空地制导武器多约束条件下的制导律设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空地制导武器多任务、复合型、通用化、精确化的发展趋势,要求在满足攻角、速度、弹体姿态等多方面的约束条件下,实施制导武器的精确打击。针对多约束条件下制导律设计中存在的参数优化、鲁棒性、目标运动、模型失配、运动耦合等方面的关键性问题,论文循序渐进、逐步深入地展开对制导律的研究和设计工作,主要工作及创新点如下:
     1、为了便于制导律性能的验证,论文首先建立了空地制导武器的空间弹道方程以及数字仿真验证平台,并利用仿真结果指出了传统制导律所存在的局限性,为多约束条件下制导律的设计提供了依据和基础。
     2、多约束条件下制导律的设计首要考虑的是参数优化问题,论文利用最优控制理论完成了多约束条件下的最优制导律设计。设计中,在将空地制导武器三维空间分解成俯冲平面和转弯平面的基础上,把弹体动态特性引入导引回路中,将末端姿态角约束转化为最优控制的终端约束问题,利用微分矩阵Riccati方程,设计了一种多约束条件下的最优制导律。并利用梯度下降法和模糊控制理论,设计了一种传统速度约束控制的改进算法。最优制导律的设计为论文其他制导律参数的整定提供了依据。
     3、为了增强制导律的鲁棒性,克服制导武器飞行时参数摄动和外界扰动的影响,论文利用变结构控制理论,设计了一种多约束条件下的最优滑模制导律。其方法是在双平面分解假设的基础上,利用变结构控制理论中的最优滑模控制器设计方法,推导出一种三维空间内多约束条件下的最优滑模制导律。滑模制导律的鲁棒性为后续制导律的设计提供了借鉴。
     4、为了将针对固定目标的最优制导律推广到对运动目标的制导中去,论文利用虚位移概念构建立了弹目相对运动关系,根据Lyapunov函数和变结构控制理论,设计了一种目标运动时多约束条件下的变结构制导律,并利用最优制导律整定了制导参数。同时利用滑模理论建立了一种非线性观测器,对目标参数等未知量进行估计和预测。
     5、针对制导模型失配有可能导致脱靶的问题,通过对模型参考自适应控制律算法的研究,设计了一种多约束条件下的模型参考自适应制导律。论文从研究一类典型的非线性时变系统着手,以模型参考控制和变结构控制理论为基础,设计了两个模型参考自适应控制律算法。然后以线性模型作为制导参考模型,最优制导律作为参考模型控制输入,根据模型匹配条件,利用模型参考自适应控制律算法,得到一种多约束条件下的模型参考自适应制导律。
     6、利用双平面分解假设条件设计制导律时,忽略了弹体滚动带来的运动耦合问题,为了克服这种设计缺陷,论文利用李群控制理论和滑模控制理论,推导出一种多约束条件下基于李群方法的滑模制导律。在将制导律分解成倾斜转弯和侧滑转弯制导指令形式的基础上,分析了制导指令分解所带来的制导信息损失的特点。
     本文围绕多约束条件下制导律设计的相关理论和关键技术,运用最优控制、变结构控制、李群控制等现代控制理论,采用理论推导和数值仿真相结合的研究方法,开展了多约束条件下制导律设计问题的研究。本文的研究成果是对多约束条件下高精度制导律设计的有益探索,具有重要的理论价值和良好的应用前景。
With the tide of the multi-roles, complexity, currency and precision in the air-to-surface guided weapons, we need to improve the precision of the guidance law for impact with angular constraints. In order to design the guidance law with terminal impact angle constraints, we study on the key techonology of optimal, robust, target moving, model-mismatching and kinematic coupling in guidance law step by step. The main work and contributions can be exhibited as follows:
     1.The trajectory model of air-to-surface guided weapon and the simulation system are presented for the convenience of the tests of guidance laws in the dissertation. Accordingly, the deficiencies of the tradition guidance law were analyzed from the simulation results.
     2.The design of the optimal guidance law with terminal impact angle constraints is accomplished in the dissertation, because the parameter optimization is the core problem. After the 3-dimensional (3D) terminal movement of aerial vehicles is divided into the movements of pitching plane and swerve plane, the guidance law is designed independently. Considering the terminal impact constraints of miss-distance, angle of trajectory inclination, angle of trajectory rotation and system dynamics, the 3D optimal guidance law is computed by the differential matrix Riccati equation of optimal control. And the traditional algorithm of max-velocity control is also improved by the adaptive gradient methods and Takagi-Sugeno fuzzy theory. The parameters of late guidance laws can refer optimization parameters to tuning.
     3.Aiming at enhancing the robust of guidance law, an optimal sliding mode guidance law with terminal impact angle constraints is proposed to depress the influence of parameter perturbation and outside disturbance during flight. The optimal sliding mode controller and the optimal guidance law are used to design the guidance law based on the channels decoupling in 3D guidance model. The robust of guidance law is tested through the simulation. So the robust of other guiandance laws can refer the study of the optimal sliding mode guidance law.
