research achievements include:
     (1) Considering the characteristic of the ISP data in abnormal distribution, the novel fault detection method based on the improved principal component analysis (PCA) is presented. Firstly, the data are preprocessed by the exponentially weighted moving average (EWMA) and the improved method for the abnormal value removal, and the PCA model for the ISF is obtained. And then, the control limit of the PCA model is calculated by the method of multivariate kernel density estimation (KDE), which helps to reduce the false alarm rate or missing alarm rate of the traditional PCA model, and increase the sensitivity of the monitoring process and improve the detection of the ISF.
     (2) A fault diagnosis approach of the ISF based on PCA and multi-class classifiers of SVM is proposed. Firstly, the PCA approach is adopted to extract the feature, and the monitoring model is established. And then the reconstructed data are analyzed by the Q and T~2 statistics to determine if the supervised process exceeds the normal control limits. If fault occurs, then the supervising program will alarm to prompt that the process has abnormal states. Secondly, the SVM multi-class classifiers with 'one to other' algorithm are used for classification with the input of the feature. Experimental results have demonstrated that the proposed methods achieve excellent performance with high diagnosis accuracy and rapid speed.
     (3) For the incomplete samples for ISF, this paper presents a novel fault diagnosis strategy based on Case-Based Reasoning (CBR) technique. Firstly, the similarities between the retrieval feature vector and the complete samples in the historical database are measured by the method of distance measure or the relevance measure, the optimal case is retrieved and the imputation is obtained, finally the generated complete samples are inputted to the fault diagnosis models to diagnose the ISF system. The presented strategy is validated and has achieved satisfying results.
     (4) The ISP has characteristics such as nonlinearity, strong coupling, time-varying parameters. It is hard to predict its condition precisely by traditional method under fault condition. To solve this problem, the new fault prediction method based on Hammerstein model using weighted least squares support vector machines (WLS-SVM) is presented. Firstly, the error variables of the least squares support vector machines are weighted according to their distributions, and then the nonlinear function of Hammerstein model is constructed by the weighted least squares support vector machines regression. A numerical algorithm for subspace system (singular value decomposition, SVD) is utilized to identify the Hammerstein model. Finally, the fault prediction model for ISF is used to predict the key parameters and dynamic behavior of the furnace, which can reduce the failure rate and make the furnace steady run smoothly.
     (5) A data-driven fault diagnosis and prediction system of the ISP is designed and developed. It is able to forecast running state, track the trend of the running furnace, and give alarm and diagnose signals for abnormal parameters and states.
引文
[1]密闭鼓风炉操作规程,韶关冶炼厂内部资料,1999.
    [2]《重有色金属冶炼设计手册》编委会.重有色金属冶炼设计手册·铅锌卷.北京:冶金工业出版社,1996.
    [3]杜玉晓,吴敏,桂卫华.铅锌烧结过程智能集成优化控制技术.控制与决策,2004,(10):12-17.
    [4]桂卫华,刘晓颖.基于人工智能方法的复杂过程故障诊断技术.控制工程,2002,9(4):1-6.
    [5]刘晓颖,桂卫华,朱爽.铅锌冶炼过程的故障诊断神经网络专家系统.上海海运学院学报,2001,22(3):97-99.
    [6]唐朝晖,桂卫华,吴敏.密闭鼓风炉铅锌熔炼的统计过程监测系统设计.计算机与应用化学,2007,24(02):155-158.
    [7]牛征,牛玉广,黄孝彬.火电厂热工控制系统的故障诊断研究.热力发电,2004,33(11):47-50.
    [8]Russell E L,Chiang L H,Braaz R D.Data-driven methods for fault detection and diagnosis in chemical process.London:Springier,1999.
    [9]Frank P M.Analytical and Qualitative Model-Based Fault Diagnosis—A Survey and Some New Results.European Journal of Control,1996,2(1):6-28.
    [10]Patton R J,Chen J.Review of Parity Space Approaches to Fault Diagnosis for Aerospace System[J].Journal of Guidance,Control and Dynamics,1994,17(2):278-285.
    [11]Magni J F,Mouyon P.On Residual Generation by Observer and Parity Space Approaches.IEEE Trans.on Automatic Control,1994,39(2):441-447.
