化学模式识别和多维校正方法及其在复杂体系分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科学技术的飞速发展,大量新型多通道高阶分析仪器相继问世,以及应用体系日益复杂化,分析化学工作者面对的不再是进行简单的标量或矢量响应数据分析,而是成千上万个数据点组成的基于阵列基础之上的二维、三维甚至四维的化学数据阵分析。这些庞大的数据阵中不仅包含了丰富的有用化学信息,也包含了一些干扰组分响应、背景响应、仪器噪音等,化学计量学理论和方法的不断发展为从这些复杂的数据中提取有用化学信息提供了各种有效的解决方法。化学计量学理论体系中的化学模式识别和多维校正方法是解析这些复杂数据信息的非常重要的两个研究领域,本论文通过对这两个领域的热点和难点的追踪研究,选取了其中几个重要的问题进行方法探索和应用研究,内容主要涉及以下几个方面:
     1化学模式识别方法与中药近红外光谱的质量控制研究(第二章-第三章)
     中药材原料质量除了与是否存在掺杂使假的真伪优劣有关之外,其质量特征和药效还与它们的地理区域性密切相关。另外,对于复方中药的质量除了与所采用的中药材原料用药密切相关,还与市场上各个厂家的生产加工用药和工艺流程相关。因此,中药材的真伪优劣、不同道地性药材以及不同厂家的复方中药的判别对中药质量控制和有效监督市场行为具有重要的现实意义。本文通过利用近红外漫反射技术采集不同质量类属的牛黄样品以及不同厂家的复方中药六味地黄丸的近红外红光谱,提出了一种移动口偏最小二乘判别分析(MWPLSDA)模式识别方法对这些不同类属的牛黄样品或六味地黄丸样品的近红外光谱数据进行表征和信息提取,相比传统的主成分分析(PCA)、线性判别分析(LDA)、偏最小二乘判别分析(PLSDA)模式识别方法,该方法通过剔除与分类无关以及干扰分类的无用信息变量的影响,能更有效地处理近红外光谱指纹信息中的非线性和复共线性等复杂的相关关系,从而有助于更好地从差异微小的指纹分类信息中提取出能反映中药材牛黄样本真伪、道地性差别和复方中药六味地黄丸样本厂家来源的判别隐变量,给出更好的模式识别效果。该方法简单快速而又切实可行,可望推广用于判别市面各种中药真伪、产地归属、质量类别等。
     2一阶校正新算法研究与多元光谱数据分析(第四章)
     最小二乘支持向量机(LS-SVM)以其优越的性能在对多元光谱的二维数据分析的一阶校正建模中得到越来越广泛的应用,但它的性能在很大的程度上还依赖于数据集分布的均一性和模型误差的同质性,这也是一阶校正算法中存在的普遍性问题。因此,对一阶校正建模中的训练集样品的代表性和最优化样品加权问题进行研究将关系到这类模型的进一步推广应用。但是,由于在多元光谱分析中样品光谱空间的多维性和复杂性以及样品选取过程中的不确定性,使得准确估计训练集样品在整个样品空间的代表性尚存在一定困难。传统的多元校正模型大多根据经验方法选择代表性样品,在某些不利的情况下可能会影响校正模型对新样品的预测性能。为解决以上问题,同时考虑到样品的代表性很难通过考察单个样品进行估计以及多元校正模型本身还存在模型最佳参数的选择与确定,我们把样样品加权和最小二乘支持向量机相结合,基于粒子群优化算法,提出了一种自适应训练最优化样品加权最小二乘支持向量新算法(OSWLS-SVM)并用于多元光谱分析。该算法通过对原来的训练集样品进行非负加权,在校正建模过程中同时考虑了模型的复杂性和预测能力,以同时优化原始校正集样品的训练和独立验证集样品的预测为训练目标,采用粒子群优化算法实现对样品代表性的某种最优化重新刻度的同时,也能实现模型超验参数的优化。将该新算法用于真实的多元光谱二维数据集的校正分析结果表明,原始校正样品的代表性较差时,模型的预测性能确实能得以改善。另外对基于粒子群优化算法搜索性能的稳定性和有效性进行了考察,结果也表明,新算法非常稳定有效。新算法为二维数据分析校正问题提供了一种新的全自动建模方法,且构建思想具有通用性,因此还能为改进其它一阶校正方法提供一种参考。
     3二阶校正方法与三维荧光技术用于直接或间接定量分析体液中药物含量(第五章-第六章)
     复杂体液中药物的快速分析是现代生命医学领域面临的一个重要的问题,传统方法采用色谱分离技术来实现这一目的,通常情况下通过调整色谱柱或者色谱条件分离,但是由于体液中含有不可预测的基质及其他干扰物,在某些情况下往往难以实现完全分离,并且对于萃取分离条件的考察也十分耗时耗材。因此,考虑到荧光检测技术具有高灵敏度、高选择性、费用低等优点,以及化学计量学二阶校正相比一阶校正具有二阶优势:即使有未知干扰共存也能对感兴趣组分进行定量分析,我们利用二阶校正方法与三维激发-发射荧光光谱相结合,运用平行因子(PARAFAC)和交替归一加权残差(ANWE)算法对三维荧光数据进行解析,在不用对干扰物和背景物加以校正建模的情况下,以数学分离代替化学分离,再基于标样的已知浓度,利用简单回归法实现了抗癌药物伊立替康的血药浓度和其在人尿液中浓度的直接有选择性的定量分析。该方法快速简便,花费成本低廉,定量结果满意。有潜力成为一种临床监控人体液中伊立替康含量的快速、灵敏分析方法。另外,为了将荧光检测技术与二阶校正方法所体现的优势继续发挥在体液中弱荧光药物和无荧光药物的量化分析,我们通过胶束增敏增强三维荧光策略与基于PARAFAC和ANWE的二阶校正方法相结合,增强了荧光分析方法的选择性,且仅需简单的样品预处理就实现了人血浆和同源药物多潘立酮干扰共存下的甲氧氯普胺精确的光谱分辨和准确的浓度预测。此外,还提出了一种新的对无荧光药物美洛昔康在未知干扰共存下的人体尿液中的定量分析方法。该方法基于无荧光的美洛昔康通过氧化衍生水解反应后生成强荧光化合物这一特性,仍然采用PARAFAC和ANWE这两种二阶校正方法对衍生三维荧光进行数学分离,再通过间接校正目标分析物美洛昔康,获得了满意的定量结果。
     4三阶校正新算法研究及优势探索(第七章-第八章)
     当对四线性成分模型的四维数据进行定量预测分析时,这一方法可被称作三阶校正,其具有的优势可称三阶优势。理论上,三阶校正的优势不仅包括二阶优势,应该还会包括更多的优势。针对二阶校正在解决某些复杂体系分析中存在的不足,以及为适应将来更多复杂体系数据解析或者高阶联用仪器的高阶数据分析,研究三阶校正方法相当重要。然而,迄今为止,仅仅很少的文献报道过对四维数据的分析。作者在通过分析文献中仅有的少数几个四维算法的基础上,总结了三阶校正算法开发的总体思路,并首次基于四线性模型的不完全扩展的矩阵形式,开发了两种三阶校正新算法。