     4.When the target moves, it is difficulty to generalize the optimal guidance law directly. To solve the problem of undershoot, the engagement geometry between missile and target is established using virtual displacement. Based on the sliding-mode variable structure control theory and Lyapumov function, a new 3D variable structure guidance law for maneuvering target is deduced, which is satisfied with the multi-constraint conditions of precision, impact angular and incidence angular. In order to estimate and predict the unmeasured parameters, a nonlinear sliding-model observer is designed.
     5.A model-reference adaptive variable structure guidance law is deduced from the model reference adaptive variable structure control law, while mismatching of guidance model is resulted from the time-varying and system uncertainty in flight. After a kind of typical nonlinear time-varing system is analyzed, two kinds of model reference adaptive variable structure control law are designed based on the model reference adaptive control theory and the variable structure control theory. Then the linear guidance model and the optimal guidance law are taken as the nominal system and reference guidance law, respectively. Through model matching condition and integral sliding mode, a model-reference adaptive variable structure guidance law with terminal impact angle constraints is proposed by model reference adaptive variable structure control law.
     6. There are some disadvantages during the guidance law design using the channels decoupling assumption, because the rotation of aircraft body can result in strong kinematics coupling. Once a model of 3D guidance is formulated using vectors, the 3D sliding mode guidance law based on Lie group can be developed from the Lie group control theory and sliding mode contol theory. And then the guidance command of BTT (Bank-to-turn) control and STT (Skid-to-turn) control is shown. Based on the loss of guidance information, a new viewpoint on decoupling of guidance command is proposed.
     In summary, the dissertation concentrates on the basic theoretical and key technologies of the guidance law with the flight velocity and impact angle constraints. During the studying of guidance law design, the optimal control theory, variable structure control theory, Lie group control theory etc are introduced and utilized. A series of 3D guidance law with terminal impact angle constraints are achieved and tested by theory deduction and simulation. These research results are meaningful for the application of the new concept and principles of the guidance law with terminal impact angle constraints in precision strike.
引文
[1]H.H. Shelton. Joint Vision 2020[R]. US Gonernment Printing Office,Washington DC:Director for Strategic Plans and Policy,J5;Strategy Division,2002.
    [2]Ltgen John G. Castellaw. Joint Air-to-Ground Missile Program[R]. http://armedservices.house.gov/pdfs/JointALSPEF032207/Castellaw_Testimony0 32207.pdf,2007.
    [3]John Warner National Defense Authorization Act. Report to Congress Defense Acquisition Transformation[R]. Secretary of Defense,2007.
    [4]王宗学.飞行器控制系统概论[M].北京:北京航天航空大学出版社,1993:25-88.
    [5]赵善友.防空导弹武器寻的制导控制系统设计[M].北京:宇航出版社,1992:1-46.
    [6]羌锣.导弹技术词典:导弹系统[M].北京:宇航出版社,1991:122,188-251.
    [7]徐明友.弹箭飞行动力学[M].北京:国防工业出版社,2003.01:99-106.
    [8]杨卫丽,王祖典.航空武器的发展历程[M].北京:航空工业出版社,2007:1-5.
    [9]Shigemune Taniwaki, Yoshiaki Ohkami. Precision Attitude Control of Spacecraft with Control Moment Gyros[R]. Keystone, Colorado:AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA 2006-6801,2006.
    [10]张有济.战术导弹飞行力学设计(上)[J].北京:宇航出版社,1998:10-184.
    [11]程国采.弹道导弹制导方法与最优控制[M].北京:国防工业出版社,1989.
    [12]George M. Siouris. Missile Guidance and Control Systems[M]. New York, UAS: Springer,2003:15-154,174-255.
    [13]韩品尧.战术导弹总体设计原理[M].哈尔滨:哈尔滨工业大学出版社,2000:41-51.
    [14]Byung Soo Kim, Jang Gyu Lee, Hyung Seok Han. Biased PNG law for impact with angular constraint [J]. IEEE Transactions on Aerospace and Electronic Systems,1998.34(1):277-288.
    [15]程国采.战术导弹导引方法[M].北京:国防工业出版社,1996:205-209,251-266,341.
    [16]赵汉元.飞行器再入动力学和制导[M].长沙:国防科技大学出版社,1997:221-231.
    [17]C.J.贝茨.攻击机动目标的最优制导规律[M].北京:宇航出版社,1989:9-17.
    [18]Y. C. SIM, S. B. LENG, V. SUBRAMANIAM. An All-Aspect Near-Optimal Guidance Law[J]. Dynamics and Control,2000.10:165-177.
    [19]逄海萍.不确定时滞非线性系统的最优滑模控制[D].青岛:中国海洋大学.2007,11-40,56-64.