    [12]Garcia E A,Frank,P.M.On The Relationship between Observer and Parameter Identification Based Approaches to Fault Detection.Proc.of IFAC World Congress,San Francisco,USA,1996:25-29.
    [13]Gertler J.Diagnosing Parametric Faults from Parameter Estimation to Parity Relations.American Control Conference,Seattle,USA,1995:1615-1620.
    [14]Medvedev A.State Estimation and Fault Detection by A Bank of Continuous Finite Memory Filters.Int.J.Control,1998,69(4):499-517.
    [15]Wang H,Daley S.Actuator Fault Diagnosis:An Adaptive Observer Based Technique.IEEE Trans.on Automatic Control,1996,41(7):1073-1078.
    [16] Wang H, Huang Z J, Daley S. On The Use of Adaptive Updating Rules for Actuator and Sensor Fault Diagnosis. Automatica, 1997,33(2): 217-225.
    [17] Chen J, Patton R J, Liu G. P. Optimal Residual Design for Fault Diagnosis Using Multi-objective Optimization and Genetic Algorithms. International Journal of System Science, 1996, 27(6): 567-576.
    [18] Patton R J, Hou M. Design of Fault Detection and Isolation Observers: A Matrix Pencil Approach. Automatica, 1998, 34(9): 1135-1140.
    [19] Liu B, Si J. Fault Isolation Filter Design for Linear Time Invariant Systems. IEEE Trans. on Automatic Control, 1997, 42(5): 704-707.
    [20] Chen J, Patton R J, Zhang H Y. Design of Unknown Input Observers and Robust Fault Detection Filters. Int. J. Control, 1996, 63(1): 85-105.
    [21] Edelmayer A, Bokor J, Szigeti F, et al. Robust Detection Filter Design in The Presence of Time Varying System Perturbations. Automatica, 1997,33(3): 471-475.
    [22] Chung W H, Speyer J L. A Game Theoretic Fault Detection Filter. IEEE Trans. on Automatic Control, 1998,43(2): 143-161.
    [23] Ding X, Guo L. On Observer Based Fault Detection Filter. Preprints of IFAC Sym. On Fault Detection, Supervision and Safety for Technical Process, 1997: 112-120.
    [24] Ding X, Guo L. Approach to Time Domain Optimization of Observer Based Fault Detection Systems. Int. J. Control, 1998,69(3): 419-442.
    [25] Vemuri A T, Polycarpou M M. Robust Nonlinear Fault Diagnosis in Input-Output Systems. Int. J. Control, 1997,68(2): 343-360.
    [26] Yu D, Shields D N. A Bilinear Fault Detection Observer. Automatic, 1996, 32(11): 1597-1602.
    [27] Yu, D. and Shields, D. N. A Bilinear Fault Detection Filter. Int. J. Control, 1997,68(3): 417-430.
    [28] Yang H, Saif M. State Observation, Failure Detection and Isolation (FDI) in Bilinear Systems. Int. J. Control, 1997,67(6): 901-920.
    [29] Shields D N. Observer Design and Detection for Nonlinear Descriptor Systems. Int. J. Control, 1997, 67(2): 153-168.
    [30] Kinnaert M. Design of Redundancy Relations for Failure Detection and Isolation by Constrained Optimization. Internatinal Journal of Control, 1996, 63 (3): 609-622.
    [31]Gertler J,Monajemy R.Generating Directional Residuals with Dynamic Parity Relations.Automatica,1995,31(4):627-635.
    [32]Gertler J,Kunwer M M.Optimal Residual Decoupling for Robust Fault Diagnosis.International Journal of Control,1995,61(2):395-421.
    [33]Isermann R.Fault Diagnosis of Machines via Parameter Estimation and Knowledge Processing—Tutorial Paper.Automatica,1993,29(4):815-835.
    [34]周东华,孙优贤.控制系统的故障检测与诊断技术.北京:清华大学出版社,1994.
    [35]周东华,叶银忠.现代故障诊断与容错控制.北京:清华大学出版社,2000.
    [36]周东华,席裕庚,张钟俊.一类非线性系统参数偏差型故障的实时检测与诊断.自动化学报,1993;19(2):184-189.
    [37]周东华.一种非线性系统的传感器故障检测与诊断新方法.自动化学报,1995;21(3):362-365.