     针对基于完全扩展矩阵形式的四维平行因子(fourway-PARAFAC)对拟合模型需要的化学秩敏感、收敛速度慢、容易出现衰退解等不足,以及基于切片矩阵形式开发的交替惩罚四线性分解算法(APQLD)对噪声容忍能力弱的缺点,本文第七章中,开发了一种基于不完全扩展矩阵形式的交替加权残差约束四线性分解(AWRCQLD)新算法。该算法构建四个独特的加权残差函数作为四线性模型损失函数的约束项,以交替最小化四个新的加权残差目标函数求解四维数据阵中四个潜在的矩阵。通过测试模拟的三维、四维数阵以及设计真实实验以信息总量相等的三维和四维数阵进行解析对比,对应用最为广泛的几种二阶校正方法以及基于新算法AWRCQLD、fourway-PARAFAC和APQLD的三阶校正方法的结果进行比较,探索了三阶校正相比二阶校正所具有的三阶优势,挖掘了新算法相比fourway-PARAFAC和APQLD两种四维算法所具有的优越性。研究表明,四维阵并不是三维阵的简单集合,各维间有着其独特的内在联系。三阶校正能更充分的提取数据隐含信息和提高分辨能力,能解决二阶校正无法正确解析的高度共线性病态模拟数据,也能解决二阶校正无法对血浆中某些内源干扰物质的荧光光谱与目标分析物奥沙普秦的光谱存在严重重叠且高度相似时的合理分辨和正确校正的问题。此外,新算法AWRCQLD克服了两种已有四维算法的不足,与fourway-PARAFAC算法相比,新算法不仅收敛速度快而且对组分数不敏感。与APQLD算法相比,新算法对噪声有很强的容忍能力,稳健性令人满意。新算法的显著特点就是当体系噪声极大或共线性极强时,且组分数过剩时,分辨得到的感兴趣分析物的图谱都十分稳定,并且具有较快的收敛速度。该算法极有潜力成为研究复杂化学体系和过程中的四维数据分析的一种普适性算法。
     二阶优势的发现,曾极大地推动了化学计量学的长足发展。我们也可以大胆预测,三阶优势也可能会在更多的实际应用中展露锋芒。为了能为四维数据分析提供更多可选择的方法,在本文第八章中,我们仍然从不完全扩展形式的四线性模型出发,开发一种自约束交替四线性分解(SRAQLD)新算法。该算法设计了具有密切内在联系的四个目标函数,其每个目标函数的两个部分之间互为平衡约束,以交替最小化四个个自约束的残差求解四维数据阵中四个潜在的矩阵。在实验中,由于氯丙嗪与血浆存在荧光基体效应,而导致二阶校正和二阶标准加入法对血浆中氯丙嗪的量化分析均出现不同程度的预测偏差。为了改善结果,通过增加血浆背景量的变化这一维信息,构建激发-发射-背景体积量-样本的荧光响应四维数阵。并将four-way PARAFAC、APQLD与新提出的AWRCQLD和SRAQLD这四种三阶校正方法对该体系进行研究。结果显示,利用三阶校正方法可提取药物中氯丙嗪在不同血浆背景量下隐含的作用趋势,使这种隐含信息不会被错误关联在分辨得到的光谱轮廓与相对浓度中,从而能够在一定程度上克服体系中存在的基体效应,研究给出较为满意的结果。另外,SRAQLD新算法在这一应用体系中表现稍优,新算法AWRCQLD和四维PARAFAC的预测性能相当,APQLD的表现稍弱。本文所开发的两种三阶校正新算法可为更多实际体系和高阶仪器的四维数阵体系分析提供解析工具,有利于人们更深入地认知三阶校正,也为后续的理论研究提供一定的理论基础和参考价值。
With the rapid development of modern science and technology, a large number of new multi-channel even high-order analytical instruments are emerging, The application system become more and more complex, analytical chemistry researchers are faced with many problems such as two-dimensional, three-dimensional and even four-dimensional data arrays rather than just simple scalar or vector response data analysis. Development of chemometrics theoretic can provide various efficaciously methods for extracting useful chemical information from these complexity data arrays, thereinto, chemical pattern recognition and multi-way calibration are two important research areas. The research work in this thesis mainly focuses on these methodologies and their applications for two-way data, three-way data analysis and four-way data analysis of complex chemical systems. Study works presented in the thesis primarily deal with the following aspects:
     1 Chemical pattern recognition methods and near infrared spectroscopy for quality analysis and discrimination of Chinese medicines (Chapter 2 to Chapter 3):
     The qualitay of traditional Chinese herbs are not only closely related to geographical origins but also affected by adulteration, while the quality of Chinese traditional medicine preparation processed are closely related to not only the raw Chinese herbs but also the technological process of the medicine production in various manufacturers. Therefore, discrimination of genuineness, geographical origins and production manufactures of Chinese herbs is a significant aspect of the quality control of traditional chinese medicine, where chemical pattern recognition methods are frequently used to extract relevant information from near infrared reflectance (NIR) spectral data and provide an alternative criterion for identification and quality control of traditional