化学计量学分辨技术在复杂多组份体系分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于现代分析化学分析手段的仪器化与信息量测的多样化的特征,联用仪器及相关化学计量学方法的发展为复杂化学体系的分析提供了强有力的手段和广阔的前景。本论文以多组分体系为研究目标,利用化学计量学分辨技术实现对实际样本的快速定性定量分析。
     论文的第一章总结了近年来化学计量学基于矩阵分辨而发展的诸多算法,其中一些成熟的算法充分利用了联用色谱的色谱分离能力与光谱表征能力,借助数学手段解决化学问题,给分析科学注入新的活力,推动了分析科学的发展。
     第二章系统地阐述了原油样本中非烃化合物的分离富集以及对实际二阶数据进行分辨的全过程。含氮化合物是非烃化合物的重要组成部分,其结构复杂、种类繁多,而且相对含量较小,是原油非烃组分分析的难点。研究该类化合物目的是要摸索出能够简捷、快速、较准确地分离分析重质原油中的含氮化物的方法,尽可能多地获取有关氮化物的组成、结构、物理化学特性等多方面的信息。为深入研究原油重馏分的加氢脱氮反应提供依据,不仅有重要的理论意义,而且在实践中,对原油的勘探和开发有重要的参考价值。联用色谱优良的分离性能可将分析体系沿色谱方向分解为一系列相对简单的子体系,从而实现二阶数据的唯一分辨,在很大程度上很好地解决了色谱重叠与混合质谱检索问题。
     第三章将二维数据分析技术用于复杂样本—中药体系的解析。熟地黄为玄参科植物地黄的根茎的炮制加工品,由于其独特的药理药效,在临床上得以广泛地应用。本章针对熟地黄石油醚酸性提取物的甲酯化产物进行解析和鉴定,进而考察熟地黄所含有的化学成分,为熟地黄或者在处方中含有熟地黄的中成药的质量控制和综合评价提供可靠的指标,具有一定的实用价值和意义。同时为提高GC-MS数据中小组分定性的准确度,提出了局部平滑化合物确认方法。根据分析信号与随机噪声的质量色谱峰宽度不同,通过滤除质谱中的随机噪声,较为准确地得到化合物分子离子或准分子离子的信息,可显著地改善定性分析的准确性。
     第四章基于相同的化学物质具有相同的光谱,提出了光谱相关色谱的新概念。利用联用色谱的光谱信息与色谱信息,实现复杂中药色谱指纹图谱中
    
    的组分相关性判断和不同实验条件下所得中药色谱指纹图谱仪器的系统误差
    的化学计量学校准,为客观表征和评价中药色谱指纹图谱打下了基础。光谱
    相关色谱分析为中药化学特征指纹图谱的整体模糊综合分析提供了实用、方
    便、可靠、有力手段。
The basic feature of modern analytical chemistry is instrumentation of measurement and diversification of information. With the development of modern hyphenated apparatus and related chemometric methods,a powerful technique and extensive prospect is provided for complex chemical systems to be dealt with. This research aims at real multicomponent samples in order to analyze rapidly them qualitatively and quantitatively using chemometric resolution methods.
    In the first chapter of this thesis,many algorithms,which were developed on the basis of matrix resolution in recent years,are reviewed and summarized. Some consummation of them makes good use of both ability of chromatographic separation and ability of spectral characterization of hyphenated chromatography. With the help of mathematics and statistics,some difficult problems in analytical chemistry can be solved elegantly. They not only pour vitality into analytical science but also advance it.
    The second chapter elaborates preparative separation and enrichment of non-hydrocarbons in crude oil as well as a complete process of resolving real two-dimensional data. Organic nitrogen compounds are principal chemical classes of non-hydrocarbons,whose complicated structures,multifarious types and presentation in poorly low quantities result in the difficulty of analysis. We study them with the purpose of seeking an effective method to separate and analyze nitrogen compounds in high-boiling petroleum,concisely,rapidly and exactly,and getting as maximal information as possible about their constitutes,structures and physical chemistry characteristics and so on. It is significant to provide hydrogenation and denitrogenation in farther processes with a theory. What's more,it is of great referenced value to direct practical petroleum exploration and exploitation. Excellent separating behavior of hyphenated chromatography can divide the whole investigated system into a series of subsystems in the chromatography
    direction so as to resolve two-dimensional data uniquely,which cope with overlapping chromatography and mixed spectra to a great extent.
