多组分分离过程设计的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分离过程的设计通常以系统的总费用最小为目标,涉及选择适宜的分离方法,确定最优的分离序列,实现系统热集成等环节,是化工过程系统工程研究的重要问题之一。对多组分分离过程,相平衡模型及计算方法是过程设计最关键也是最复杂的环节,然而目前仍未有更简单有效的针对多组分相平衡问题的计算方法。本文在分析多组分分离过程本身特性的基础上,提出了一种基于拟二元法的相平衡计算方法,并将该法用于分离过程设计问题的研究。
     1、用拟二元相平衡模型表达多组分精馏与恒沸精馏的相平衡关系,并可求取得到拟二元体系的平衡数据和平衡相图,且可直接用于多组分精馏过程的图解设计计算。提出基于迭代的拟二元逐级计算的多组分精馏塔的设计法。首先采用基于优化的逐级计算法计算每块塔板上各物质的组成,然后进行拟二元精馏过程的设计。实例研究表明:这一方法也可以容易的得到多组分精馏的最小回流比和最少理论板数;而且也适用于理想、非理想体系,对恒沸精馏该方法也能得到比较好的结果。
     2、提出一种多组分精馏塔的简捷设计法。首先应用Aspen plus软件模拟计算每块塔板上各物质的组成,然后通过VB语言编程进行拟二元精馏过程的设计,并通过软件集成使整个设计过程可以自动运行。实例研究表明,这一方法很容易得到多组分精馏的最小回流比和最少理论板数;既可以用于理想的精馏体系又可以用于非理想的精馏体系;对于有夹带剂加入的恒沸精馏过程,这一方法仍然适用。
     3、针对改良西门子法多晶硅生产中尾气分离工艺操作条件苛刻的缺点,对尾气分离工艺进行改进。首先应用Aspen plus软件,将精馏、吸收、吸附等不同分离方法进行组合,确定分离尾气混合物的分离序列,并构建了四个可行的工艺流程。模拟结果表明:四个流程都可在比较温和的操作条件下达到较好的分离效果;其次用温焓图进一步分析各流程的能量利用情况,结果发现:四个流程进行热集成的意义不大,但分离所需的冷凝温度为250K,易于实现;最后比较四个流程的设备以及流程中吸收剂的加入量、主要设备的操作压力、接吸附的流股中H2的摩尔分率、QH,min和QC,min的大小,最终得到了分离尾气的最佳流程。该流程在第①步中用两个闪蒸罐完成分离,用作预分离的闪蒸罐操作压力为506.6kPa;第②步的吸收过程可将H2由0.89提高到0.981(摩尔分率),吸收剂用量为278kmol/h;第③步塔顶分凝器所需温度为253K,且可将HCl比较完全的分离到塔顶;第④步吸收剂用量为111kmol/h,HCl被提纯到0.99;第⑤步为简单的二元精馏,进料混合物中仅含有SiHCl3和SiCl4。
The design of separation process generally makes the minimum total expense as object , involving selecting proper separation method,determining optimum separation sequence , realizing system heat integration etc, which is a important problem studied in chemical process systems engineering . In poly-component separation process, phase equilibrium model and calculation method are the most pivotal and complicated link, there is not yet a simplified calculation method which can be used to solve poly-component phase equilibrium problem simply and effectively at present. A new phase equilibrium calculation method based on quasi-binary method is put forward based on analysis of the self property of poly-component separation process, and this method is used in the study of separation process design problem.
     1、quasi-binary based phase equilibrium model can be used to express phase equilibrium relationship of poly-component distillation and azeotropic distillation. The equilibrium data and the equilibrium phase diagram of quasi-binary system can be attained and can be applied in graphical design of poly-component distillation process direct. The iteration based quasi-binary stage by stage calculation poly-component distillation column design method is put forward. This optimization based stage by stage computation method is used to calculate the component composition on every stage, and the design of quasi-binary distillation process is carried out. It is indicated from examples study that: the minimum reflux rate and smallest theory stages can be attained easily by this method; the method not only suits for ideal distillation system but also suits for non-ideal distillation system; and the better results can be attained when this method is used to in azeotropic distillation.