chinese medicine. Move windowns partial least square discriminate anaysis (MWPLSDA) is proposed to treat fingerprints of different kinds of bezoar samples and Liuwei Dihuang Pills from different manufacturers by NIR spectroscopy. The results demonstrate that MWPLSDA is superior to some conventional linear pattern recognition methods including PCA, LDA and MWPLSDA, and it could remove non-class-related wavelength regions and other uninformative non-composition-related factors, hereby is more effective to treat NIR spectral fingerprint information of these samples. MWPLSDA is a feasible and promising method for quality control and discrimination of traditional Chinese medicine.
     2 First-order calibration: new algorithm and multivariate spectal anaysis (Chapter 4):
     Least squares-support vector machine (LS-SVM) has been introduced into first-order calibration by some investigators for its attractive features and promising empirical performance. However, the performance of LS-SVM is strongly dependent upon the uniformity of the training data and the homogeneity of the model errors. To ensure the applicability of the developed model to unknown samples, the representation of training samples and the concept of weighted sampling for multivariate specral anaysis are considered. However, due to the high-dimensionality and complexity of spectral data space and the uncertainty involved in sampling process, the representation of training samples in the whole sample space is difficult to evaluate and select representative training samples for multivariate calibration, which depends largely on experiential methods. If the training samples fail to represent the sample space, the predictions of new samples can be degraded. In order to solve this problem, an intelligentized algorithm called optimized sample-weighted LS-SVM (OSWLS-SVM) by incorporating weighted sampling into LS-SVM is suggested to solve the problem of the representation of samples. PSO is used to search for multiple parameters of OSWLS-SVM model including the best non-negative sample-weighting vectors as an optimized rescaling of the samples in certain sense and LS-SVM hyper-parameters to simultaneously optimize calibration of the original training set and prediction of an independent validation set. Three real data sets are investigated and the results demonstrated that OSWLS-SVM models can improve the ability of prediction for a model when the representation of original calibration samples is poor. Moreover, the stability and efficiency of OSWLS-SVM is also surveyed, the results revealed that the proposed method could obtain desirable results within moderate PSO cycles. The overall conclusion is that OSWLS-SVM is a promising multivariate calibration method for more practical applications, especially when the data may encounter some factors including non-uniformly distributed samples, heteroscedastic noises and so on. The algorithm is universal, so it also can be used to improve the other first-order calibration algorithms.