    In chapter 3,two-dimensional data resolution algorithm is applied to a
    
    
    
    complex traditional Chinese medicine system. Radix Rehmanniae Preparata(RRP),as a prepared root of a medicinal plant Rehmannia glutinosa Libosch. (family Scrophulariaceae),has been prescribed and utilized popularly in the clinic due to its pharmacology and pharmacodynamics (e.g. hematopoietics,tonics or antipyretics etc.). Chemical constituents of RRP are intimated by analyzing methylesterification products of the acidic fraction after petroleum ether extract from RRP through resolution and identification. With such obtained information at hand,quality control and comprehensive evaluation upon RRP or some Chinese medicine formula containing RRP can be done reliably. At the same time,a novel method,say local smoothing for component identification method,is proposed to enhance qualitative analysis of low content components of the data. It is based on the assumption that analytical signals differ from random noise in the chromatographic peak width. The information of the molecular ion or pseudo-molecular ion ab
    out the analytes can be obtained. Consequently,the resolved mass spectra are refined and qualitative results are improved evidently.
    In chapter 4,spectral correlation chromatography,as a new concept,is proposed to determine correctly component correlation of complicated chromatographic fingerprints of traditional Chinese medicines by dint of the information both from spectra and from chromatographies obtained from hyphenated instruments,since the same chemical should has the same spectrum in common. Based on the results from the spectral correlation chromatography,fingerprints of traditional Chinese medicines under different experimental conditions can then be characterized and evaluated objectively. It is a practical,convenient and powerful means to the analysis of characteristic chemical fingerprints of traditional Chinese medicines.
引文
[1] Scott R P W. Techniques and Practice of Chromatography. New York: Marcel Dekker, Inc., 1995.
    [2] Liang Y Z. White, Gray and Black Multicomponent Systems and Their Chemometric Algorithms. Changsha: Hunan Publishing House of Science and Technology, 1996.
    [3] Lawton W H, Sylvestre E A. Self-modeling curve resolution. Technometrics, 1971, 13: 617-633.
    [4] Bergen O S, Kowalski B R. An Extenssion of the Multivariate Component-Resolution Method to Three Components. Anal. Chim. Acta. 1985, 174: 1-26.
    [5] Bergen O S, Davidson N, Zhu M, Φyen O. The multivariate N-component resolution problem with minimum assumptions. Mikrochimica Acta. 1986, 2: 63-73.
    [6] Gemperline P J. A priori estimates of the elution profiles of the pure components in overlapped liquid chromatography peaks using target factor analysis. Journal of Chemical Information and Computer Science. 1984, 24: 206-212.
    [7] Vandeginste B, Esser R, Bosman T, Reeijnen J, Kateman G. Three-component curve resolution in liquid chromatography with multiwavelength diode array detection. Analytical chemistry. 1985, 57: 971-985.
    [8] Karjalainen E J. The spectrum reconstruction problem: Use of alternating regression for unexpected spectral components in two-dimensional spectroscopies. Chemometrics and Intelligent Laboratory Systems. 1989, 7: 31-38.
    [9] Schostack K J, Malinowski E R. Preferred set selection by iterative key set factor analysis. Chemometrics and Intelligent Laboratory Systems. 1989, 6: 21-29.
    [10] Windig W, Guilment J. Interactive self-modeling mixture analysis. Analytical chemistry. 1991, 63: 1425-1432.
    [11] S(?)inchez F C, Toft J. Bogaert B V, Massart D L. Orthogonal Projection Approach Applied to Peak Purity Assessment. Analytical chemistry. 1996, 68: 79-85.
    [12] Grande B-V, Manne R. Use of convexity for finding pure variables in two-way data from mixtures. Chemometrics and Intelligent Laboratory Systems. 2000, 50: 19-33.
