面向复杂产品开发的多级供应商协同项目管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多级供应商协同是以复杂产品、重大设备或大型工程的实现过程为目标,借助各种信息及管理技术和手段,将分布在不同空间及时间,隶属于不同合作方的企业资源迅速有效地组织为统一的有机体,对内实现合作方之间业务、知识、信息及数据的安全有效沟通,对外形成虚拟企业联盟,向社会推出高品质、高质量创新型产品的复杂过程。多级供应商协同项目则是指在这种工业应用场景下,多个企业依照一定的层级关系组成的动态联盟所进行的一系列企业间协同任务的总称。多级供应商协同项目管理就是为实现多级供应商协同项目目标所必需的一切活动的计划、安排与控制过程。
     在航空、航天、船舶、汽车、装备等行业,由于产品的零部件数目极其繁多,零部件设计、制造相关供应商数目十分庞大,同样的零部件可能存在多个潜在的供应商,而不同的供应商在实力、声誉、交货期、可靠性等方面不尽相同,且供应商之间存在合作、竞争等多种复杂关系。为提高业务协同效率,需要进行多级供应商协同项目管理。通过对多级供应商协同项目管理模式的建立,本论文重点研究在多级供应商、供应商资源有限、分布式企业协同环境下的协同项目管理技术,包括协同供应商选择、多级计划制定、动态进度偏差识别与调整等,并开发了原型演示系统。具体研究内容如下:
     多级供应商协同项目管理模式与协同流程分析方法。协同项目管理过程中各种需求的实现,需要改变主制造商和供应商的传统关系思维方式,实现跨企业业务流和知识共享,进而实现供应商协同项目管理模式的创新。本论文提出了基于协同工程思想和集成产品开发团队方法的新型项目管理模式,通过多维度、多层次分析,构建了相应的管理架构及各组成部分功能。此外,还建立了涵盖协同层次、协同要素、协同过程互动、协同信息流分析等内容的协同流程分析方法,并在后续研究中进行了广泛的应用。
     基于多种协同约束的供应商选择方法。通过供应商选择过程,能够逐步积累合格供应商的详细资料信息,形成较为稳定的供应商战略合作伙伴。本论文提出一种协同供应商选择方法,其中包括:协同供应商选择准则/属性的确定、选择流程、定性评定向定量化数据的转换方式、综合评优算法等。借助层次分析法与模糊理论(模糊数、模糊运算),建立了协同供应商选择模型以及基于梯形模糊数和层次分析法的TrFN-AHP协同供应商选择优化算法。
     多约束条件下协同项目计划制定技术。本论文对协同多级计划制定过程进行了细致的分析;通过建立项目相似度模型以及基于灰色系统理论的求解方法,为新项目计划的制定提供相似项目计划制定经验;建立了多种约束条件下的多级供应商协同项目最短工期计划制定模型,借助遗传算法,实现任务工期快速求解;提出了多级协同项目计划缓冲区设置的流程。
     协同项目进度实时跟踪方法。项目进度控制包括进度跟踪、偏差识别、动态纠偏以及计划重排几个环节。进度控制过程是保证项目在执行期能够尽可能按照原有计划执行的保障手段,是项目管理过程至关重要的一环,保证整个项目进度的闭环可控性。本论文详细分析了多级供应商协同项目管理进度控制过程;提出了改进进度前锋线法,用以实现进度偏差识别;提出了基于缓冲区的协同项目进度动态纠偏方法,并建立了面向工期最短的补充计划制定模型。
     在此研究基础之上,开发了相应的原型演示系统,通过实例对上述研究内容予以验证。本研究来源于实际工业需求(基于863课题),以工业原型系统开发与案例验证需求为出发点研究多级供应商协同项目管理过程中的若干技术,一定程度上理清了协同项目管理中存在的若干问题。本论文成果为多供应商参与的协同项目管理研究与应用提供了若干创新性框架、方法、模型与算法,有助于缩短协同项目管理理论研究与工业实际需求的差距。
During the development of complex product, heavy equipment or big engineering project, multi-tier supplier collaboration combined enterprise resources located in different areas to a unity to coordinate business, knowledge, information and data in a safe, effective way across partners. Multi-tier supplier collaborative project is the general concept of all temporary tasks in finishing the design and development process across enterprises in a unique time, resource, performance and scale restriction situation. The planning, scheduling, controlling activities to achieve collaborative project goals are called multi-tier supplier collaborative project management (MSCPM).