    [20]文仲辉.战术导弹系统分析[M].北京:国防工业出版社,2000:23-58.
    [21]肖业伦,金长江.大气扰动中的飞行原理[M].北京:国防工业出版社,1993:1-72.
    [22]吕国鑫.飞航导弹气动设计[M].北京:宇航出版社,1989:1-11,70-299.
    [23]Michael J. Hemsch.战术导弹空气动力学(上)[M].北京:宇航出版社,1999:32-69,100-110.
    [24]In-Soo Jeon, Jin-Ik Lee, Min-Jea Tahk. Impact-Time-Control Guidance Law for Anti-Ship Missiles[J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY,2006.14(2):260-266.
    [25]Eugene Rubinovich, Boris Miller, Dmitry Emel'yanov. Advanced Guidance Law Design Based on the Information-Set Concept[R]. RUSSIAN ACADEMY OF SCIENCES MOSCOW INST OF CONTROL SCIENCES, ADA389553,2002: 44.
    [26]罗笑冰.强机动目标跟踪技术研究[D].长沙:国防科学技术大学.2007,1-2.
    [27]M. Kim, K.V. Grider. Terminal Guidance for Impact Attitude Angle Constrained Flight Trajectories[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973. AES-9(6):852-859.
    [28]R. J. YORK, H. L. PASTRICK. Optimal Terminal Guidance with Constraints at Final Time[R]. Guidance and Control Conference, San Diego, Calif, Proceedings, AIAA 1976-1916,1976:42-46.
    [29]D. V. STALLARD. Optimal Missile Guidance for Low Miss and Perpendicular Impact[R]. Guidance and Control Conference, Boulder, Colo, Collection of Technical Papers, United States,AIAA 1979-1734,1979:294-305.
    [30]I.R.:Manchester, A.V. Savkin.Circular Navigation Guidance Law for Precision Missile/target Engagements[C]//Proceedings of the 41st IEEE Conference on Decision and Control,2002.
    [31]顾文锦,雷军委,潘长鹏.带落角限制的虚拟目标比例导引律设计[J].飞行力学,2006.24(2).
    [32]杨俊鹏,祝小平,周洲.电视制导无人机导引律研究[J].西北工业大学学报,2005.23(4):479-482.
    [33]S.K. Jeong, S.J. Cho, E.G. Kim. Angle Constraint Biased PNG[C]//5th Asian Control Conference,2004.
    [34]曹邦武,姜长生,关世义,陈谋.电视指令制导空地导弹垂直命中目标的末制导系统研究[J].宇航学报,2004.25(4):393-397.
    [35]陈克俊,赵汉元.一种适用于攻击地面固定目标的最优再入机动制导律[J].
    宇航学报,1994.15(1):1-7.
    [36]陈克俊,胡建学,赵兴锋.基于惯导和雷达导引头的再入复合末制导方法研究[J].现代防御技术,2002.30(4):32-34.
    [37]王川,马清华,刘新学.一种再入机动弹头最优制导律研究[J].弹箭与制导学报,2007.27(2):8-10.
    [38]陈海东,余梦伦,董利强.具有终端角度约束的机动再入飞行器的最优制导律[J].航天控制,2002.(1):6-11.
    [39]Chang-Kyung Ryoo, Hangju Cho, Min-Jea Tahk. Closed-form solutions of optimal guidance with terminal impact angle constraint[R]. Proceedings of 2003 IEEE Conference on Control Applications, CCA 2003, IEEE 0-7803-7729-X/03, 2003:504-509.
    [40]Yong-In Lee, Chang-Kyung Ryoo, Eulgon Kim. Optimal Guidance with Constraints on Impact Angle and Terminal Acceleration[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, TX,2003.
    [41]Chang-Kyung Ryoo, Hangju Cho, Min-Jea Tahk. Time-to-Go Weighted Optimal Guidance With Impact Angle Constraints[J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY,2006.14(3):483-492.
    [42]I. Rusnak,L. Meirt. Modern Guidance Law for High-order Autopilot[J]. Journal of Guidance, Control, and Dynamics,1991.14(5):1056-1058.
    [43]I. Rusbank. Almost Analytic Reprentation for the Solution of the Differential Matrix Riccati Equation[J]. IEEE Transactions on Automatic Control,1988. 33(2):191-193.
    [44]Ming Xin, S.N.Balakrishnan, Ernest J. Ohlmeyer. Guidance Law Design for Missiles with Reduced Seeker Field-of-View[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado,2006.
    [45]Taek Lyul Song, Sang Jin Shin, Hangiu Cho. Impact Angle Control for Planar Engagements [J]. IEEE Transactions on Aerospace and Electronic Systems,1999. 35(4):1439-1444.
    [46]刘丹,祁载康.限制导弹落角和落点的最优制导律[J].北京理工大学学报,2001.21(3):278-281.