     2、A poly-component distillation column shortcut design method is put forward based on quasi-binary method: firstly Aspen plus software is used to simulate every component composition on every stage, and the design of quasi-binary distillation process is carried out through VB language programming and can be run automatically through software integration. It is indicated from examples study that: the minimum reflux rate and the smallest theory stages can be attained easily by this method; the method not only can be used in ideal distillation system but also can be used in non-ideal distillation system; and also can be used in constant boiling distillation process with entrainer added in.
     3、As to the shortcoming of rigorous operation condition of stove tail gas separation technology in the modified siemens polycrystalline silicon production , the tail gas separation technology is modified. Firstly Aspen plus software is used to combine different separation methods for example distillation、absorption、adsorption et al .The tail gas separation sequence is fixed on, and four feasible process flows are built, it is indicated by simulating results that: the four flows all can reach better separation effect under moderate operation conditions. Secondly temperature-enthalpy diagram is used to analyses energy utilization state of every flow, and it is discovered that there is little significance for heat matching of the four flows, but the condensing temperature requirement of the separation process is 250K, which is easy to be realized. Finally the optimal flow is attained for the separation of tail gas through comparing parameters of material adding quantity of four flow equipments and adding quantity of absorbent、major equipments operation pressures、the H2 mol rate in feed flow of adsorption column, the size of QH,min and QC,min. In the first step of this flow, two flash tanks is used to complete separation, the flash tank used for pre-separation is operated at pressure of 506.6kPa; in the second step, H2 mol rate can be raised from 0.89 to 0.981 in adsorption process , absorbent dosage is 278kmol/h; in the third step, the temperature requirement of fractional condenser on top of column is 253K, and HCl can be separated completely from the top of column; in the fourth step, absorbent dosage is 111kmol/h, HCl purity is purified to 0.99; the fifth step is about simple binary distillation, only SiHCl3 and SiCl4 is contained in feed mixture.
引文
〔1〕 姚平经,袁一.化工过程系统工程.大连理工大学出版社. 第1版.大连:1992.1-10
    〔2〕 姚平经.过程系统分析与综合.大连理工大学出版社.第2版.大连:2004.1-16
    〔3〕 刘芙蓉,金鑫丽,王黎.分离过程及系统模拟.科学出版社.第1版.北京:2001.315-337
    〔4〕 陈建宁,阮奇,陈佳彬,刘莉萍.间歇精馏常规设计和优化设计的模型及算法.计算机与应用化学.2004 21 (3): 429-433.
    〔5〕 周明,孙树栋.遗传算法原理及应用.国防工业出版社.第1版.北京:1999. 4-64
    〔6〕 王小平,曹立明.遗传算法理论、应用与软件实现.西安交通大学出版社.第1版.西安:2002.1-79
    〔7〕 谷峰,吴勇,唐俊.遗传算法的改进.微机发展,2003,13 (6): 80-83.
    〔8〕 Goldberg D.,Genetic Algorithms in Search,Optimization and Machine Learning,Addison-Wesley,Reading,MA,1989
    〔9〕 何小荣.化工过程优化.清华大学出版社.第1版.北京:2003.223-235
    〔10〕 Thompson, R. W., & King, C. J. Systematic synthesis of separation schemes. AIChE J,1972, 18, 941