     In aviation, aerospace, ship, automobile and equipment industries, there are many components and parts designed and developed by large amounts of engineers of different supplier companies. Even for each part, there are still several potential suppliers to select, which are different in strength, credit, security, etc. To enhancing the efficiency of business collaboration, suppliers should combine to a virtual enterprise alliance under the directions of the main manufacturer.
     This dissertation puts efforts in some key points of MSCPM in multi-tier suppliers, parallel projects, limited resources and distributed scenarios. These technologies include collaborative supplier selection, multi-tier plan scheduling, dynamic planning deviation identification and controlling, and associated system. Detailed research works includes:
     The multi-tier supplier collaborative project management framework proposed in this research employs a new analysis model to settle the requirements come from complex product development industry. By analyzing the collaboration level, collaboration element, collaborative interaction process, and collaborative information stream, collaborative project management ontology and application scenario have been draw out. This is the theoretical basis in future research.
     This study presents a new supplier selection criteria and attributes towards collaborative product development between suppliers and customers. Five main aspects are summarized as R&D capacity, information system, willing to collaborate, enterprise background and risk management. Another novel point in this study is the algorithm named TrFN-AHP, which helps to qualify the uncertain linguistic weights made by decision makers and give a more reasonable result to the enterprise. This new approach is based on AHP and fuzzy number.
     By detailed analysis of multi-tier project scheduling making, this study established a new method to solve the project similarity model based on grey system theory. With the help of reformed generic algorithm, we can get the global best solution for task start time in a multi-restrictions shortest project date making model. Based on critical chain theory, a general process is introduced to set buffers in current schedule.
     Project schedule controlling includes schedule tracing, deviation identification, dynamic correcting and task rescheduling. Good controlling methods can help project execution process in a close-loop with high robustness. In this study, we analyzed the collaborative process of MSCPM schedule controlling phase. We reformed traditional schedule front line method with resource utility ratio and buffer. By detailed analysis of effecting scopes in delay and rescheduling, we proposed a new deviation correction method based on critical chain buffers.
     A prototype software system is developed in this research, which aims to verify the research contents above. Research results in this study provided several novel methods and framework to shorten distances between theoretical research and requirements in industries.
引文
1. Sobrero, M. and E.B. Roberts, Strategic management of supplier-manufacturer relations in new product development. Research Policy, 2002. 31(2002): p. 159-182.
    2. Camarinha-Matos, L.M. and H. Afsarmanesh, The Virtual Enterprise Concept. IFIP Conference Proceedings, 19999. 153(1999): p. 3-14.
    3. Grudin, J., CSCW: History and Focus. IEEE Computer, 1994. 27( ): p. 19-26.
    4. Baecker, R., Readings in groupware and computer-supported cooperative work. 1993: San Mateo: Morgan Kaufmann.
    5. Ackerman, M.S., The intellectual challenge of CSCW: the gap between social requirements and technical feasibility. Human-Computer Interaction, 2000. 15(2): p. 179-203.
    6. Pinto, M.B., J.K. Pinto, and J.E. Prescott, Antecedents and consequences of project team cross-functional cooperation. management Science, 1993. 39(10): p. 1281-1297.
    7. Eppinger, S.D. and A.R. Chitkara, The New Practice of Global Product. MIT Sloan Management Review, 2006. 47(4): p. 22-30.
    8. Tripathy, A. and S.D. Eppinger, A System Architecture Approach to Global Product Develepment. Social Science Research Network Electronic Paper Collection: http://ssrn.com/abstract=981202, 2007.
    9. Bolat, T. and O. Yilmaz, The relationship between outsourcing and organizational performance: Is it myth or reality for the hotel sector? International Journal of Contemporary Hospitality Management, 2009. 21(1): p. 7-23.
    10. Prasad, B., Concurrent engineering fundamentals - Integrated product and process organization 1996, Upper Saddle River, NJ: Prentice Hall PTR.
    11. Grieves, M., Product lifecycle management: driving the next generation of lean thinking. 2006: McGraw-Hill Companies.
    12. Ming, X.G., et al. Towards collaborative innovation via product lifecycle management(PLM)-status review and technology trend. in ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. 2005. Long Beach, California USA.
    13. Wognum, P.M., O.A.M. Fisscher, and S.A.J. Weenink, Balanced relationships: management of client–supplier relationships in product development. Technovation, 2002. 22(2002): p. 341-351.