    [47]S.D. Brierley, R. Longchamp. Application of Sliding-Mode Control to Air-Air Interception Problem [J]. IEEE Trans. On Aerospace and Electronis Systems, 1990.26(2):306-325.
    [48]Di Zhou, Chundi Mu, Qiang Ling, Wenli Xu. Optimal Sliding-mode Guidance of A Homing-missile [C]//Proceedings of the 38th Conference on Decision and Control,1999.
    [49]Di Zhou, Chundi Mu, Wenli Xu. Adaptive Sliding-Mode Guidance of a Homing Missile[J].Journal of Guidance, Control, and Dynamics,1999.22(4):589-594.
    [50]周荻.寻的导弹新型导引规律[M].北京:国防工业出版社,2002:1-32.
    [51]周荻,邹昕光,孙德波.导弹机动突防滑模制导律[J].宇航学报,2006.27(2):213-216.
    [52]周荻,胡恒章,胡国辉.一种自适应变结构制导律[J].宇航学报,1996.17(4):9-12.
    [53]Zhou Di, Mu Chun-di, Ling Qiang, Xu Wen-li. Study of Optimal Sliding-mode Guidance Law[J]. Chinese Juournal of Aeronautics,1999.12(4):236-241.
    [54]周凤岐,郭建国,周军.基于扩展滑动模态控制的末制导律设计[J].西北工业大学学报,2005.23(2):249-252.
    [55]佘文学,周凤岐,周军.考虑自动驾驶仪动态鲁棒自适应变结构制导律[J].系统工程与电子技术,2003.25(12):1513-1516.
    [56]佘文学,周凤岐.三维非线性变结构寻的制导律[J].宇航学报,2004.25(6):681-685.
    [57]郭建国,周风岐,周军.基于零脱靶量设计的变结构末制导律[J].宇航学报,2005.26(2):152-155.
    [58]佘文学,周凤岐,周军.非线性变结构制导律[J]..宇航学报,2003.24(6):638-641.
    [59]赵红超,顾文锦,王瑞奇.反舰导弹的自适应全局滑模变结构控制[J].控制工程,2005.12(4):44-47.
    [60]张友安,胡云安,顾文锦.针对变速机动目标的变速导弹三维导引律[J].飞行力学,2002.20(1):44-47.
    [61]赵红超,顾文锦,于进勇.反舰导弹基于反演的滑模控制[J].海军航空工程学院学报,2004.19(1):105-108.
    [62]童春霞,张天桥.倾斜转弯导弹的变结构制导律研究[J].弹箭与制导学报,2005.25(3):8-11.
    [63]Byung Soo Kim, Jang Gyu Lee. Homing guidance with terminal angular constraint against nonmaneuvering and maneuvering target[R]. American Institute of Aeronautics and Astronautics, Inc, AIAA-97-3474,1997.
    [64]宋建梅,张天桥.带末端落角约束的变结构导引律[J].弹道学报,2001.13(1):16-20.
    [65]刘永善,贾庆忠,刘藻珍.电视制导侵彻炸弹落角约束变结构制导律[J].弹道学报,2006.18(2):9-14.
    [66]吕红剑,刘藻珍,单家元.带末端角约束的机载布撒器最优滑模制导律设计[J].弹箭与制导学报,2006.26(3):5-7.
    [67]I.D.朗道.自适应控制-模型参考方法[M].北京:国防工业出版社,1985:11-19,119-130.
    [68]单永正,段广仁,刘宏亮.月球探测器软着陆最优末制导策略[J].航天控制,2006.24(5):31-34.
    [69]Priya G. Das, Radhakant Padhi. Nonlinear Model Predictive Spread Acceleration Guidance with Impact Angle Constraint for Stationary Targets [C]//the 17th World Congress Proceedings of The International Federation of Automatic Control, Seoul, Korea,2008.
    [70]Ping Lu, David B. Doman, John D. Schierman. Adaptive Terminal Guidance for Hypervelocity Impact in Specified Direction[R].2005 AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA 2005-6059,2005.
    [71]Byoung-Mun Min, Min-Jea Tahk, Byoung-Soo Kim; Hyo-Sang Shin. Guidance Law for Automatic Landing of Tilt-rotor Aircraft[R]. San Francisco, California: AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA 2005-6353,2005.
    [72]Bokyung Jung, Youdan Kim. Guidance Laws for Anti-Ship Missiles Using Impact Angle and Impact Time[R]. AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA 2006-6432,2006.
    [73]贾沛然、陈克俊、何力.远程火箭弹道学[M].长沙:国防科技大学出版社,1993:2-77.
    [74]赵汉元.大气飞行器姿态动力学[M].长沙:国防科技大学出版社,1987:25-98,249-242.
    [75]H. Kelley. An Optimal Guidance Approximation Theory[J]. IEEE Transactions on Automatic Control,1964.9(4):375-380.