     3 Second-order calibration and three-dimensional fluorescence for direct or indirect quantification of drugs in body fluids (Chapter 5 to Chapter 6):
     Drug analysis in body fluids is an important one in biomedical field. Chromatographic separation techniques are usually used in drug analysis. However, HPLC inherently suffer from tedious pretreation and optimization of the separate conditions, even possible lower recoveries owing to the greater loss of sample during the more intensive extraction and clean-up. An alternative strategy for simple, rapid and sensitive quantification of drug in biological body fluids is excitation-emission matrix (EEM) fluorescence with the aide of second-order calibration methodologies based on PARAFAC and ANWE. EEM data of CPT-11 in biological matrixs shows a trilinear structure that were mathematically decomposed to make serious overlapped peaks into their pure spectral profiles and concentration profiles with the aid of second-order advantage based on second-order calibration algorithms. The method was presented with the potential advantages of rapid, green and low cost for the highly sensitive quantification of CPT-11 in human body fluid samples. Moreover, the second-order calibration methods combined with the excitation-emission matrix fluorescence based on enhance or derivatization were developed to analyze metoclopramide with isogenous interferer in plasma samples, and meloxicam in human urine samples. This is an attractive alternative strategy for indirectly determine other the kinds of medicines without fluorescence in more complex system.
     4 New third-order calibration algorithms (Chapter7 to Chapter 8):
     The use of higher-order data for the resolution of complex analytical problems will increase in the near future, due to the associated advantages. This calls for appropriate chemometric methods for calibrating with data structures of higher complexity. Four-way data arrays are used to construct quantitative calibration models only in a few cases, because the related theories on four-way calibration analysis are still immature, it is very significative to further study more related theories and applications for exploring advantages of four-way calibration analysis.
     A novel third-order calibration algorithm, Alternating Weighted Residue Constraint Quadrilinear Decomposition (AWRCQLD) algorithm is developed to analyze four-way data arrays. To our knowledge, not-fully stretched matrix forms of quardilinear model were first employed to design quadrilinear decomposition algorithm. the AWRCQLD algorithm is based on the new scheme that introduces the four unique weighted residual functions as constrain parts to fit loss fuction of quardilinear model. Simulation and the experimental data are arranged and analyzed in both forms of three-way data arrays and four-way data arrays to explore additional third-order advantage differing from second-order advantage. Meanwhile, performance of the proposed algorithm has been compared with that of four-way PARAFAC and APQLD. The results demonstrated third-order advantages lie in that more inherent information can be obtained from data for improving the resolved and quantitative capability of trilinear second-order calibration especially in serious high collinear system. It means that four-way data array is not a simple collection of three-way data array, it have unique internal relations in each three-way data arrays. Moreover, compared with four-way PARAFAC, the new algorithm AWRCQLD has the advantages of fast convergence and being insensitive to the excess component number used in the model. Compared with APQLD, AWRCQLD has better capability of anti-highnoise. This predominant features will facilitate the analysis of four-way data arrays.
     Discovery of second-order advantage, it great impeled development of chemometrics. Let's make a prediction, third-order advantage would eventually emerge in more paractical application. This calls for more chemometric methods for calibrating with data structures of higher complexity. Based on not fully stretched matrix form of the quadrilinear model, a new algorithm called self restrain alternating quadrilinear decomposition (SRAQLD) algorithm is developed to exploit the solution. The objective functions with strong intrinsic relationship were constructed, where the two loss functionS in the every objective function are optimized and constrained mutually. A new approach to quantification even in presence of a matrix effect caused by the background. The excitation-emission matrix (EEM) fluorescence determination of chlorpromazine in a hunman plasma used to show the ineffectiveness of second-order calibration and the second-order standard addition method in these conditions in spite of the trilinear model fitted with the experimental tensor. Therefore, it is the alteration of the fluorescence quantum yield by changing the levels of matrix plasma quantity providing a four-way tensor which let us the determination of chlorpromazine concentration. The four third-order calibration methods based on PARAFAC, APQLD, AWRCQLD and SRAOLD, respectively, are tested with suitable results, which are slight better for proposed SRAQLD in this system. Moreover, proposed AWRCQLD can be expected to play its advantage in other system with low-signal rate. Undoubtedly, more practical study should be implemented to continually explore and recognize the third-order calibration. In adition, the research work provided the theory and reference for studying more new thid-order calibration methods in the further.