    [38]Yu D.Fault Diagnosis for A Hydraulic Drive System Using A Parameter Estimation Method.Control Engineering Practice,1997;5(9):1283-1291.
    [39]Garcia E A,Han Z,Frank P M.FDI Based on Parameter and Output Estimation:An Integrated Approach.Submitted to European Control Conference,Karlsruhe,Germany,1999.
    [40]Hofling T,Isermann R.Adaptive Parity Equations and Advanced Parameter Estimation for Fault Detection and Diagnosis.Proc.of IFAC World Congress,San Francisco,USA,1996:55-60.
    [41]Pearson K.On lines and planes of closer fit to systems of points in space,Philos.Mag.1901,2:559-572.
    [42]Fisher R,MacKenzie W.Studies in crop variations.Ⅱ.The manorial response of different potato varieties,J.Agr.Sci.,1923,13:311-329.
    [43]Hotelling H.Analysis of a complex of statistical variables into principal components.J.Edu.Psych.,1933,24:417-441.
    [44]Geladi P.Notes on history and nature of partial least squares(PLS)modeling.J.Chemometr.,1988,2:231-246.
    [45]Geladi P,Esbensen K.The start and early history of Chemometries:selected interviews.Part I,J.Chemometr.1990,4:337-354.
    [46]Ku W,Storer R H,Georgakis C.Disturbance Detetion and Isolation by Dynamic Principal Component Analysis.Chemometrics and Intelligent Laboratory Systems,1995,30(1):179-196.
    [47]汪志锋,袁景淇.动态MPCA在发酵过程检测与故障诊断中的应用.生物工程学报,2006,22(3):483-487.
    [48]Xia C M,John Howell.Isolating multiple sources of plant-wide oscillations via independent component analysis.In:IFAC Safeprocess 2003,873-878.
    [49]王丽舫,朱群雄.基于小波理论的主元分析在故障诊断中的研究与应用.化工自动化及仪表,2004,31(6):25-27.
    [50]张杰,阳宪惠.多变量统计过程控制.北京:化学工业出版社,2000.
    [51]Scholkopf B,Smola A.& Muller K-R.Nonlinear component analysis as a kernel eigenvalue problem.Neural Computation,1998,1299-1319.
    [52]Hyvarien A.Survey on Independent Component Analysis.Neural Component,1999,2:94-128.
    [53]郭明,王树青.基于独立分量分析的系统性能监控方法研究.浙江大学学报(工学版),2004,38(6):665-669.
    [54]何宁,谢磊,王树青等.基于独立成分的动态多变量过程的故障检测与诊断方法.化工学报,2005,56(4):646-652.
    [55]Norvilas A,Negiz A,Decicco J,et al.Intelligent Process Monitoring by Interfacing Knowledge-based System and Multivariate Statistical Monitoring.Journal of Process Control,2000,10:341-350.
    [56]Wang Z X,Liu Y,Griffin J P.A Combined ANN and Expert System Tool for Transformer Fault Diagnosis.IEEE Transactions on Power Delivery.1998,13:1224-1229.
    [57]Wang Z X,Liu Y,Griffin J P.Neural Net and Expert System Diagnose Transformer Faults.IEEE Computer Applications Power.2000,13:50-55.
    [58]Chen T C,Peng T S.Intelligent Process Control Using Neural Fuzzy Techniques.Journal of Process Control,1999,9:493-503.
    [59]Yeo S M,Kim C H,Hong K S,et al.A Novel Algorithm for Fault Classification in Transmission Lines Using a Combined Adaptive Network and Fuzzy Inference System.Electrical Power and Energy Systems,2003,25:747-758.
    [60]Feng E,Yang H B,Rao M.Fuzzy Expert System for Real-time Process Condition Monitoring and Incident Prevention.Expert System with Applications,1998,15:383-390.
    [61]Lou X S,Loparo KA.Bearing Fault Diagnosis Based on Wavelet Transform and Fuzzy Inference.Mechanical Systems and Signal Processing,2004,18:1077-1095.
    [62]Lin C T,Wang M J.Hybrid Fault Tree Analysis Using Fuzzy Sets.Reliability Engineering and System Safety,1997,58:205-213.