    14. Petersen, K.J., R.B. Handfield, and G.L. Ragatz, A Model of Supplier Integration into New Product Development. The Journal of Product Innovation Management, 2003. 20(2003): p. 284-299.
    15. Huang, G.Q. and K.L. Mak, Brokering the customer-supplier partnership in product design and realization over the World Wide Web. IIE Transactions, 2003. 35(4): p. 369-378.
    16. Choy, K.L., W.B. Lee, and V. Lo, Design of a case based intelligent supplier relationship management system—the integration of supplier rating system and product coding system. Expert Systems with Applications 2003. 25(2003): p. 87-100.
    17. Martinez, M.T., et al., Virtual enterprise-organisation, evolution and control. INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2001. 74(2001): p. 225-238.
    18.李仁旺、祁国宁,协同产品商务及其实施策略研究.计算机集成制造系统, 2001. 7(6): p. 35-38.
    19.黄双喜、范玉顺,支持协同产品商务的企业集成平台设计.计算机集成制造系统, 2003. 9(4): p. 261-265.
    20. Shridhar, J.M. and S. Ravi, Virtual Manufacturing: An important aspect of collaborative product commerce. Journal of Advanced Manufacturing Systems, 2002. 1(1): p. 113-119.
    21. Currie, W.L. and P. Seltsikas, Exploring the supply-side of IT outsourcing: evaluating the emerging role of application service providers. European Journal of Information Systems, 2001. 10(3): p. 123-134.
    22. Falkowski, T. and S. VoB. Application service providing as part of intelligent decision support forsupply chain management. in Proceedings of the 36th Annual Hawaii International Conference on System Sciences. 2003. Hawaii.
    23. IEEE. IEEE 1516 Standard for Modeling and Simulation(M&S) High Level Architecture (HLA)-Framework and Rules. 2000; http://electronics.ihs.com/document/abstract/ZWSBOAAAAAAAAAAA.
    24. Xiao, T.Y., et al. HLA Based ASP Platform and Its Federation Integration for Collaborative VPD on INTERNET. in Systems Modeling and Simulation, Theory and Applications, Asia Simulation Conference. 2007.
    25. Qiu, Z.M. and Y.S. Wong, Dynamic workflow change in PDM systems. Computers in Industry, 2007. 58( ): p. 453-463.
    26. Sharma, A., Collaborative product innovation: integrating elements of CPI via PLM framework. Computer-Aided Design, 2005. 37(2005): p. 1425-1434.
    27. Li, W.D. and Z.M. Qiu, State-of-the-art technologies and methodologies for collaborative product development systems. International Journal of Production Research, 2006. 44(13): p. 2525-2559.
    28. Young, R.I.M., et al., Manufacturing knowledge sharing in PLM: a progression towards the use of heavy weight ontologies. International Journal of Production Research, 2007. 45(7): p. 1505-1519.
    29. Wu, B. Supplier-buyer Collaboration In The Supply Chain Management in IEEE International Conference on Management of Innovation and Technology. 2006.
    30. O'Neal, C., Concurrent Engineering with Early Supplier Involvement: A Cross Functional Challenge. Journal of Supply Chain Management, 2006. 29(2): p. 2-9.
    31. Bidault, F., C. Despres, and C. Butler, New product development and early supplier involvement (ESI): the drivers of ESI adoption. International Journal of Technology Management, 1998. 15(1-2): p.
    49-69.
    32. Rouibah, K. and K.R. Caskey, Managing concurrent engineering with early supplier involvement: a case study. International Journal of Computer Integrated Manufacturing, 2005. 18(6): p. 509-521.
    33. Bochenek, G.M. and J.M. Ragusa, Improving Integrated Project Team Interaction Through Virtual (3D) Collaboration. Engineering Management Journal, 2004. 16(2): p. 3.
    34. Fuller, J., et al., Community based innovation: How to integrate members of virtual communities into new product development. Electron Commerce Res, 2006. 6( ): p. 57-73.
    35. Chen, F., et al. A Collaborative Project Management Architecture. in Proceedings of the 36th Hawaii International Conference on System Sciences. 2002. Hawaii.
    36. Tukel, O.I., W.O. Rom, and S.D. Eksioglu, An investigation of buffer sizing techniques in critical chain scheduling. European Journal of Operational Research, 2006. 172(2006): p. 401-416.