    [76]R. G. Cottrell. Optimal Intercept Guidance for Short Range Tactical Missile[J]. AIAA JOURNAL,1971.9:1414-1415.
    [77]T. Pecsvaradi. Optimal Horizontal Guidance Law for Aircraft in The Terminal Area[J]. IEEE Transactions on Automatic Control,1972.17(6):763-772.
    [78]G. Nazaroff, A. Ford, C.A. Newport Beach. An Optimal Terminal Guidance Law[J]. IEEE Transactions on Automatic Control,1976. AC-21(1):407-408.
    [79]M. Guelman, J. Shinar. Optimal Guidance Law in The Plane[J]. Journal of Guidance, Control, and Dynamics,1984.
    [80]Gyorgy Hexner, Tal Shima. Stochastic Optimal Guidance of Missiles with Nonlinear Dynamics [C]//AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, USA,2007.
    [81]Abolghasem Naghash, Reza Esmaelzadeh, Mehdi Mortazavi, Reza Jamilnia. Near Optimal Guidance Law for Descent to A Point Using Inverse Problem Approach[J].2008.12:241-247.
    [82]L.P. Tsao, C.S. Lin. A New Optimal Guidance Law for Short-Range Homing Missiles[J]. Proc.Natl. Sci. Counc. ROC(A),2000.24(6):422-426.
    [83]H. Cho, C.K. Ryoo, M.J. Tahk. Closed-form Optimal Guidance Law for Missiles of Time-varying Velocity[J]. Journal of Guidance, Control, and Dynamics,1996.
    [84]Zicai Wang, Xiaoping Shi. Designing of a Nonlinear Optimal Terminal Guidance Law for Space Interception[R]. NATIONAL AIR INTELLIGENCE CENTER WRIGHT-PATTERSON AFB OH, ADA300855,1995:28.
    [85]A.E. Jr. Bryson, Y.C. Ho. Applied Optimal Control[M]. Washington, D.C.: Hemisphere Publishing Corporation, A Halsted Press Book,1975.
    [86]N.维纳.控制论-或关于在动物和机器中控制和通讯的科学[M].北京:科学出版社,1985.
    [87]N.维纳.人有人的用处[M].北京:商务印书馆,978.
    [88]R.E. Kalman. Contribution To The Theory of Optimal Control[J].Boletin de la Sociedad Matematica Mexicana,1960.5:102-119.
    [89]R. Bellman. The Structure of Dynamic Programming Process[A]. Dynamic Programming[M]. Pricenton, NJ:Princeton University Press,1957:81-89.
    [90]朱尚伟.最优控制理论与应用中的若干问题[M].北京:科学出版社,2007:1.
    [91]程国采.航天飞行器最优控制理论与方法[M].北京:国防工业出版社,1999:1-168.
    [92]王朝珠,秦化淑.最优控制理论[M].北京:科技出版社,2003:153-230.
    [93]Eduardo D. Sontag.Mathematical Control Theory:Deterministic Finite Dimensional Systems[M]. New York:Springer,1998:247-394.
    [94]Hans P. Geering. Optimal Control with Engineering Applications[M]. New Youker, USA:Springer-Verlag,2007:38-42,78-85.
    [95]G.B. Pelova M.M. Konstantinov. Sensitivity of The Solution to Differential Matrix Riccati Equation[J]. IEEE Transactions on Automatic Control,1991. 36(2):213-215.
    [96]John B. Moore Brian D. O. Anderson. Optimal Control:Linear Quadratic Methods [M]. NJ, USA:Prentice-Hall, Inc. Upper Saddle River,1990.
    [97]Aerodynamics and Flight Mechanics[M].
    [98]Michael J. Hemsch.战术导弹空气动力学:基本论题(上)[M].北京:宇航出版社,1999:32-71.
    [99]陈再新、刘福长、鲍国华.空气动力学.北京:航空工业出版社,1993:100-128.
    [100]林波,孟秀云,刘藻珍.具有末端角约束的鲁棒制导律设计[J].系统工程与电子技术,2005.27(11):1943-1945.
    [101]Ming Xin, S. N. Balakrishnan, Ernest J. Ohlmeyer. Integrated Guidance and Control of Missiles With With θ-D Method[J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY,2006.14(6):981-992.
    [102]Paul Zarchan. Tactical and Strategic Missile Guidance(Third Edition)[M]. Reston,Va.:American Institute of Aeronautics and Astronautics,1997.
    [103]Haim Weiss, Gyorgy Hexner. Stability of Modern Guidance Laws with Model Mismatch[C]//Proceeding of American Control Conference,AACC :0-7803-8335-4/04,2004.
    [104]解学书.最优控制——理论与应用[M].北京:清华大学出版社,1986:242-250,269-609.
    [105]段广仁.线性系统理论[M]..哈尔滨:哈尔滨工业大学出版社,1998:228-250.