    [63]王国鹏,翟永杰,等.模糊支持向量机在汽轮机故障诊断中的应用.华北电力大学学报,2003,30(4):47-50.
    [64]Cubillos A F,Lima L E.Adaptive Hybrid Neural Models for Process Control.Comp Chem Eng,1998,22(Suppl):s989-s992.
    [65]Kavchak M,Budm A N.Adaptive Neural Network Structures for Non-linear Process Estimation and Control.Comp Chem Eng,1999,23:1209-1228.
    [66]Tsaif P,Chu Z J,Jang S S,et al.Developing a Robust Model Predictive Control Architecture through Regional Knowledge Analysis of Artificial Neural Networks.Journal of Process Control,2002,13:423-435.
    [67]Power Y,Bahria P.A Two-step Supervisory Fault Diagnosis Framework.Comp Chem Eng,2004,28:2131-2140.
    [68]Vapnik V.The nature of statistical learning theory.New York:Springer-Verla,1995.
    [69]邵信光,杨慧中,石晨曦.不敏感支持向量回归在化工数据建模中的应用.东南大学学报,2004,34:215-218.
    [70]张英,苏宏业,褚健.基于模糊最小二乘支持向量机的软测量建模.控制与决策,2005,20:621-624.
    [71]Varma A,Roddy N,Icarus.Design and deployment of a case-based reasoning system for locomotive diagnostics.Engineering Applications of Artificial Intelligence,1999,12(6):681-690.
    [72]何蔼平,谢刚.计算机在冶金中的应用,云南科技出版社,1998年4月.
    [73]H.H.凯洛格.铅锌密闭鼓风炉(ISF)的一个实用数模.Lead-Zinc'90,1990.
    [74]Jackson J E.A user's guide to principal components.New York:Wiley,1991
    [75]Kim,D.,Lee,I.B.Process monitoring based on probabilistic PCA,Chemometrics and Intelligent Laboratory Systems,2003,67:109-123.
    [76]孙文爽,陈兰祥.多元统计分析,北京:高等教育出版社,1994.
    [77]Himes D M,Storer R H,Georgakis C.Determination of the number of principal components for disturbance detection and isolation.In Proc.of the American Control Conf.,pages 1279-1283,Piscataway,New Jersey,1994.IEEE Press.
    [78]Qin S J,Dunia R.Determining the number of principal components for best reconstruction.J.of Process Control,10(2):245-250,2000.
    [79]Valle S,Li W,Qin S J.Selection of the number of principal components:the variance of the reconstruction error criterion with a comparison to other methods.Ind.Eng.Chem.Res.,38:4389-4401,1999.
    [80]Jackson J E,Mudholkar G.S.Control procedures for residuals associatrd with principal component analysis.Technometrics,21:341-349,1979.
    [81]MacGregor J F,Kourti T.Statistical process control of multivariate process.Control.Eng.Practice,1995,3(3):403-414.
    [82]王海清,宋执环,王慧.PCA过程监测方法的故障检测行为分析.化工学报,2002,53(3):297-301.
    [83]Kresta J V,MacGregor J F,Marlin T E.Multivariate statistical monitoring of process operating performance.The Canadian journal of Chemical Engineering,1991,69.
    [84]Wang H Q,Song Z H,Li P.A Novel approach to Multivariate Statistical Process Monitoring and Diagnosis,Proceedings of the 3rd Asian Control Conference,July,2000,Shanghai,China.2602-2606.
    [85]Chen Q,Kruger U,Meronk M,Leung A Y T.Synthesis of T~2 and Q statistics for process monitoring,Control Engineering Practice 12(2004)745-755.
    [86]M.P.Wand,M.C.Jones,Kernel Smoothing,Monographs on Statistics and Applied Probability,vol.60,Chapman & Hall,London,UK,1995.
    [87]陈希孺,方兆本,李国英等.非参数统计.上海科学技术出版社,1989.
    [88]Parzen E.On estimation of probability density function,Annals of Mathematical Statistics,1962,31,1065-1076.
    [89]Bagajewicz M.On the probability distribution and reconciliation of process plant data.Computers and Chemical Engineering,1996,20(6-7):813-819.
    [90]Chen Q,Wynne R J,Goulding P,Sandoz D.The application of principal component analysis and kernel density estimation to enhance process monitoring.Control Practice,2000,8,531-543.