    〔11〕 Seader, J. D., & Westerberg, A.W. A combined heuristic and evolutionary strategy for synthesis of simple separation sequences. AIChE J, 1977, 23, 951-954
    〔12〕 Nadgir, V. M., & Lin, Y. A. Studies in Chemical process design and synthesis. AIChE J, 1983, 29, 926-934
    〔13〕 Tedder, D. W. & Rudd, D. F., Parametric studies in industrial distillation: Part 1, 2 and 3, AIChE J, 1978, 24(2): 303
    〔14〕 Glinos, K., & Malone, M. F. Optimality regions for complex column alternatives in distillation systems. Chem Eng Res Des, 1988, 66, 229
    〔15〕 Stephanopoulos G., & Westerberg, A.W. Studies in process synthesis II: Evolutionary syntgesis of optimal process flowsheets. Chem Eng Sci, 1976, 43,195-204
    〔16〕 Kirkwood, R. L., Locke, H. M., & Douglas, J. M. A prototype expert system for synthesizing chemical process flowsheets. Comput Chem Engng, 1988, 12, 329
    〔17〕 杨冀宏.人工智能技术在分离过程综合中的应用研究.北京化工学院博士学位论文.1990
    〔18〕 荣本光,利梅,胡仰栋,韩方煜,郭天明,分离五组分含复杂精馏塔流程的研究,化工学报.1996.47 (4): 410-420
    〔19〕 易天元,叶春生,李定或,多元组分传质分离综合专家系统的探讨,武汉化工学院学报,1995,17(4):53-57
    〔20〕 钱宇,Kristian M-Ljen,一个用于化工分离过程合成设计的专家系统,化学工程,1996,24(4):68-70
    〔21〕 Raman, R., & Grossmann, I. E. Relation between MILP modeling and logical inference for chemical process synthesis. Comput Chem Engng, 1991, 15, 73
    〔22〕 Huang, Y.W., & Fan, L.T. Fuzzy logic rule based system for separation sequence synthesis: An object oriented approach. Comput Chem Engng,1988,12,601
    〔23〕 吴以准,张瑞生,多组分精馏序列的模糊合成法,化工学报,1993,44(1):117-121
    〔24〕 Flowers, T., & Harrison, B. K. Automated synthesis of distillation sequences using fuzzy logic and simulation. AIChE J,1994,40,1341
    〔25〕 Qian, Y., & Lien, K. M. Application of fuzzy match inference strategy in synthesis of separation systems. Can J Chem Eng,1994,72,711
    〔26〕 Qian, Y., & Lien, K. M. Rule based synthesis of separation systems by a predictive best first search with rules represented as trapezoidal numbers. Comput Chem Engng,1995,19,1185
    〔27〕 Umeda, T. Harada, T., & Shiroko, K. A thermodynamic approach to the synthesis of heat integration systems in chemical processes. Comput Chem Engng,1979,3,273
    〔28〕 Naka, Y. M,. Terashita, M., & Takamatsu. T. A thermodynamic approach to multicomponent distillation systems synthesis.AIChE J,1982,28(5):812-827
    〔29〕 Linnhoff B., Dunford H., & Smith, R. Heat integration of distillation columns into overall processes. Chem Eng Sci, 1983, 38, 1175
    〔30〕 俞红梅,姚平经,MTBE合成与裂解联合装置的用能一致性,化学工程,1998,26(6):52-58
    〔31〕 郑世清,岳金彩,谭心瞬,胡仰栋,韩方煜,具有换热网络的空分系统的操作优化,高校化学工程学报,1996,10(2):158-162
    〔32〕 荣本光,利梅,胡仰栋,多组分复杂精馏流程的简捷设计法,化学工程,1998, 26(1):18-24
    〔33〕 Hendry J. E., & Hughes, R. R. Generating separation process flowsheets. Chem Eng Prog, 1972, 68, 69
    〔34〕 Rathore, R. N. S., Van Wormer, K. A., & Powers, G. J. Synthesis strategies for multicomponent separation systems with energy integration. AIChE J, 1974, 20, 491
    〔35〕 Rathore, R. N. S., Van Wormer, K. A. & Powers, G. J. Synthesis distillation systems with energy integration. AIChE J, 1974b, 20, 940
    〔36〕 郑世清,岳金彩,谭心瞬,胡仰栋,韩方煜,具有换热网络的空分系统的操作优化,高校化学工程学报,1996,10(2):158-162
    〔37〕 周后俊,姚平经,袁一,过程系统综合的现状与展望,化学工程,1995,23(4):21-29