    [106]Kevin M.Passino, Stephen Yurkovich.模糊控制[M].北京:清华大学,2001:69-72,111-]76.
    [107]李士勇.模糊控制·神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1996:294-309.
    [108]范洪达,李相民,朱德明,糜玉林.导弹火控系统分析与设计[M].北京:海潮出版社,1999:58-64.
    [109]Jongki Moon,Kiseok Kim, Youdan Kim. Design of Missile Guidance Law via Variable Structure Control [J]. Journal of Guidance, Control, and Dynamics, 2001.24(4):659-664.
    [110]Chih-Min Lin, Chun-Fei Hsu. Guidance Law Design by Adaptive Fuzzy Sliding-Mode Control [J]. Journal of Guidance, Control, and Dynamics,2002. 25(2):248-256.
    [111]K.Ravindra Babu, I.G Sarma, K.N.Swamy. Two variable-structure homing guidance schemes with and without target maneuver estimation[R]. American Institute of Aeronauties and Astronautics,Inc, AIAA-94-3566-CP,1994.
    [112]Xiu-Yun Meng,Qi Wang. Remote Control Guidance Law Design Using Variable Structure Control [J].北京理工大学学报(英文版),2006.15(1):81-84.
    [113]P. A. RAJU, DEBASISH GHOSE. Empirical Virtual Sliding Target Guidance Law Design:An Aerodynamic Approach[J]. IEEE Transations On Aerospace and Electronis Systems,2003.39(4):1180-1190.
    [114]M. Bahrami, B. Ebrahimi, J. Roshanian. Optimal Sliding-Mode Guidance Law for Fixed-Interval Propulsive Maneuvers [C]//2006 IEEE International Conference on Control Applications, Munich, Germany,2006.
    [115]R. GAZIT, S. GUTMAN. Development of Guidance Laws for a Variable-Speed Missile[J]. Dynamics and Control,1991.1:117-198.
    [116]Da Li, Qingchao Wang. Robust Sliding Mode Control Guidance Law for Interceptor Based on Wavelet Neural Networks [C]//Proceedings of the 6th World Congress on Intelligent Control and Automation,2006.
    [117]Raymond A. Decarlo, Stanislaw H. Zak, Gregory P. Matthews. Variable Structure Control of Nonlinear Multivariable Systems:A Tutorial[C]// Proceeding of the IEEE,1988.
    [118]高为炳.变结构控制理论及设计方法.北京:科学出版社,1996:1-19,30-49,90-275.
    [119]Jeh-Min Jimmy Chang. Sliding Mode Control of Multi-input, Multi-output Nonlinear [D]. The University of Connecticut.1991.
    [120]Franco Garofalo, Luigi Glielmo. Robust Control via Variable Structure and Lyapunov Techniques[M]. London:Springer-Verlag,1996.
    [121]Alan S.I. Zinober. Variable Structure and Lyapunov Control[M].1994, Springer-Verlag:London.
    [122]John Y. Hung, Weibing Gao, James C. Hung. Variable Structure Control:A Survey[J]. IEEE Transactions on Industrial Electronics,1993.40(1):2-22.
    [123]Weibing Gao, James C. Hung. Variable Structure Control of Nonlinear System; A New Approach[J]. IEEE Transactions on Industrial Electronics,1993.40(1): 45-55.
    [124]庄开宇.变结构控制理论若干问题研究及其应用[D].杭州:浙江大学先进控制研究所.2002.
    [125]Saleh A. AL-Shamali. Stability Analysis and Control Design for Uncertain and Time-delay Systems[D]. Tallahassee, Florida:University of Florida.2004,1-15.
    [126]Xiaoqiu Li. Sliding Mode Control of Uncertain Time Delay Systems[D]. West Lafayette, Indiana:Purdue University.2002,1-18.
    [127]高为炳.变结构控制理论基础[M].北京:中国科学出版社,1988.
    [128]李友善.自动控制原理(下)[M].北京:国防工业出版社,1981:359-398.
    [129]胡寿松.自动控制原理[M].北京:科学出版社,2001:501-509.
    [130]A.M. Lyapunov.The General Problem of The Stability of Motion[J]. Internatiol Journal of Control,1992.55(1):569-590.
    [131]Zhendong Sun, Dazhong Zheng. On Reachability and Stabilization of Switched Linear Systems[J]. IEEE Transactions on Automatic Control.46(2):291-295.
    [132]Z. Sun, S. S. Ge, T. H. Lee. Controllability and Reachability Criteria for Switched Linear Systems[J]. Automatica,2002.38(5):775-786.
    [133]谢广明,郑大钟.一类线性切换系统能控性和能达性的充要条件[J].控制与决策,2001.16(2):248-253.
    [134]张苗苗,谢剑英.切换连续系统的可达性分析[J].上海交通大学学报,2000.34(12):41-44.