    [91]王海清,宋执环,王慧等.小波阀值密度估计器的设计与应用.仪器仪表学报,2002,23(1):12-15.
    [92]Bowman A W.An alternative method of cross-validation for the smoothing of density estimation,Biometrika,1984,71:353-360.
    [93]Chen J,Bansoni A,et al.Robust PCA and normal region in Multivariate Statistical Process Monitoring. AIChE Journal, 1996,42(12):3563-3566.
    [94] Chen J, Bansoni A, et al. Robust Statistical Process Monitoring. Comput. Chem.Engng., 1996, 20(suppl.):s497-s502.
    [95] Platt J. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines. Tech. Rep. MSR-TR-98-14, Microsoft Research, 1998.
    [96] Platt J. Fast Training of SVMs Using Sequential Minimal Optimization. In B.Scholkopf, C. J. C. Burges, and A. Smola, editors, Advances in Kernel Methods-Support Vector Learning, MIT Press, Cambridge, MA, 1998: 185-208.
    [97] Platt J. Using Analytic QP and Sparseness to Speed Training of Support Vector Machines. In M. Kearns, S. Solla, D. Cohn, editors, Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA, 1999,11: 557-563.
    [98] Keerthi S, Shevade S, Bhattacharyya C, et al. Improvements to Platt's SMO Algorithm for SVM Classifier Design. Technical Report CD-99-14, Dept. of Mechanical and Production Engineering, Nat. Univ. Singapore, Singapore, 1999.
    [99] Smola A, Scholkopf B. A Tutorial on Support Vector Regression. Statistics and Computing. Forthcoming.2000.
    [100] Vapnik V, Chervoknenkis A Y. Theory of Pattern Recognition. Nauka, Moscow, 1974.
    [101] Osuna E, Freund R, Girosi F. An Improved Training Algorithm for Support Vector Machines. In J. Principe, L. Gile, N. Morgan, and E. Wilson, editors, Neural Networks for Signal Processing Ⅶ-Proceedings of the 1997 IEEE Workshop, New York, 1997: 276-285.
    [102] Campbell C. Algorithmic Approaches to Training Support Vector Machines: A Survey. 8th European Symposium On Artificial Neural Networks Bruges (Belgium), 2000.
    [103] Hsu C W, Lin C J. A Comparison of Methods for Multi-class Support Vector Machines. IEEE Transactions on Neural Networks, 2002, 13(2): 415-425.
    [104] Bottou L, Cortes C, Denker J, et al. Comparison of Classifier Methods: A Case Study in Handwritten Digit Recognition. In Proc. Of the International Conference on Pattern Recognition. 1994: 77-87.
    [105] Knerr S, Personnaz L, Dreyfus G. Single-Layer Learning Revisited: A Stepwise Procedure for Building and Training a Neural Network. Neurocomputing: Algorithms, Architectures and Applications. J. Fogelman, Ed. New York: Springer-Verlag, 1990.
    [106] KrePel U. Pairwise Classification and Support Vector Machines. In B. Scholkopf, C. J. C. Burges, and A. Smola, editors, Advances in Kernel Methods-Support Vector Learning, MIT Press, Cambridge, MA, 1999: 255-268.
    [107] Friedman J. Another Approach to Polychotomous Classification. Dept. Statistic, Stanford Univ., Stanford, CA. 1996.
    [108] Yuan S F, Chu F L. Support vector machines-based fault diagnosis for turbo-pump rotor. Mechanical Systems and Signal Processing, 2006, 20: 939-952.
    [109] Bogaerts S, Leake D. Facilitating CBR for Incompletely-Described Cases: Distance Metrics for Partial Problem Descriptions, In Funk, P., Caler, P.A.G., eds.: Advances in Case-Based Reasoning, Springer Verlag, Berlin. 2004, 62-76.
    [110] Ren N, et al. Fault diagnosis strategy for incompletely-described samples and its application to refrigeration system. Mechanical Systems and Signal Processing, 22(2008) 436-450.
    [111] Power Y, Bahri P A. Integration techniques in intelligent operation management: a review, Knowledge-Based System. 2005,18:89-97.