    37. Wileya, V.D., R.F. Deckrob, and J.A.J. Jr., Optimization analysis for design and planning of multi-project programs. European Journal of Operational ResearchEuropean Journal of Operational Research, 1998. 107(2): p. 492-506.
    38. Romano, N., F. Chen, and J. Nunamaker. Collaborative Project Management Software. in Proceedings of the 35th Hawaii International Conference on System Sciences. 2002. Hawaii,USA.
    39. Wynn, D., Model-Based Approaches to Support Process Improvement in Complex Product Development (Ph.d thesis). 2007, University of Cambridge.
    40. Ebert, C. and J.D. Man, Effectively utilizing project, product and process knowledge. Information and Software Technology, 2008. 50(6): p. 579-594.
    41. Siemens. Siemens PLM Solutions. 2009; http://www.ugs.com.
    42. PTC. PTC. 2009; www.ptc.com.
    43. Primavera. primavera. 2009; www.primavera.com.
    44. SAP. SAP SRM. 2009; http://www.sap.com/solutions/business-suite/srm/ index.epx.
    45. Oracle. Oracle supplier management. 2009; http://www.oracle.com/applications/procurement/ iSupplier.html.
    46. AIRFRAMER. Boeing B787 suppliers list. 2009; http://www.airframer.com/aircraft_detail.html?model=B787.
    47. Boeing. Boeing Advanced Quality System Tools. 2009;www.boeing.com/companyoffices/doingbiz/supplier/d1-9000-1.pdf.
    48. Boeing. Boeing Quality Management System Requirements for Suppliers. 2009; www.boeing.com/companyoffices/doingbiz/supplier/D6-82479.pdf.
    49.陈益, PLM软件在波音787上的应用.航空维修与工程, 2007. 4( ): p. 44-45.
    50. Genser. Outsourcing aircraft components from India for supporting supply chain of XYZ through GENSER-a model. 2009; www.genser.com.
    51. Genser. Introduction of Genser. 2009; http://www.genser.com/.
    52. Boer, L.d., E. Labro, and P. Morlacchi, A review of methods supporting supplier selection. European Journal of Purchasing & Supply Management, 2001. 7(2001): p. 75-89.
    53. Xu, J.P. and W. Wu, Multiple Attribute Decision Making Theory and Methods. 2006, Beijing: Tsinghua University Publishing. 222-258.
    54. Ghodsypour, S.H. and C. O'Brien, A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming. INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 1998. 56(7): p. 199-212.
    55. Masella, C. and A. Rangone, A contingent approach to the design of vendor selection systems for different types of co-operative customer/supplier relationships. International Journal of Operations & Production Management, 2000. 20(1): p. 70-84.
    56. Gules, H.K. and T.F. Burgess, Manufacturing technology and the supply chain Linking buyer-supplier relationships and advanced manufacturing technology. European Journal of Purchasing & Supply Management, 1996. 2(1): p. 31-38.
    57. Xia, W.J. and Z.M. Wu, Supplier selection with multiple criteria in volume discount environments. OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2007. 35(5): p. 494-504.
    58. Echtelt, F.V., et al., Managing supplier involvement in new product development: A multiple-case study. JOURNAL OF PRODUCT INNOVATION MANAGEMENT, 2008. 25(2).
    59. Lindquist, A., F. Berglund, and H. Johannesson, Supplier integration and communication strategies in collaborative platform development. CONCURRENT ENGINEERING-RESEARCH AND APPLICATIONS, 2008. 16(1): p. 23-35.
    60. Rouibah, K. Managing concurrent engineering across company borders: a case study. in System Sciences. in Proceedings of the 36th Annual Hawaii International Conference. 2002. Hawaii.
    61. Tang, D.B. and X.M. Qian, Product lifecycle management for automotive development focusing on supplier integration. COMPUTERS IN INDUSTRY, 2008. 59(2-3): p. 288-295.
    62. Chou, S.Y. and Y.H. Chang, A decision support system for supplier selection based on a strategy-aligned fuzzy SMART approach. EXPERT SYSTEMS WITH APPLICATIONS, 2008. 34(4): p. 2241-2253.
    63. Vokurka, R., J. Choobineh, and L. Vadi, A prototype expert system for the evaluation and selection of potential suppliers. International Journal of Operations & Production Management, 1996. 16(12): p. 106-127.