    〔38〕 Sophos, A., Stephanopoulos, G & Morari, M. Synthesis of optimum distillation sequences with heat integration schemes. Paper 42d, 71th Annual AIChE Meeting, Miami, FL, 1978
    〔39〕 Morari, M & aith D. C. The synthesis of distillation trains with heat integration. AIChE J, 1980, 26(6), 916
    〔40〕 Grossmann I.E. , Mixed-Interge Non-Linear Programming Techniques for the Synthesis of Engineering Systems,Reg Eng Des,1990,1:205-228
    〔41〕 Caballero, J. A., & Grossmann, I. E. Generalized disjunctive programming model for the optimal synthesis of thermally linked distillation columns. Ind Eng Chem Res, 2001, 40, 2260-2274
    〔42〕 Floudas, C. A., & Paules, G. E. A mixed integrated nonlinear programming formulation for the synthesis of heat integrated distillation sequences. Comput Chem Engng, 1988, 12, 531
    〔43〕 Floudas, C. A., Aggarwal, A., & Ciric, A. R. Global optimum search for non-convex NLP and MINLP problem. Comput Chem Engng, 1989, 13(10), 1117-1123
    〔44〕 A.I.Kakhu,J.R.Flower,Synthesis Heat-integrated Distillation Column into Overall Processes,Chem Eng Res Des,1988(66):241-254
    〔45〕 Aggarwal A., Floudas C A.,Synthesis of general distillation sequences: nonsharp separations. Comput Chem Eng, 1990, 14, 631
    〔46〕 K.P.Papalexandri,E.N.Pistikopoulos,A Process Synthesis Modelling Framwork Based on Mass/heat Transfer Moudle Hyperstructure Computers and Chemical Engnierring,1995(19):S71-S76
    〔47〕 L.O’Young,Y.Natori,T.G.Pressly and Ka M.Ng,A Physical Limitation Based Framework for Separation Synthesis Computers and Chemical Enginerring,1998(21):S223-S230
    〔48〕 Z.Kova’cs,Z.Ercsey,F.Friedler,L.T.Fan,Separation-network synthesis:global optimum through rigoroussuper-structure Computers and Chemical Engineering,2000(24):1881-1900
    〔49〕 陈敏恒,从德滋,方图南,齐鸣斋.化工原理.化学工业出版社.第2版. 北京:2000年 69-144.
    〔50〕 谭天恩,麦本熙,丁惠华.化工原理.下册. 化学工业出版社.第2版.北京:1999.84~142
    〔51〕 King J C.Separation Processes.McGraw-Hi11Inc.Second Edition.1980,692-701.
    〔52〕 周传光,赵文,韩方煌,等,反应精馏过程图解法设计策略研究,高校化学工程学报,2001,15 (4):333-340
    〔53〕 Doherty M. F,Caldarola G.A..Design and synthesis of homogeneous azeotropic- distillations.3.The sequencing of columns for azetropic andextractive distillation; Ind Engng Chem Fundam, 1985,24:474-485
    〔54〕 Stichlmair J. Distillation and rectification, Ullmann' s encyclopaedia of industrial chemistry, 1987, B3 (5):1-94
    〔55〕 Castillo F J L, Thong D Y-C, Towler G. P, Homogeneous azeotropic- distillation:1. Design procedure for single-feed columns at non-total reflux,Ind. Engng Chem. Res.,1998, 37 (3):987-997
    〔56〕 Dennis Y-C, Thong, Francisco J L Castillo, et. al ,Distillation design and retrofit using stage-composition lines,Chemical Engineering Science, 2000, 55:625-640
    〔57〕 Holland S T, Tapp M, Hildebrandt D, et. al, Column profile maps part A: Derivation and interpretation of column profile maps, Paper in progress.
    〔58〕 Holland S T, Tapp M.,Hildebrandt D,et. al, Novel separation system design using “moving triangles”, Process Systems Engineering,2003:832-839
    〔59〕 Petlyuk, F. B. Platonov, V. M. & Slavinskii, D. M.. Thermodynamically optimal method for separating multi-component mixtures. Int. Chem. Eng., 1965.5, 555.