    [135]V.I. Utkin. Variable Structure Systems and Sliding Mode-State of the Art Assessment[A]. Variable Structure Control for Robotics and Aerospace Applications[M], ed. K.-K.D. Young. London:Elsevier,1993:9-32.
    [136]V.I. Utkin. Variable Structure Systems with Sliding Mode[J]. IEEE Transactions on Automatic Control,1977. AC-22(2):212-222.
    [137]瞿少成.不确定系统的滑模控制理论及应用研究[D].武汉:华中科技大学.2005,5.
    [138]W.C. Su, S.V. Drakunov, U. Ozguner. Constructing Discontinuity Surfaces for Variable Structure Systems:A Lyapunov Approach[J]. Automatica,1996.32(6): 925-928.
    [139]M. Thoma. Robust Control via Variable Structure and Lyapunov Techniques[M]. Berlin:Springer,1996.
    [140]M. Thoma. Variable Structure and Lyapunov Control [M]. Berlin:Springer, 1994.
    [141]D. Shevitz, B. Paden. Lyapunov Stability Theory of Nonsmooth Systems[J]. IEEE Transactions on Automatic Control,1994.39(9):1910-1914.
    [142]李小兵,刘兴堂.对付大机动目标的广义比例导引律研究[J].空军工程大学学报(自然科学版),2001.2(3):1-4.
    [143]Petros A. Ioannou, Jing Sun. Robust Adaptive Control[M]. Prentice Hall, Inc, 1996:12-14,313-434.
    [144]Shankar Sastry, Marc Bodson. Adaptive Control:Stability, Convergence, and Robustness[M].1989, Prentice Hall, Inc. p.5-8,99-157.
    [145]林岩.变结构模型参考自适应控制理论研究[D].北京:北京航空航天大学.1999.
    [146]G. Zames. Feedback and Optimal Sensitivity:Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses[J]. IEEE Transactions on Automatic Control,1981. AC-26(2):301-320.
    [147]G. Ambrosino, G. Celektano, F. Garofalo. Variable Structure Model Reference Adaptive Control Systems[J]. International Journal Control,1984.39(6): 1139-1349.
    [148]L. Hsu. Variable Structure Model-reference Adaptive Control (VS-MRAC) Using Only Input and Output Measurements:The General Case[J]. IEEE Transactions on Automatic Control,1990.35(11):1238-1243.
    [149]L. Hsu, R.R. Costa. Variable Structure Model Reference Adaptive Control Using Only Input and Output Measurements Part 1[J]. International Journal of Control,1989.49(2):399-416.
    [150]C.H. Chou, C.C. Cheng. A Decentralized Model Reference Adaptive Variable Structure Controller for Large-Scale Time-Varying Delay Systems[J]. IEEE Transactions on Automatic Control,2003.48(7):1213-1217.
    [151]L. Hsu, F. Lizarralde, A.D. De Araujo. New Results on Output-Feedback Variable Structure Model-Reference Adaptive Control:Design and Stablity Analysis[J]. IEEE Transactions on Automatic Control,1997.42(3):1-7.
    [152]K.S. Narendra, J.D. Boskovic. A Combined Direct, Indirect, and Variable Structure Method Forrobust Adaptive Control [J]. IEEE Transactions on Automatic Control,1992.37(2):262-268.
    [153]周建兴.针对不确定性动态系统之参考模式调适可变结构控制器设计[D].高雄:国立中山大学.2002,6-33.
    [154]C.C. Cheng, C.C. Chang, T.M. Su. Design of Model Reference Adaptive Tracking Controllers for Mismatch Perturbed Nonlinear Systems with Input Nonlinearity[C]//Proceedings of the 17th World Congress The International Federation of Automatic Control, Seoul, Korea,2008.
    [155]毛剑琴,林岩,孙秀霞.具有理想跟踪特性的鲁棒变结构模型参考自适应控制[J].自动化学报,1999.2008(1):41-49.
    [156]林岩,董文瀚,孙秀霞.高频增益符号未知时的变结构模型参考自适应控制:任意相对阶的控制律设计[J].控制理论与应用,2006.23:383-390.
    [157]N. Luo, M. de la Sen. State Feedback Sliding Mode Control of A Class of Uncertain Time Delay Systems[J]. IEE Proceeding D. Control Theory and Applications.140(2):261-274.
    [158]I.C. Baik, K.H. Kim, M.J. Youn. Robust Nonlinear Speed Sontrol of PM Synchronous Motor Using Boundary Layer Integral Sliding Mode Control Technique[J]. IEEE Transactions on Control Systems Technology,2000.8(1): 47-54.
    [159]Yahaya Md. Sama,Johari H.S. Osmana, M. Ruddin A. Ghanib. A Class of Proportional-integral Sliding Mode Control with Application to Active Suspension System[J]. Systems & Control Letters,2004.51:217-233.