    64. Dickson, G., An analysis of vendor selection systems and decisions. Journal of Purchasing, 1966. 2(1): p. 5-17.
    65. Lee, E.K., S. Ha, and S.K. Kim, Supplier selection and management system considering relationships in supply chain management. IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, 2001. 48(3): p. 417-431.
    66. Chan, F.T. and N. Kumar, Global supplier development considering risk factors using fuzzy extended AHP-based approach. OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2007. 35(4): p. 417-431.
    67. Choy, K.L., et al., A knowledge-based supplier intelligence retrieval system for outsource manufacturing. Knowledge-Based Systems, 2005. 18(1): p. 1-17.
    68. Sevkli, M., et al., Hybrid analytical hierarchy process model for supplier selection. INDUSTRIAL MANAGEMENT & DATA SYSTEMS, 2008. 108(1-2): p. 122-142.
    69. Ustun, O. and E.A. Demirtas, An integrated multi-objective decision-making process for multi-period lot-sizing with supplier selection. OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENTSCIENCE, 2008. 36(4): p. 509-521.
    70. Sen, S., H. Basligil, C.G. Sen, and H. Baracli, A framework for defining both qualitative and quantitative supplier selection criteria considering the buyer-supplier integration strategies. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2008. 46(7): p. 1825-1845.
    71. Wang, G., S.H. Huang, and J.P. Dismukes, Product-driven supply chain selection using integrated multi-criteria decision-making methodology. INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2004. 91(1): p. 1-15.
    72. Choy, K.L., et al., An enterprise collaborative management system: A case study of supplier selection in new product development. International Journal of Technology Management, 2004. 28(2): p. 206-226.
    73. Li, G.D., D. Yamaguchi, and M. Nagai, A grey-based rough decision-making approach to supplier selection. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2008. 36(9-10): p. 1032-1040.
    74. Saaty, T.L. and J.M. Alexander, Thinking With Models: Mathematical Models in the Physical, Biological and Social Sciences. 1981, London: Pergamon Press.
    75. Guo, D.L., D. Yamaguchi, and M. Nagai, A grey-based decision-making approach to the supplier selection problem. Mathematical and Computer Modelling, 2007. 46(2007): p. 573-581.
    76. Shi, J., et al. Collaborative supplier selection on the Web. in Proceedings of the IEEE International Conference in Management of Innovation and Technology (ICMIT 2000). 2000.
    77. Humphreys, P., G. Huang, and T. Cadden, A web-based supplier evaluation tool for the product development process. INDUSTRIAL MANAGEMENT & DATA SYSTEMS, 2005. 105(1-2): p.
    147-163.
    78. Huang, G.Q. and K.L. Mak, WeBid: A web-based framework to support early supplier involvement in new product development. Robotics and Computer Integrated Manufacturing, 2000. 16(2000): p.
    169-179.
    79. KeIIey, J.E., The critical path method: Resource planning and scheduling, in: J.F. Muth, G.L. Thompson (Eds.), Industrial Scheduling. Industrial scheduling. 1963, NJ: Prentice Hall.
    80. Goldratt, E.M., Theory of constraints. 1990, Croton-on-Hudson, NY: North River Press.
    81. Goldratt, E.M., Critical Chain. 1997, Massachusetts, USA: North River Press.
    82.李林,分层网络技术及其应用研究. 2001,湖南大学:长沙.
    83.徐志勇,航空产品项目计划及监控技术研究. 2007,西北工业大学:西安.
    84. Kelley, J.E. and M.R. Walker. Critical-path planning and scheduling. in AFIPS Joint Computer Conferences. 1959. Boston, Massachusetts.
    85. Harrison, A., A Survival Guide to Critical Path Analysis and the Activity on Node Method. 1997: Butterworth Heinemann.
    86. Deng, J.L., Control problems of grey systems. System and Control Letter, 1982. 1(5): p. 288-294.
    87.邓聚龙,灰色系统基本方法. 2005,武汉:华中科技大学出版社.
    88.邓聚龙,灰色系统理论教程. 1990,武汉:华中理工大学出版社.
    89. Brucker, P., et al., Resource-constrained project scheduling: Notation, classification, models, and methods. European Journal of Operational Research, 1999. 112(1999): p. 3-41.