    [112] Lee L, Lee D, Lee K H. An approach to case-based system for conceptual ship design assistant. Expert Systems with Applications. 1999, 16(2):97-104.
    [113] Cheng Y S, Melhem HG. Monitoring bridge health using fuzzy case-based reasoning. Advanced in Engineering Informatics. 2005,19 (4):299-315.
    [114] Schank R, Abelson R R. Goals and Understanding. Erlbanum: Elsevier Science, 1977.
    [115] Watson I, Marir F. Case based reasoning: a review. Knowledge Engineering Review, 1994, 9(4):355-381.
    [116] Rainer S, Stefania M, Riccardo B, etal. Cased based reasoning for medical knowledge based systems. International Journal of Medical Informatics, 2001, 64: 355-367.
    [117] Elina P, Timo S, Tuomas K, etal. Synthesis of separation processes by using case based reasoning.Computers and Chemical Engineering,2001,25:775-782.
    [118]Myung K P,Inbom L,Key M S.Using case based reasoning for problem solving in a complex production process.Expert Systems with Applications,1998,15:69-75.
    [119]Paul H,Ronan M,Felix C.Using case based reasoning to evaluate supplier environmental management performance.Expert Systems with Applications,2003,25:141-153.
    [120]常春光,汪定伟,胡瑕元等.嵌入调整模型的CBR技术的炼钢调度系统.东北大学学报(自然科学版),2004,25(6):531-534.
    [121]Kim K J,Han I.Maitaining case based reasoning systems using a genetic algorithms approach.Expert systems with application,2001,21:139-145.
    [122]Luigi P,Diego M,Pietro T.Multi-modal diagnosis combining case-based and model-based reasoning:a formal and experimental analysis.Artif cial Intelligence,2004,158:109-153.
    [123]Marling C,Sqalli M,Rissland E,Munoz-Avila H,Aha D.Case-based reasoning integrations,AI Magazine,2002,23(1):69-86.
    [124]Wilson D C,Leake D B.Maintaining case-based reasoners:dimensions and directions,Computer Intelligence,2001,17(2):196-213.
    [125]Tsutsui H,Kurosaki A,Sato T.Nonlinear modeling technique using historical data for case,TCBM:topological case based modeling.The Japanese Society of Instrument and Control Engineers,1997,33(5):947-954.
    [126]杨辉,王永富,柴天佑.基于案例推理的稀土萃取分离过程优化设定控制.东北大学学报(自然科学版),2005,26(3):209-212.
    [127]Kolodner J L.Case-based Reasoning.San Mateo,CA:Morgan Kaufmann Publishers Inc.1993.
    [128]宋玉银,蔡复之,张伯鹏等.基于实例推理的产品概念设计系统.清华大学学报,1998,38(8):58.
    [129]Leake D.CBR in Context:The Present and Future.In:Leake David(Ed.)Case-Based Reasoning:Experiences,Lessons,and Future Directions.Menlo Park,CA.1996.US:AAAI Press,1996.3-30.
    [130]Leake D.Acquiring Case Adaptation Knowledge:A Hybrid Approach.AAAf 1996,Menlo Park,CA,684-689.
    [131]Patterson D W,Niall R,Mykola G.Efficient Similarity Determination and Case Construction Techniques for Case-Based Reasoning.ECCBR,2002,292-305.
    [132]Robert M,Bain E,Mike D.Predicting faults with real-time diagnosis.Proceedings of the 30th Conference on decision and control,Brighton,England.December 1991.IEEE,1991.pp.2598-2603.
    [133]Lennox B,Rutherford P,Montague G A,etc.A novel fault prediction technique using model degradation analysis.Processing of the American Control conference.1995.Seattle,3274-3278.
    [134]Henderson D S,Lothian,Priest J.PC monitoring and fault prediction for small hydroelectric plants.Power station maintenance:Profitability Through Reliability,30 March-1 April 1998.Conference Publication No.452,IEE,1998.pp.28-32.
    [135]Khoshgoftaar T M,Naeem S.Tree-Based Software Quality Estimation Models For Fault Prediction.Proceeding of the 8th IEEE Symposium on Software Metrics,2002.IEEE.Computer Society.02.pp.203-214.