    [160]A. Poznyak, L. Fridman, F.J. Bejarano. Mini-max integral sliding-mode control for multimodel linear uncertain systems [J]. IEEE Transactions on Automatic Control,2004.49(1):97-102.
    [161]V. S. C. Raviraj, P. C. Sen. Comparative Study of Proportional-Integral, Sliding Mode, and Fuzzy Logic Controllers for Power Converters [J]. IEEE Transctions on Industry Applications,1997.33(2):518-524.
    [162]V. Utkin, J. Shi. Integral Sliding Mode in Systems Operating under Uncertainty Conditions[C]//Proceedings of the 35th IEEE Decision and Control, Kobe, Japan, 1996.
    [163]A. S. I. Zinober. An Introduction to Sliding Mode Variable Structure Control[A]. Variable Structure and Lyapunov Control[M]. Berlin:Springer Verlag,1994: 1-22.
    [164]过崇伟,郑时镜,郭振华.有翼导弹系统分析与设计[M].Vol.157-161.北京:北京航空航天大学,2002.
    [165]Frederick W. Riedel. Bank-To-Turn Control Technology Survey for Homing Missiles[R]. National Aeronautics and Space Administration, NASA Contractor Report 3325,1980.
    [166]R. T. Reichert. Homing Performance Comparison of Selected Airframe Configurations Using Skid-to-Turn and Bank-to- Turn Steering Policies[R]. National Aeronautics and Space Administration,1981.
    [167]R.W. Brockett. System theory on group manifolds and coset spaces[J]. SIAM J of Control,1972.10(2):265-284.
    [168]V. Jurdjevicw, H.J. Sussmann. Control system on Lie Group[J]. Journal of Differential Equation,1972.12(2):313-329.
    [169]陈省身,陈维恒.微分几何讲义[M].北京:北京大学出版社,2001:l,183-194.
    [170]Pascal Morin, Claude Samson. Practical Stabilization of Driftless Systems on Lie Groups:The Transverse Function Approach[J]. IEEE Transactions on Automatic Control,2003.48(9):1496-1508.
    [171]P. Crouch, F.S. Leite. The Dynamic Interpolation Problem:On Riemannian Manifolds, Lie Groups, and Symmetric Spaces [J]. Journal of Dynamical and Control Systems,1995.1(2):177-202.
    [172]Scott D. Kelly. The Mechanics and Control of Robotic Locomotion with Applications to Aquatic Vehicles[D]. Pasadena,California,USA:California Institute of Technology.1998.
    [173]理查德.摩雷,李泽湘,夏恩卡.萨斯特里.机器人操作的数学导论[M].北京:机械工业出版社,1998:264-284.
    [174]祝晓才,董国华,蔡自兴,胡德文.不确定曲面上非完整移动机器人的鲁棒镇定[J].动力学与控制学报,2006.4(4):299-307.
    [175]Gregory C.Walsh, Richard Montgomery, S. Shangkar Sastry. Optimal Path Planning On Matrix Lie Group[C]//Procedings of The 33rd Conference on Decision and Control, Lake Buena Vista,USA,1994.
    [176]C. Tomlin, Y. Ma, S. Satry. Free Flight in 2000:Games on Lie Group[C]// Procedings of The 37th IEEE Conference on Decision and Control, Tampa,Florida,USA,1998.
    [177]Karlheinz Spindler. Optimal Control on Lie Groups with Appfications to Attitude Control[J]. Mathematics of Control, Signals, and Systems,1998.11: 197-219.
    [178]S. G. Schirmer. Quantum Control Using Lie Group Decompositions[C]// Proceeding of the 40th IEEE Conference on Decision and Control, Orlando,Florida USA,2001.
    [179]Arieh Iserles. Lie-group Methods[M]. Cambridge,UK:Cambridge University Press,1999:8-36.
    [180]N.E. Leonard. Averaging and Motion Control of Systems on Lie Group[D]. Maryland,USA:The University of Maryland.1994.
    [181]Richard M. Murray, Zexiang Li, S. Shankar Sastry. An Mathematical Introduction to Robotic Manipulation. Boca Raton, Florida:CRC Press,1994.
    [182]F. Bullo, R.M. Murray. Proportional Derivative (PD) Control on The Euclidean Group[R]. CDS Technical Report 95-010,1995.
    [183]韩大鹏.基于四元数代数和李群框架的任务空间控制方法研究[D].长沙:国防科学技术大学.2008,61-73,125-126.
    [184]Klaus Rossberg. A First Course in Analytical Mechanics[M]. John Wiley & Sons, Inc.,1983.
    [185]Jang Gyu Lee, Hyung Seok Han, Young Jin Kim. Guidance Performance Analysis of Bank-to-turn(BTT) Missiles[C]//Proceedings of the 1999 IEEE International Conference on Control Applications, Kohala Coast-Island of Hawai'i, Hawai'i,USA,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700