    90. Blazewicz, J., J.K. Lenstra, and A.H.G.R. Kan, Scheduling subject to resource constraints: Classification and complexity. DISCRETE APPL. MATH, 1983. 5(1): p. 11-24.
    91.黄敏镁、江涛,资源约束项目调度问题研究综述.科协论坛, 2007. 2(2007): p. 45-46.
    92. Kolisch, R., Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation. European Journal of Operational Research, 1996. 90(1996): p. 320-333
    93. Sprecher, A. and A. Drexl, Multi-mode resource-constrained project scheduling by a simple, general and powerful sequencing algorithm. European Journal of Operational Research, 1998. 107(1998): p. 431-450.
    94. Brucker, P., et al., A branch and bound algorithm for the resource-constrained project scheduling problem. European Journal of Operational Research, 1998. 107(1998): p. 272-288.
    95. Demeulemeester, E. and W. Herroelen, A branch-and-bound procedure for the multipleresource-constrained project scheduling problem. Management Science, 1992. 38(12): p. 1803-1818.
    96. Hartmann, S. and R. Kolisch, Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem. European Journal of Operational Research, 2000. 127(2000): p. 394-407.
    97. Davis, E.W. and J.H. Patterson, A Comparison of Heuristic and Optimum Solutions in Resource-Constrained Project Scheduling. Management Science, 1975. 21(8): p. 944-955.
    98. Goldberg, D.E. and J.H. Holland, Genetic algorithms and machine learning. Machine Learning, 1988. 3(1988): p. 95-99.
    99. Mori, M. and C.C. Tseng, A genetic algorithm for multi-mode resource constrained project scheduling problem European Journal of Operational Research, 1997. 100(1997): p. 134-141.
    100. Moscato, P., An introduction to population approaches for optimization and hierarchical objective functions: A discussion on the role of tabu search. Annals of Operations Research, 1993. 41(2): p. 85-121.
    101. Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi, Optimization by Simulated Annealing. Science, 1983. 220(4598): p. 671-680.
    102. Bouleimen, K. and H. Lecocq, A new eficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. European Journal of Operational Research, 2003. 149(2003): p. 268-281.
    103. Dorigo, M. and L.M. Gambardella, Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 1997. 1(1): p. 53-66.
    104. Merkle, D., M. Middendorf, and H. Schmeck, Ant Colony Optimization for Resource-Constrained Project Scheduling. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002. 6(4): p. 333-346.
    105. Kolisch, R. and A. Sprecher, PSPLIB-A project scheduling problem library. European Journal of Operational Research, 1996. 96(1996): p. 205-216.
    106. PSPLIB. PSPLIB website. 2009; http://129.187.106.231/psplib/library.html.
    107. Easa, S.M., Resource levelling in construction by optimization. Journal of Construction Engineering and Management, 1989. 115(2).
    108. Hegazy, T., Optimization of Resource Allocation and Leveling Using Genetic Algorithms. Journal of Construction Engineering and Management, 1999. 125(4): p. 167-175.
    109. Leu, S.S. and T.H. Hung, A genetic algorithm-based optimal resource-constrained scheduling simulation model. Construction Management and Economics, 2002. 20(2): p. 131-141.
    110. Chan, W.T., K.H. Daviad, and K. Govindom, Construction resource scheduling with genetic algorithms. Journal of Construction Engineering and Management, 1996. 122(2): p. 125-132.
    111. Zhong, J.B., Dynamic Programming Method for Resource Leveling of Optimization. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY·URBAN SCIENCE, 2000. 17(2): p. 6-10.
    112. Savin, D., S. Alkass, and P. Fazio, Construction resource leveling using neural networks. Canadian Journal of Civil Engineering, 1996. 23(1996): p. 917-925.
    113. De, P., et al., Complexity of the Discrete Time-Cost Tradeoff Problem for Project Networks. Operations Research, 1997. 45(2): p. 302-306.
    114. Harvey, R.T. and J.H. Patterson, An implicit enumeration algorithm for the time/cost tradeoff problem in project network analysis. Foundations of Control Engineering, 1979. 4(3): p. 107-117.
    115. Hindelang, T.J. and J.F. Muth, A dynamic programming algorithm for decision CPM networks. Operations Research, 1979. 27(2): p. 225-241.
    116. M?hring, R.H. and F.J. Radermacher, Substitution decomposition for discrete structures and connections with combinatorial optimization. North-Holland mathematics studies, 1984. 19(1984): p. 247-356.