引文
[1] Latinen H A. Analytical chemistry in a changing world. Analytical Chemistry, 1980, 52: 606A-609A
    [2]高鸿.分析化学前沿.北京:科学出版社, 1991
    [3]汪尔康. 21世纪的分析化学.北京:科学出版社,1999
    [4]俞汝勤.化学计量学导论.长沙:湖南教育出版社, 1991
    [5]梁逸曾.白灰黑复杂多组分分析体系及其化学计量学算法.长沙:湖南科技出版社, 1997
    [6]梁逸曾,俞汝勤.分析化学手册(第十分册)化学计量学.北京:化工出版社, 2000
    [7]陆晓华.化学计量学.武汉:华中理工大学出版社, 1997
    [8]许禄.化学计量学方法.北京:科学出版社, 1995
    [9] M奥托.化学计量学:统计学与计算机在分析化学中的应用.邵学广,蔡文生,徐筱杰(译).北京:科学出版社, 2003
    [10]许禄,邵学广.化学计量学方法(第二版).北京:科学出版社, 2004
    [11]倪永年.化学计量学在分析化学中的应用.北京:科学出版社, 2004
    [12] Yu R Q. Chemometrics in China. Chemometrics and Intelligent Laboratory Systems, 1992, 14: 23-29
    [13]梁逸曾,俞汝勤.化学计量学在我国的发展.化学通报,1999, 10: 14-19
    [14] Kowalski B R. Analytical chemistry as an information science. Trends in Analytical Chemistry, 1981, 1(3): 71-74
    [15] Fraga C G, Prazen B J, Synovec R E. Objective data alignment and chemometric analysis of comprehensive two-dimensional separations with run-to-run peak shifting on both dimensions. Analytical Chemistry, 2001, 73(24): 5833-5840
    [16] Trevisan M G, Poppi R J. Determination of doxorubicin in human plasma by excitation-emission matrix fluorescence and multi-way analysis. Analytica Chimica Acta, 2003, 493(1): 69-81
    [17] Fraga C G, Bruckner C A, Synovec R E. Increasing the number of analyzable peaks in comprehensive two-dimensional separations through chemometrics. Analytical Chemistry, 2001, 73(3): 675-683
    [18] Mohimen A, Dobo A, Hoerner J K, et al. A chemometric approach to detectionand characterization of multiple protein conformers in solution using electrospray ionization mass spectrometry. Analytical Chemistry, 2003, 75(16): 4139-4147
    [19] Fransson M, Sparen A, Lagerholm B, et al. On-line process control of liquid chromatography. Analytical Chemistry, 2001, 73(7): 1502-1508
    [20] Lopez-Diez E C, Goodacre R. Characterization of microorganisms using UV resonance Raman spectroscopy and chemometrics. Analytical Chemistry, 2004, 76(3): 585-591
    [21] Vogt F, Mizaikoff B. Introduction and application of secured principal component regression for analysis of uncalibrated spectral features in optical spectroscopy and chemical sensing. Analytical Chemistry, 2003, 75(13): 3050-3058
    [22] Mayr T, Igel C, Liebsch G, et al. Cross-reactive metal ion sensor array in a micro titer plate format. Analytical Chemistry, 2003, 75(17): 4389-4396
    [23] Rodriguez EMR, Alaejos M S, Romero C D. Chemometric studies of several minerals in milks. Journal of Agricultural and Food Chemistry, 1999, 47(4): 1520-1524
    [24] Hansch C, Fujita T. Classical and Three-Dimensional QSAR in Agrochemistry. In: ACS Symposium Series 606. Washington DC: American Chemical Society, 1995: 23-56
    [25] Rodriguez-Cuesta M J, Boque R, Rius F X, et al. Determination of carbendazim, fuberidazole and thiabendazole by three-dimensional excitation-emission matrix fluorescence and parallel factor analysis. Analytica Chimica Acta, 2003, 491(1): 47-56
    [26] Einax J. Chemometrics in environmental chemistry statistical methods. Berlin Germany: Springer-Verlag, 1995
    [27] Rios P, Stuart J A, Grant E. Plastics disassembly versus bulk recycling: engineering design for end-of-life electronics resource recovery. Environmental Science and Technology, 2003, 37(23): 5463-5470
    [28] Mannhold R, Hrogsgaard P, Larscn H, et al. Methods and principles in medicinal chemistry. Weinheim Germany: Wiley-VHC, 1995
    [29] Hergert L A, Escandar G M. Spectrofluorimetric study of theβ-cyclodextrin- ibuprofen complex and determination of ibuprofen in pharmaceutical preparations and serum. Talanta, 2003, 60(2-3): 235-246
    [30] Espinosa-Mansilla A, Pe A, Mu D L, et al. Photoinduced spectrofluorimetricdetermination of fluoroquinolones in human urine by using three- and two-way spectroscopic data and multivariate calibration. Analytica Chimica Acta, 2005, 531(3): 257–266
    [31] Chaudry U A, Popelier P L. Estimation of pKa using quantum topological molecular similarity descriptors: application to carboxylic acids, anilines and phenols. Journal of Organic Chemistry, 2004, 69(2): 233-241
    [32] Lakshminarayanan S, Mhatre P, Gudi R. Identification of bilinear models for chemical processes using canonical variate analysis. Industrial and Engineering Chemistry Research, 2001, 40(20): 4415-4427
    [33] Shen M, Wagner M S, Castner D G, et al. Multivariate surface analysis of plasma-deposited tetraglyme for reduction of protein adsorption and monocyte adhesion. Langmuir, 2003, 19(5): 1692-1699
    [34]梁逸曾,俞汝勤.化学计量学在我国的发展.化学通报, 1999, 10(1): 14-19
    [35]吴海龙,梁逸曾,俞汝勤.分析化学计量学.分析实验室, 1999, 11(2): 94-102
    [36] Kowalski B R, Bender C F. Solving chemical problems with pattern recognition. Naturwissenschaften, 1975, 62(): 10-14.