    [13] Strang G. Linear Algebra and Its Applications (3rd edition). Orlando: Harcourt Brace Jovanovich, Inc., 1988.
    
    
    [14] Maeder M. Evolving factor analysis for the resolution of overlapping chromatographic peaks. Analytical chemistry. 1987, 59: 527-530.
    [15] Keller H R, Massart D L. Peak purity control in liquid chromatography with photodiode-aray detection by a fixed size moving window evolving factor analysis. Anal. China. Acta. 1991, 246: 379-390.
    [16] Toft J, Kvalheim O M. Eigenstrueture tracking analysis for revealing noise pattern and local rank in instrumental profiles: Application to transmittance and absorbance IR spectroscopy. Chemometrics and Intelligent Laboratory Systems. 1993, 19: 65-73.
    [17] Kvalheim O M, Liang Y Z. Heuristic evolving latent projections-resolving two-way multicomponent data. Part 1 Selectivity, latent-projection graph, datascope, local rank and unique resolution. Analytical Chemistry. 1992, 64: 936-945.
    [18] Malinowski E R. Window factor analysis: theoretical derivation and application to flow injection analysis data. Journal of Chemometrics. 1992, 6: 29-40.
    [19] Liang Y Z, Kvalheim O M, Keller H R, Massart D L, Kiechle P, Emi F. Heuristic evolving latent projections-resolving two-way multicomponent data. Part 2. Detection and resolution of minor constituents. Analytical Chemistry. 1992, 64: 946-953.
    [20] Liang Y Z, Kvalheim O M. Unique resolution of hidden minor peaks in multidetection chromatography by first-order differentiation and orthogonal projections. Analytica Chimica Acta. 1993, 276: 425-440.
    [21] Xu C J, Jiang J H, Liang Y Z. Evolving window orthogonal projections method for two-way data resolution. Analyst. 1999, 124: 1471-1476.
    [22] Malinowski E R. Journal of Chemometrics. 1996, 10: 273-279.
    [23] S(?)nchez F C, Rutan S C, Garcia M D G, and Massart D L. Resolution of multicomponent overlapped peaks by the orthogonal projection approach, evolving factor analysis and window factor analysis. Chemometrics and Intelligent Laboratory Systems. 1997, 36: 153-164.
    [24] Manne R, Shen H L, and Liang Y Z. Subwindow factor analysis. Chemometrics and Intelligent Laboratory Systems. 1999, 45: 171-176.
    [25] Shen H L, Manne R, Xu Q S, Chen D Z, Liang Y Z. Local resolution of hyphenated chromatographic data. Chemometrics and Intelligent Laboratory Systems. 1999, 45: 323-335
    [26] Manne R, Grande B-V. Resolution of two way data from hyphenated chromatography by means of elementary matrix transformations. Chemometrics and Intelligent Laboratory Systems. 2000, 50: 35-46.
    
    
    [27] Manne R. On the resolution problem in hyphenated chromatography. Chemometrics and Intelligent Laboratory Systems. 1995, 27: 89-94.
    [28] 陈绍洲,徐佩若.石油化学.上海:华东化工学院出版社,1993.
    [29] 胡竟成.石油中的氮化合物及其分析方法.化学通报.1985,8:10-13.
    [30] Cubitt J M著.王铁冠,张枝焕译.油藏地球化学.北京;石油工业出版,1997,92-31.
    [31] 李素梅,张爱云,王铁冠,郭召辉.含氮化合物的实验方法初步评价.地球化学,1999,(4):397-404.
    [32] 蔡昕霞,朱明华,朱泽霖.重质石油中含氮化合物的形态及分布分析.华东理工大学学报,1995,21(3):369-371.
    [33] Harada T, Yamamoto M, Onaka S, Imaida M, Tai A, Izumi Y. Raney-Ni-tartaric acid methyl-lacetoacetate reduction in the presence of bromide ion. Bull. Chem. Soc. Jpn. 1981, 54: 2323.