    117. Smith-Daniels, D.E. and N.J. Aquilano, Using a late-start resource-constrained project schedule to improve project net present value. Decision Sciences, 1987. 18(4): p. 617 - 630.
    118. Sung, C.S. and S.K. Lim, A project activity scheduling problem with net present value measure. International Journal of Production Economics, 1994. 37(3): p. 177-187.
    119. Li, H. and P. Love, Using Improved Genetic Algorithms to Facilitate Time-Cost Optimization. Journal of Construction Engineering and Management, 1997. 123(3): p. 233-237.
    120. Leu, S.S., A.T. chen, and C.H. Yang, A GA-based fuzzy optimal model for construction time-cost trade-off. International Journal of Project Management, 2001. 19(1): p. 47-58.
    121. Zheng, D.X.M., S. Thomas, and M.M. Kumaraswamy, Applying a Genetic Algorithm-Based Multiobjective Approach for Time-Cost Optimization. Journal of Construction Engineering and Management, 2004. 130(2): p. 168-176
    122. Que, B.C., Incorporating Practicability into Genetic Algorithm-Based Time-Cost Optimization. Journal of Construction Engineering and Management, 2002. 128(2): p. 139-143
    123. Zheng, D.X.M., S. Thomas, and M.M. Kumaraswamy, Applying Pareto Ranking and Niche Formation to Genetic Algorithm-Based Multiobjective Time–Cost Optimization. Journal of Construction Engineering and Management, 2005. 131(1): p. 81-91.
    124. Lechler, T.G., B. Ronen, and E.A. Stohr, Critical Chain: A New Project Management Paradigm or Old Wine in New Bottles? Engineering Management Journal, 2005. 17(4): p. 45-58.
    125. Trietsch, D., Why a critical path by any other name would smell less sweet? Towards a holistic approach to PERT/CPM. Project Management Journal, 2005. 36(1): p. 27-36.
    126. Shou, Y. and K.T. Yeo. Estimation of project buffers in critical chain project management. in International conference on Management of Innovation and Technology. 2000. Singapore.
    127. Li, K. and Y.X. Chen. Applying Critical Chain in Project Scheduling and Estimating Buffer Size Based on Fuzzy Technique. in Proceedings of the 2007 IEEE IEEM. 2007. Singapore.
    128. Long, L.D. and A. Ohsato, Fuzzy critical chain method for project scheduling under resource constraints and uncertainty. International Journal of Project Management, 2008. 26(2008): p. 688-698.
    129. Rabbani, M., et al., A new heuristic for resource-constrained project scheduling in stochastic networks using critical chain concept. European Journal of Operational Research, 2007. 176(2007): p. 794-808.
    130. Vonder, S.V.d., et al., The use of buffers in project management: The trade-off between stability and makespan. International Journal of Production Economics, 2004. 97(2005): p. 227-240.
    131. Park, M. and F. Pena-Mora, Reliability Buffering for Construction Projects. Journal of Construction Engineering and Management 2004. 130(5): p. 626-637.
    132. Shih, H.m. and M.M. Tseng, Workflow technology-based monitoring and control for business process and project management. International Journal of Project Management, 1996. 14(6): p. 373-378.
    133. Blake, M.B. and H. Gomaa, Agent-oriented compositional approaches to services-based cross-organizational workflow. Decision Support Systems, 2005. 40(1): p. 31-50.
    134. Zeng, L.Z., et al. An agent-based approach for supporting cross-enterprise workflows. in Proceedings of the 12th Australasian database conference. 2001. Gold Coast, Queensland, Australia.
    135. Zeng, L.Z., et al. AgFlow: Agent-based Cross-Enterprise Workflow Management System. in Proceedings of the 27th International Conference on Very Large Data Bases. 2001.
    136. Microsoft. BPEL4WS Specification. 2009; http://msdn.microsoft.com/en-us/library/aa479359.aspx.
    137. Wikipedia. BPEL4WS. 2009; http://zh.wikipedia.org/wiki/BPEL4WS.
    138.陈廷斌、吴伟,基于Web Services的跨企业分布式工作流管理.计算机工程, 2004. 30(16): p. 36-38.
    139.李东来、王丰锦、韩燕波,基于Web Service的动态工作流系统中资源管理问题.计算机工程, 2003. 29(18): p. 60-62.