    [37]梁逸曾,吴海龙,沈国励.分析化学计量学的若干新进展.中国科学B辑, 2006, 36(2): 93-100
    [38]陈念贻,钦佩,陈瑞亮等.模式识别方法在化学化工中的应用.北京:科学出版社, 2000: 10-120.
    [39] Qu H N, Li G Z, Xu W S. An asymmetric classifier based on partial least squares, Pattern Recognition, 2010,43 (10): 3448-3457
    [40] Liang Y Z, Xie P S, Chan K. Quality control of herbal medicines. J Chromatogr B, 2004, 812(1-2): 53-70
    [41] Mao J J, Xu J W, Lukman S. Discrimination of herbal medicines by molecular spectroscopy and chemical pattern recognition.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2006, 65(2): 497-500
    [42] He Y L, Hui S C, Computational methods for Traditional Chinese Medicine: A survey. Computer Methods and Programs in Biomedicine, 2007, 88, (3): 283-294
    [43] Daniel K W, Mok F T C.Chemical information of Chinese medicines: A challenge to chemist. Chemometrics and Intelligent Laboratory Systems, 2006, 82, (1-2): 210-217
    [44] Mantas J. Methodologies in pattern recognition and image analysis—A briefsurvey, Pattern Recognition, 1987, 20(1): 1-6
    [45] Li W F, Jiang J G, Chen J. Chinese Medicine and Its Modernization Demands. Archives of Medical Research, 2008, 39(2):246-251
    [46] Jiang Y, David B, Tu P F, Yves Barbin Recent analytical approaches in quality control of traditional Chinese medicines-A review. Analytica Chimica Acta, 2010, 657(1): 9-18
    [47]张树生等.神农本草经贯通.北京:中国药物科技出版社,1997
    [48]尚志钧.开宝本草[辑复本],合肥:安徽科学技术出版社,1998
    [49]余稼鳌等.本草纲目精华本.北京:科学出版社,1998
    [50]胡世林,廖福龙.中药材道地性与生物多样性.中国医药学报, 1999, 14(5):16-19
    [51] Hu S L. Development and applications of herbal resources in China.World Science and Technology/Modenrization of Traditional Chinese Medicine ,1999, 1(1):30-34
    [52] Nie S Q, Hu S L. Comparison on pharmacological effects of extracts of Artacytlodes lancea from 5 production sites. China Journal of TCM Information. 2001, 8(2): 27-29
    [53] Liu J F, Hu S L. Pharmacodynamics comparison between extracts of radix scutellaria from different locations. Chinese Jounral of Information on Traditional Chinese Medicine. 2001, 8(3): 28-30
    [54]俞晓平,徐路,卢秀莲等.化学模式识别在原产地域产品保护中的应用,中国计量学院学报, 2009, 20(1):15-21
    [55]陆婉珍,袁洪福,徐广通.现代近红外光谱分析.北京:中国石化出版社, 2000
    [56] Hasegawa T. Chemometrics for spectroscopic analysis. Analytical and Bioanalytical Chemistry, 2003, 375(1): 18-19
    [57] Batron F E. Theory and principles of near infrared spectroscopy. Spectroscopy Europe, 2002, 14(1): 12-18
    [58] Campbell M R, Mannis S R, Port H A. Prediction of starch amylose content versus total grain amylose content in corn by near-infrared transmittance spectroscopy. Cereal Chemistry, 1999, 76 (4): 552-557
    [59] Champagne E T, Bett-Garber K L, Grimm C C. Near-infrared reflectance analysis for prediction of cooked rice texture. Cereal Chemistry, 2001, 78 (3): 358-362
    [60] Cozzolino D C, Fassio G A. The use of near-infrared reflectance spectroscopy(NIRS) to predict the composition of whole maize plants. Journal of the Science of Food and Agriculture, 2000, 65 (81): 142-146
    [61] Moh M H. Determination of peroxide value in thermally oxidized crude palm oil by near infrared spectroscopy. Journal of the American Oil Chemists’Society, 1999, 76 (1): 19-23
    [62] Merckle P, Kovar K A. Assay of effervescent tablets by near-infrared spectroscopy in transmittance and reflectance mode: Acetylsalicylic acid in mono and combination formulations. Journal of Pharmaceutical and Biomedical Analysis, 1998, 17 (3), 365-374
    [63] Daniel L, Morris J, Robert A, et al. A method for measuring potency of narasin extracts using near-IR spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 2001, 24(5): 437-451