    [34] Nishimura H., Sasaki H, Morota T, Chin M, Mitsuhashi H. Six iridoid glycosides from Rehmannia glutinosa. Phytochemistry, 1989, 28(10): 2705-2709.
    [35] Porter Q N, Baldas J. In: "Mass spectrometry of heterocyclic compounds", Weissberger A, Taylor E C. Eds. Wiley-Interscience: New York, 1971, 376-432.
    [36] Carey W P, Beebe K R, Kowalski B R, Illman D L, and Hirschfeld T. Selection of adsorbates for chemical sensor arrays by pattern recognition. Analytical Chemistry, 1986, 58: 149-153.
    [37] Spiteller G. In: "Advances in Heterocyclic Chemistry", Katritzky A R, Boulton A J. Eds. Academic: New York, 1966, 317-322.
    [38] Bermond A, Bengraine K, and Ducauze C J. Etude des interferences spectrophotometriques par utilisation d'une matrice d'experiences factorielle. Anal. Chim. Acta, 1989, 223: 283-286.
    [39] Deal V Z, Weiss F T, White T T. Determination of Basic Nitrogen in Oils. Analytical Chemistry. 1953, 25: 426-432.
    [40] Snyder L R, Buell B E. Nitrogen and oxygen compound types in petroleum. Analytical Chemistry. 1968, 40: 1295-13012.
    [41] Drushel H V, and Sommers A L. Isolation and identification of nitrogen compounds in petroleum. Analytical Chemistry, 1966, 38(1): 19-28.
    
    
    [42] Hartung G K, and Jewell D M. Carbazoles, phenazines, and dibenzofuran in petroleum products, methods of isolation, separation, and determination. Anal. Chim. Acta. 1962, 26: 514-527.
    [43] Richter F P, Caesar P D, Meisel S L, and Offenhauer R D. Distribution of N in petroleum according to basicity. Ind. Eng. Chem 1952, 44: 2601-2605.
    [44] Douglas A G, Maxwell J R. Advances in Organic Geochemistry. Pergamon: Oxford, 1980.
    [45] Jewell D M, Weber J H, Bunger J W, Plancher H, Latham D R. Ion-exchange, coordination, and adsorption chromatographic separation of heavy-end petroleum distillates. Analytical Chemistry. 1972, 44: 1391-1395.
    [46] Lee M L, Wright B W. Capillary column gas chromatography of polycyclic aromatic compounds: a review. J. Chromatogr. Sci. 1980, 18: 345-358.
    [47] Schmitter J M, Arpino P J. Azaarenes in fuels. Mass Spectrometry Reviews. 1985, 4: 87-121.
    [48] Later D W, Lee M L, Bartle K D, Kong R C and Vassilaros D L. Chemical class separation and characterisation of organic compounds in synthetic fuel. Analytical Chemistry, 1981, 53: 1612-1620.
    [49] Schmitter J M, Ignatladis I, and Arpino P J. Selection extraction of nitrogen bases from petroleum. Analytical Chemistry, 1983, 55: 1685-1688.
    [50] Reddy K M, Wei B, and Song C. Mesoporous zeolite-supported Co-Mo catalyst for hydrodesulfurization of petroleum resides. Prepr-Am. Chem. Soc. Div. Pet. Chem. 1997, 42(2): 396-400.
    [51] Wang Z, Fingas M. Developments in the analysis of petroleum hydrocarbons in oils, petroleum products and oil-spill-related environmental samples by gas chromatography. Journal of Chromatography A, 1997, 774: 51-78.
    [52] Matsunaga A. Separation of aromatic and polar compounds in fossil fuel liquids by liquid chromatography. Analytical Chemistry, 1983, 55: 1375-1379.
    [53] Li M, Larter S R, Stoddart D, and Bjory M. Liquid chromatographic separation schemes for pyrrole and pyridine nitrogen aromatic heterocycle fractions from crude oils suitable for rapid characterization of geochemical samples. Analytical Chemistry, 1992, 64: 1337-1344.