    140. Miskawi, Z., An S-curve equation for project control. Construction Management and Economics, 1989. 7(1989): p. 115-124.
    141. Chen, H.F., A Study On The Base of Construction Progress Evaluation Using Banana Curves, in Construction Engineering and Management. 2002, National Central University: Taiwan.
    142. Christensen, C.M., Exploring the Limits of the Technology S-Curve. Part I: Component Technologies. Production and Operations Management, 1992. 1(4): p. 334-357.
    143. Blyth, K. and A. Kaka, A novel multiple linear regression model for forecasting S-curves. Engineering,Construction and Architectural Management, 2006. 13(1): p. 82-95.
    144.Powell, R.A., Method for resource allocation and project control for the production of a product. 1994: USA.
    145. Hegazy, T. and K. Petzold, Genetic Optimization for Dynamic Project Control. Journal of Construction Engineering and Management, 2003. 129(4): p. 396-404.
    146. Gaudet, S.S., Dynamic project collaboration and control using the World Wide Web. 1996, Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
    147. Lambourn, S., Resource allocation and multi-project scheduling (RAMPS)-a new tool in planning and control. The Computer Journal, 1963. 5(4): p. 300-304.
    148. Engwalla, M. and A. Jerbrant, The resource allocation syndrome: the prime challenge of multi-project management. International Journal of Project Management, 2003. 21(6): p. 403-409.
    149. Fang, H.L., P. Ross, and D. Corne. A promising genetic algorithm approach to job-shop scheduling, rescheduling, and open-shop scheduling problems. in Proceedings of the Fifth International Conference on Genetic Algorithms. 1993.
    150. Bierwirth, C. and D.C. Mattfeld, Production Scheduling and Rescheduling with Genetic Algorithms. Evolutionary Computation, 1999. 7(1): p. 1-17.
    151. Yang, H.H. and Z.M. Wu, The application of Adaptive Genetic Algorithms in FMS dynamic rescheduling. International Journal of Computer Integrated Manufacturing, 2003. 16(6): p. 382-397.
    152. AIRFRAMER. Airbus A380 Suppliers list. 2009; http://www.airframer.com/aircraft_detail.html?model=A380.
    153. Wang, X.H., et al., Collaborative project management with supplier involvement. Concurrent Engineering Research and Applications, 2008. 16(4): p. 253-261.
    154. Fowler, M. and K. Scott, UML distilled: applying the standard object modeling language. 1997: Addison-Wesley Object Technology Series.
    155. Wang, X.H., et al., Collaboration-oriented Supplier Selection Method Using TrFN-AHP. ICIC Express Letters, 2009. 3(3B): p. 549-553.
    156. Deb, K., et al., A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on, 2002. 6(2): p. 182-197.
    157.玄光男、程润伟,遗传算法与工程优化. 2004:北京:清华大学出版社.
    158. Eiben, A.E., R. Hinterding, and Z. Machalewicz, Parameter control in evolutionary algorithms. IEEE Transaction on Evolutionary Computation, 1999. 3(2): p. 124-141.
    159.刘士新,资源受限工程调度问题的优化方法研究. 2000,沈阳:东北大学.
    160.雷英杰、张善文、李续武、周创明, MATLAB遗传算法工具箱及应用. 2005: ,西安电子科技大学出版社.
    161.刘猛、刘勇,基于网络计划技术的工程进度横道图动态显示.科技信息, 2008. 34: p. 603-605.
    162.苑芳圻、李建华、张英岐,描述与控制工程进度的S曲线法介绍.中南公路工程, 1994. 69: p. 36-44.
    163. Baike, B.香蕉曲线比较法. 2009; http://baike.baidu.com/view/1240418.html.
    164.田玉平、董学刚、宝东明,时标网络计划实际进度前锋线在公路施工中的应用.辽宁交通科技, 2000. 5: p. 36-37.
    165. Eclipse. Eclipse Introduction. 2009; http://www.eclipse.org/.
    166. Tomcat. Tomcat Introduction. 2009; tomcat.apache.org.
    167. MySQL. MySQL Introduction. 2009; www.mysql.com.
    168.中国载人航天工程网.某船载测控雷达. 2009; http://www.cmse.gov.cn/system/list.php?catid=23.
    169. JFree. JFreeChart Introduction. 2009; http://www.jfree.org/jfreechart/.
    170. Chang, D.Y., Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 1996. 95(3): p. 649-655.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700