    [64] Zilberman I, Bigman J, Sela I. Use telecommunications for real-time process control. Hydrocarbon Processing, 1996, 42(5): 91-97
    [65] Popkowski A, Barsamina A. New gasoline blending unit started at Poland refinery. Oil and Gas, 1999, 97 (27): 64-70
    [66] Mullins O C, Daigle T, Crowell C. Gas-oil ration of live crude oils determined by near-infrared spectroscopy. Applied Spectroscopy, 2001, 55(2): 272-279
    [67] Jeffrey J K, James B. Callis. Non-destructive analytical procedure for simultaneous Wstimation of major classes of hyfrocarbon constituents of Finished gasolines. Analytical Chemistry, 1990, 62 (62): 1444-1451
    [68] Areerat S, Nagata T, Ohshima M. Mearsurement and prediction of LDPE/CO2 solution viscosity. Polymr Engineering & Science, 2002, 42 (11): 2234-2245
    [69] Miller C E, Edelman P G, Ratner B D. Near-infrared spectroscopyic analyses of poly(ether urethane urea) block copolymers. Part I: Bulk-composition. Applied Spectroscopy, 1990, 44 (4): 576-580
    [70] Miller C E, Eichinger B E. Analysis of reaction-injection-molded polyurethanes by near-infrared diffuse reflectance spectroscopy. Journal of Applied Polymer Science, 1991, 42 (8): 2169-2190
    [71] Spatafore R, McDermott L. Nondestructive analysis of the ethylene content of propylene/ethylene copolymer by near-infrared spectroscopy. Plastic Compound, 1991, 14 (1): 68-71
    [72] Rodriguez D, Boshetti C E, Olivieri A C. Near-infrared spectroscopic determination of antioxidants and organic acids in rubbers assisted by a new multivariate calibration method based on direct orthogonalization. Analyst,2002, 127 (2): 304-309
    [73] Saeki K, Tanabe K, Natsumot T, et al. Prediction of polyethylene density by near-infrared spectroscopy combined with neural network analysis. Journal of Computer Chemistry, 2003, 2 (1): 33-40
    [74] Laasonen M, Harmia T P, Simard C L. Fast Identification of Echinacea purpurea Dried Roots Using Near-Infrared Spectroscopy. Analytical Chemistry, 2002, 74(11):2493-2499
    [75] Woo Y A, Kim H J, Cho J H, et al.Discrimination of herbal medicines according to geographical origin with near infrared reflectance spectroscopy and pattern recognition techniques.Journal of Pharmaceutical and Biomedical Analysis, 1999, 21(2):407-413
    [76] Yu K, Cheng Y Y. Discriminating the Genuineness of Chinese Medicines Using Least Squares Support Vector Machines.Chinese Journal of Analytical Chemistry, 2006, 34(4): 561-564
    [77] Woo Y A, Kim H J, Ze K R, et al. Near-infrared (NIR) spectroscopy for the non-destructive and fast determination of geographical origin of Angelicae gigantis Radix. Journal of Pharmaceutical and Biomedical Analysis, 2005, 36(5): 955-959
    [78] Yang H L, Liu X S, Qu H B. Fast quality assessment of Radix Ginseng Rubra by near infrared spectroscopy. Chin Tradit Herb Drugs, 2005,36(6):912-915
    [79] Liu X S, Qu H B, Cheng Y Y. Determination of active components in a natural herb with near infrared spectroscopy based on artificial neural network. Chemical Research in Chinese Universities ,2005,21(1): 36-43
    [80] Chen Q S, Zhao J W, Lin H. Study on discrimination of Roast green tea (Camellia sinensis L.) according to geographical origin by FT-NIR spectroscopy and supervised pattern recognition. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009, 72(4): 845-850
    [81] Hopke P K, The evolution of chemometrics, Analytica Chimica Acta,2003,500: 365–377
    [82] Booksh K S, Kowalski B R, Theory of analytical chemistry,, Analytical Chemistry, 1992, 66: 782A-791A.