    [54] Bowler B F, Latter S R, Clegg H. Dimethylcarbazoles in crude oils: comment on liquid chro-matographic separation schemes for pyrrole and pyridine nitrogen aromatic heteroeyele fractio-ns from crude oils suitable for rapid characterization of geochemical samples. Analytical Chemistry, 1997, 69: 3128-3129.
    
    
    [55] Ruckmick S C, Hurtubise R J. Class separation of polycyclic aromatic hydrocarbons, nitrogen heteroeycles and hydroxyl aromatics by liquid chromatography. J. Chromatogr A, 1985, 331: 55-68.
    [56] Bacaud R, Rouleau L. Coupled simulated distillation-mass spectrometry for the evaluation of hydroconverted petroleum residues. J. Chromatogr A, 1996, 750 (1+2): 97-104.
    [57] Fazal S A, Rai R, Joshi G C. Structural studies on distillate fractions of Bombay high crude oil tank bottom sludge. Pet. Sci. Techol, 1997, 15(7+8): 755-764.
    [58] Gupta A K, Severin D. Characterization of petroleum waxes by high temperature gas chromatography-correlation with physical properties. Pet. Sci. Techol, 1997, 15(9+10): 943-957.
    [59] Durand J P, Bre A, Beboulene J J, Ducrozet A, Carbonneaux S. Simulated distillation methods for petroleum fractions with minimal residue in the boiling range of 35~700℃. J. Chromatogr. Sci. 1998, 36(9): 431-434.
    [60] Bacaud R, Rouleau L, Cebolla V L, Membrado L, Vela J. Evaluation of hydroconverted residues. Rationalization of analytical data through hydrogen transfer balance. Catal. Today 1998, 43(3+4): 171-186.
    [61] Reddy K M, Wei B, Song C. High-temperature simulated distillation GC analysis of petroleum resids and their products from catalytic upgrading over Co~-Mo/Al2O3 catalyst. Catal. Today, 1998, 43(3+4): 187-202.
    [62] Cheng M T. Gas chromatographic-mass spectrographic characterization of white oil. Prepr.-Am. Chem. Soc. Div. Pet. Chem., 1997, 42(1): 208-210.
    [63] Schmitter J M, Ignatiadis I, Arpino P, Guiochon G. Selective isolation of nitrogen bases from petroleum. Analytical Chemistry, 1983, 55: 1685-1688.
    [64] Gawel I, Czechowski E Wax content of bitumens and its composition. Erdoel Erdgas Kohle, 1998, 114(10): 507-509.
    [65] Suzuki S, Kaneko T, Tsuchiya M. Characterization of C_(12) to C_(45) polycyclic aromatic hydrocarbons and fused-ring heterocyclic compounds in coal tar pitch and airborne total suspended particle. Kankyo Kagaku. 1996, 6(4): 511-520.
    
    
    [66] Schmid B, Andersson J T. Critical Examination of the Quantification of Aromatic Compounds in Three Standard Reference Materials. Analytical Chemistry, 1997, 69(17): 3476-3481.
    [67] Buchill P, Herod A A, Mahon J P, and Pritchard E. The class separation of nitrogen compounds in coal tars by liquid chromatography on a polar bonded-phase silica. J. Chromatogr A, 1983, 281: 109-124.
    [68] Fan G, Liang Y Z, Cui H, Chau F T. Determination of volatile components in peptic powder by gas chromatography-mass spectrometry and chemometric resolution. J. Chromatogr. A, 2001, 909: 237-247.
    [69] Koppennal D W, and Manahan S E. Hazardous chemicals from coal conversion processes. Environ. Sci. Technol. 1976, 10: 1104-1107.
    [70] Willsch H, Clegg H, Horsfield B, Radke M, and Wilkes H. Liquid chromatographic separation of sediment, rock, and coal extracts and crude oil into compound classes. Analytical Chemistry, 1997, 69: 4203-4209.
    [71] Radke M, Willsch H, and Welte H D. Preparative hydrocarbon group type determination by automated medium pressure liquid chromatography. Analytical Chemistry, 1980, 52: 406-411.