    [136]Khoshgoftaar T M,Bojan C,Naeem S.Predicting Fault-Prone Modules in Embedded Systems Using Analogy-Based Classification Models.International Journal of Software Engineering and Knowledge Engineering.2002.12(2):201-221.
    [137]Nikora A P,Munson J C.Developing Fault Prediction for Evolving Software Systems.Proceeding of the 9th international software metrics symposium.2003.
    [138]李勇,孙艳萍,孙海波,宋景东.用于故障预测的BP网络模型及改进.东北电力学院学报,1999,(1):27-32.
    [139]杨苹,吴捷.火电厂的实时状态监测系统与故障诊断.电力系统自动化.2000.024(017):37-40.
    [140]孙才新,毕为民等.灰色预测参数模型新模式及其在电气绝缘故障预测中的应用.控制理论与应用,2003,Vol(20),No.5.pp.797-801.
    [141]Narendra K S,& Gallman P G..An iterative method for the identification of nonlinear systems using the Hammerstein model.IEEE Transactions on Automatic Control,11,1966,546-550.
    [142]Pawlak,M..On the series expansion approach to the identification of Hammerstein systems.IEEE Transactions on Automatic Control,1991,36,736-767.
    [143]McKelvey T,&Hanner C.On identification of Hammerstein systems using excitation with a finite number of levels.Proceedings of the 13th International Symposium on System Identification(SYSID2003),2003,pp:57-60.
    [144]Dempsey E J,& Westwick D T.Identification of Hammerstein models with cubic spline nonlinearities.IEEE Transactions on Biomedical Engineering,2004,51,237-245.
    [145]Janczak A.Neural network approach for identification of Hammerstein systems.International Journal of Control,2003,76(17),1749-1766.
    [146]Bai E W.A Blind Approach to Hammerstein Model Identification.IEEE TRANSACTIONS ON SIGAL PROCESSING,2002,50(7):1610-1619.
    [147]Liu Y,Bai E W.Iterative identification of Hammerstein systems.Automatica,2007,43(2):346-354.
    [148]Chen H E Recursive identification for Wiener model with discontinuous piece-wise linear function.IEEE TRANSACTIONS ON AUTOMATIC CONTROL,2006,51(3):390-400.
    [149]孔金生,万百五.一种多输入单输出Hammerstein系统的集成辨识方法.控制理论与应用,2005,22(4):517-519.
    [150]向微,陈宗海.基于Hammerstein模型描述的非线性系统辨识新方法.控制理论与应用,2007,24(1):143-147.
    [151]Sjoberg J,Zhang Q,Ljung L,et al.Nonlinear black-box modeling in system identification:A unified overview.Automatica,1995,31(12),1691-1724.
    [152]Crama P,Schoukens J.Initial estimates of Wiener and Hammerstein systems using multisine excitation.IEEE Transactions on Measurement and Instrumentation,2001,50(6),1791-1795.
    [153]Goethals I,Pelckmans K,Suykens J A K,etal.Identification of mimo hammerstein model using least squares support vector machines.Automatica,2005,41:1263-1272.
    [154]向立志,史运涛,高东杰.基于最小二乘支持向量机NARX辨识模型的非线性预测控制.Proceedings of the 6~(th)world congress on intelligent control and automation,2006:21-23.
    [155]王宇红,黄德先,高东杰等.基于LS-SVM的非线性预测控制技术.控制与决策,2004,19(4):383-387.
    [156]Suykens J A K,Brabanter J D,Lukas L,Vandewalle J.Weighted least squares support vector machines:robustness and sparse approximation. Neurocomputing, 2002, Volume 48, Issues 1-4, Pages 85-105.
    [157] Scholkopf B, Smola A. Learning with kernels. Cambridge, MA: MIT Press. 2002
    [158] Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. Heidelberg: Springer, 2001.
    [159] David H A . Early sample measures of variability. Statist. Sci. 1998,13(4): 368-377.
    [160] Rousseeuw P J, Leroy A. Robust Regression and Outlier Detection, Wiley, New York, 1987.
    [161] Hampel F R, Ronchetti E M, Rousseeuw P J,etal. Robust Statistics: The Approach Based on InPuence Functions, Wiley, New York, 1986.
    [162] Mu S J, Zeng Y Z, Liu R L. Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process. Process Control, 2002,16(6):557-566.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700