    〔60〕 Smith, R. Chemical Process Design, McGraw-Hill, 1995
    〔61〕 Yuan, Xigang & An Weizhong, Synthesis of heat integrated complex distillation systems via stochastic optimization approaches. Chinese Journal of Chemical Engineering, 2002, 10(5):495-507
    〔62〕 Tedder, D. W. & Rudd, D. F. Parametric studies in Industrial distillation: Part 1,2 and 3, AIChE J, 1978, 24(2):303
    〔63〕 King, C. J. Separation processes.2nd ed.; McGraw-Hill Book Co. New York, 1980: PP416-421
    〔64〕 Rakesh Agrawal, Synthesis of distillation column configuration for a multi-component separation, Ind. Eng. Chem. Res. 1996,35:1059-1071
    〔65〕 Ben-guang, Rong, Andrzej Kraslawski & Lars Nystriim, Design and synthesis of multi-component thermally coupled distillation flowsheets, Comput. Chem. Eng. 2001, 25:807-820
    〔66〕 Yong Han Kim. Rigorous design of extended fully thermally coupled distillation column, Chemical. Engineering. Journal. 2002, 89:89-99
    〔67〕 Guilian Liu, Megan Jobson, Robin Smith, and Oliver M. Wahnschafft., Shortcut Design Method for Columns Separating Azeotropic Mixtures, Ind. Eng. Chem. Res. 2004, 43: 3908-3923
    〔68〕 陈洪钫,刘家祺.化工分离过程.化学工业出版社,第1版,北京:1995,53-92
    〔69〕 张雪梅 简春贵 张卫江 杨志才,用夹紧区原理确定多元恒回流比分批精馏最小回流比 .化工学报,2004,55(9):1469-1473
    〔70〕 Glinos K,Malone M F. Minimum Reflux,Product Distribution and Lumping Rules for Multi-Component Distillation [J]. Ind Eng Chem Process Des Dev,1984,23(4): 764-768
    〔71〕 Carlberg N A,Westerberg A W. Temperature-Heat Diagrams for Complex Columns: 2.Underwood’s Method for Side-Strippers and Enrichers[J].Ind Eng Chem Res, 1989,28(9): 1379-1386
    〔72〕 Bernardo Neri, Marco Mazzotti, Giusepe Storti & Massimo Morbidelli, Multi-component distillation design through equilibrium theory. Ind. Eng. Chem. Res. 1998, 37:2250-2270
    〔73〕 Levy, G. S.; Dongen, D. B. V.; Doherty, M. F. Design and Synthesis of Homogeneous Azeotropic Distillations. 2. Minimum Reflux Calculations for Nonideal and Azeotropic Columns[J]. Ind. Eng. Chem. Fundam. 1985, 24 (No. 4), 463-474.
    〔74〕 J. Bausa, R.v. Watzdrof & W. Marquardt, Shortcut methods for nonideal multi-component distillation: 1. simple columns. AIChJ. 1998,44(10):2181-2198
    〔75〕 Koehler, J.; Aguirre, P.; Blass, E. Minimum Reflux Calculations for Nonideal Mixtures Using the Reversible Distillation Model[J]. Chem. Eng. Sci. 1991, 46, 3007-3021.
    〔76〕 Poellmann, P.; Glanz, S. B.; Blass, E. Calculating Minimum Reflux of Nonideal Multicomponent Distillation using Eigenvalue Theory[J]. Comp. Chem. Eng. 1994, 18 (Suppl.), S49-S53.
    〔77〕 Ju1 rgen Bausa ;Wolfgang Marquardt. Shortcut Design Methods for Hybrid Membrane/Distillation Processes for the Separation of Nonideal Multicomponent Mixtures[J]. Ind. Eng. Chem. Res. 2000, 39, 1658-1672.
    〔78〕 Underwood, A., Fractional disitillation of multi-component mixtures. Chem. Eng. Prog. 1948, 44:603
    〔79〕 Julka, V.; Doherty, M. F. Geometric behaviour and minimum flows for nonideal multi-component distillation. Chem.Eng. Sci. 1990, 45: 1801-1822.
    〔80〕 J. Bausa, R.v. Watzdrof & W. Marquardt, Shortcut methods for nonideal multi-component distillation: 2.complex columns. AIChJ. 1999,45(8):1615-1628
    〔81〕 J.S. Logsdon, U.M. Diwekar&L.T. Biegler, Trans. IChemE. 1990,68,part A:434
    〔82〕 Diwekar, U. M. & Madhavan, K. P., Multi-component batch distillation column design. Ind. Eng. Chem. Res. 1991, 30:713-721
    〔83〕 王春江.多晶硅生产与发展.化工科技市场.2000, 5: 7~9
    〔84〕 蒋荣华,肖顺珍.国内外多晶硅发展现状.半导体技术.2001.11, 26(11): 7~10
    〔85〕 梁骏吾.电子级多晶硅的生产工艺. 中国工程科学, 2000, 2(12):34-39
    〔86〕 刘建军.多晶硅生产中回收氢气的净化.有色冶炼.2000.12, 29(6):17~19
    〔87〕 丁国江.三氯氢硅和四氯化硅混合比对多晶硅生产的影响.四川有色金属.1998, 3:14~15
    〔88〕 莫运筹.现行多晶硅生产流程中如何增效降耗问题的探讨.世界有色金属.1997年第8期 34~37
    〔89〕 朱骏业.三氯氢硅合成尾气的综合回收.世界有色金属.1995,6:25-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700