    [72] Schiller J E, and Mathiason D R. Separation method for coal-derived solids and heavy liquids. Analytical Chemistry, 1977, 49: 1225-1228.
    [73] Schiller J E. Nitrogen compounds in coal-derived liquids. Analytical Chemistry, 1977, 49: 2292-2294.
    [74] 向廷生,朱扬明,梅博文.塔里木盆地原油中氮化物的分离及鉴定.江汉石油学院学报,1996,18:31-35.
    [75] Grizzle P L, and Sablotny D M. Automated liquid chromatographic compound class group-type seperation of crude oil and bitumens using chemically bonded aminosilane. Analytical Chemistry, 1986, 58: 2389-2396.
    [76] Chmielowiec J. Separation of polar compound classes in liquid fossil fuels by liquid chromatography with aprotic dipolar solvents. Analytical Chemistry, 1983, 55: 2367-2374.
    [77] Liang Y Z, Kvalheim O M. Heuristic evolving latent projections: Resolving hyphenated chromatographic profiles by component stripping. Chemometrics and Intelligent Laboratory Systems, 1993, 20: 115-125.
    
    
    [78] Keller H R, Massart D L, Liang Y Z, Kvalheim O M. Evolving factor analysis in the presence of heteroscedastic noise. Analytica Chimiea Acta, 1992, 263: 29-36.
    [79] Grigsby R D, Scheppele S E, Grindstaff Q G, Sturm G P. Evaluation of fast atom bombardment mass spectrometry for identification of nitrogen-containing compounds in fossil fuels. Analytical Chemistry, 1982, 54: 1106-1113.
    [80] 中华人民共和国卫生部药典委员会.中华人民共和国药典.北京:化学工业出版社,2000,94.
    [81] 郑虎占,董泽宏,佘靖.中药现代研究与应用(第二卷).北京:学苑出版社,1997,1748.
    [82] Kitagawa I., Nishimura T, Furubayashi A, and Yosioka I. Constituents of rhizome of Rehmannia glutinosa f. hueichingensis. Yakugaku Zasshi, 1971, 91: 593-596.
    [83] Oshio H, Inouye H. Iridoid glycosides of Rehmannia glutinosa. Phytochemistry, 1981, 21(1): 133-138.
    [84] 吴寿金,徐实枚,李雅臣.怀庆地黄化学成分的研究.中草药,1984,15(7):6-8.
    [85] Yoshikawa M, Fukuda Y, Taniyama T, Cha B C, and Kitagawa I. Absolute configurations of rehmaionosides A, B, and C and rehmapicroside three new ionone glucosides and a new monoterpene glucoside from Rehmanniae radix. Chem. Pharm. Bull, 1986, 34(5): 2294-2297.
    [86] Morota T, Sasaki H, Nishimura H, Sugama K, Chin M, and Mitsuhashi H. Two iridoid glycosides from Rehmannia glutinosa. Phytochemistry, 1989, 28(8): 2149-2153.
    [87] Nishimura H, Saski H, Morota T, Chin M, and Mitsuhashi H. Six iridoid glycosides from Rehmannia glutinosa. Phytochemistry, 1989, 28(10): 2705-2709:
    [88] Morota T, Sasaki H, Sugama K, Nishimura H, Chin M, and Mitsuhashi H. Two non-glycosidic iridoids from Rehmannia glutinosa. Phytochemistry, 1990, 29 (2): 523-526.
    [89] Morota T, Nishimura H, Sasaki H, Chin M. Five cyclopentanoid monoterpenes from Rehmannia glutinosa. Phytochemistry, 1989, 28 (9): 2385-2391.
    [90] Sasaki H, Nishimura H, Chin M and Mitsuhashi H. Hydroxycinnamic acid esters of phenethylalcohol glycosides from Rehmannia glutinosa var. Purpurea. Phytochemistry, 1989, 28(3): 875-879.
    [91] Shoyama Y, Matsumoto M and Nishioka I. Phenolic glycosides from diseased roots of Rehmannia glutinosa var. Purpurea. Phytochemistry, 1987, 26(4): 983-986.
    
    
    [92] 刘中煜.生地与熟地黄含单糖量比较.中药通报,1984,9(1):17-18.
    [93] Kitagawa I, Fukuda Y, Taniyama T and Yoshikawa M. Absolute stereostructures of rehmaglufins A, B, and D three new iridoids isolated from Chinese Rehmanniae radix. Chem. Pharm. Bull, 1986, 34(3): 1399-1402.
    [94] 周燕生,倪慕云.鲜地黄叶化学成分的研究.中国中药杂志,1994,19(3):162-163.
    [95] 边宝林,倪慕云,王宏杰.地黄及其炮制品石油醚提取物中酸性成分的分离、鉴定和比较.中国中药杂志.1991,16(6):339-341.
    [96] 刘美丽,白玫,白荣枝,冯汉林.熟地黄中5-羟甲基糠醛的提取分离及含量测定.中草药,1995,26(1):13-14.
    [97] 袁媛,侯士良,连天顺.怀熟地黄补血作用的实验研究.中国中药杂志,1992,17(6):366-368.
    [98] 侯士良.怀庆熟地黄滋阴作用的初步研究.中国中药杂志,1992,17(5):301-303.
    [99] 李炳如,佘运初.补肾药对下丘脑-垂体-性腺轴功能影响.中医杂志,1984,25(7):63-65.
    [100] 李献平.四大怀药延缓衰老作用的研究.中西医结合杂志,1991,11(8):486-487.
    [101] 王禾,张建华.六味地黄丸的药理研究.北京中医,1996,1:53-54.
    [102] 黄康泰.常用中药成分与药理手册.北京:中国医药科技出版社,1994:789.
    [103] 张永祥.六味地黄汤现代药理学及化学的初步研究.基础医学与临床,2000,20(5):399-403.
    [104] 陈永,王伯祥.清热药和滋阴药对胃肠运动机能的影响.中药药理与临床,1992,8(3):17-19.
    [105] 韩宏妮,段英春,侯毅敏.消渴灵治疗Ⅱ型糖尿病的临床观察和实验研究.新中医,1994,26(1):25-27.
    [106] 刘平.养血活血法治疗胎动不安胎漏33例.湖南中医学院学报,1994,14(3):33-36.
    [107] 王槐三,李俊英,林秀珍.熟地黄治疗银屑病的临床及实验研究.临床皮肤科杂志,1989,18(1):42.
    [108] 李博岩,杜一平,李晓宁,梁逸曾.熟地黄石油醚酸性提取物的解析与鉴定.计算机与应用化学,2002,19(3):231-233.
    [109] 从浦珠,苏克曼.分析化学手册(第二版)第九分册--质谱分析.北京:化学工业出版社,2000,2.
    [110] Liang Y Z, Kvalheim O M, Rahmani A, Brereton R G. A two-way procedure for background correction of chromatographic/spectroscopic data by congruence analysis and least-squares fit of the zero-component regions: comparison with double centering. Chemom. Intell. Lab. Syst. 1993, 18: 265-279.
    
    
    [111] 李晓宁,李博岩,梁逸曾.基于GC-MS数据的定性分析新方法.计算机与应用化学,2002,19(4).
    [112] Fleming C M, Kowalski B R, Apffel A, Hancock W S. Windowed mass selection method: a new data processing algorithm for liquid chromatography-mass spectrometry data. J. Chromatogr. 1999, 849: 71-85.
    [113] Savitzhy A, Golay M J E. Smoothing and differentiation of data by simplified least-squares procedures. Analytical Chemistry, 1964, 36: 1627-1639.
    [114] Gorry P A. A general least-squares smoothing and differentiation by the convolution (Savitzhy-Golay) method. Analytical Chemistry, 1990, 62: 570-573.
    [115] Liang Y Z, H(?)m(?)l(?)inen M D, Kvalheim O M, and Andersson R. Assessment of peak origin and purity in one-dimensional chromatography by experimental design and heuristic evolving latent projections. Journal of Chromatography A, 1994, 662: 113-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700