    [83] Sanchez E, Kowalski B R. Tensorial calibration: 1. First-order calibration. Journal of Chemometrics, 1988, 2(4): 247-26
    [84] Lohnes M T, Guy R D, Wentzell P D. Window target-testing factor analysis: Theory and application to the chromatographic analysis of complex mixtures
    with multiwavelength fluorescence detection. Analytica Chimica Acta, 1999, 389(1-3): 95-113
    [85] Liang Y Z, Leung A K M, Chau F T. A roughness penalty approach and its application to noisy hyphenated chromatographic two-way data. Journal of Chemometrics, 1999, 13(5): 511-524
    [86] Gargallo R, Tauler R, Sanchez F C, et al. Validation of alternating least-squares multivariate curve resolution for chromatographic resolution and quantitation. Trends in Analytical Chemistry, 1996, 15(7): 279-286
    [87] Gampp H, Maeder M, Meyer C J. Calculation of equilibrium constants from multiwavelength spectroscopic data—III: Model-free analysis of spectrophotometric and ESR titrations. Talanta, 1985, 32(12): 1133-1139
    [88] Xu Q S, Liang Y Z. On the equivalence of window factor analysis and orthogonal projection resolution. Chemometrics and Intelligent Laboratory Systems, 1999, 45(1-2): 335-338
    [89] Malinowski E.R. Window factor analysis: Theoretical derivation and application to flow injection analysis data. Journal of Chemometrics, 1992, 6(1): 29-40
    [90] Elbergali A K, Brereton R G, Rahmani A. Influence of the method of calculation of noise thresholds on wavelength selection in window factor analysis of diode array high-performance liquid chromatography. The Analyst, 1996, 121(5): 585-590
    [91] Sanchez F C, Rutan S C, Gil Garcia M D, et al. Resolution of multicomponent overlapped peaks by the orthogonal projection approach, evolving factor analysis and window factor analysis. Chemometrics and Intelligent Laboratory Systems, 1997, 36(2): 153-164
    [92] Maeder M, Zuberbühler A D. The resolution of overlapping chromatographic peaks by evolving factor analysis. Analytica Chimica Acta, 1986, 181(2): 287-291
    [93] Gemperline P J. A priori estimates of the elution profiles of the pue components in overlapped liquid chromatography peaks using target factor analysis. Journal of Chemical Information and Computer Sciences, 1984, 24(4): 206-212
    [94] Kvalheim O M, Liang Y Z. Heuristic evolving latent projections: resolving two-way multicomponent data. 1. Selectivity, latent-projective graph, data scope, local rank, and unique resolution. Analytical Chemistry, 1992, 64(8): 936-946
    [95] Liang Y Z, Kvalheim O M, Keller H R, et al. Heuristic evolving latent projections: resolving two-way multicomponent data. 2. Detection and resolution of minor constituents. Analytical Chemistry, 1992, 64(8): 946-953
    [96] Jiang J.H, Sasic S, Yu R Q, et al. Resolution of two-way data from spectroscopic monitoring of reaction or process systems by parallel vector analysis (PVA) and window factor analysis (WFA): inspection of the effect of mass balance, methods and simulations. Journal of Chemometrics , 2003, 17(3): 186-197
    [97] Sánchez F C, Bogaert B, Rutan S C, et al. Multivariate peak purity approaches. Chemometrics and Intelligent Laboratory Systems, 1996, 34(2): 139-171
    [98] Manne R, Shen H L, Liang Y Z. Subwindow factor analysis. Chemometrics and Intelligent Laboratory Systems, 1999, 45(1-2): 171-176
    [99] Shen H L, Manne R, Liang Y Z, et al. Local resolution of hyphenated chromatographic data. Chemometrics and Intelligent Laboratory Systems, 1999, 45(1-2): 323-328
    [100] Tauler R, Casassas E. Spectroscopic resolution of macromolecular complexes using factor analysis: Cu (II) -polyethyleneimine system. Chemometrics and Intelligent Laboratory Systems, 1992, 14(1-3): 305-317
    [101] Liang Y Z, Kvalheim O M. Heuristic evolving latent projections: Resolving hyphenated chromatographic profiles by component stripping. Chemometrics and Intelligent Laboratory Systems, 1992, 64, 20(2): 115-125
    [102] Karjalainen E. The spectrum reconstruction problem: Use of alternating regression for unexpected spectral components in two-dimensional spectroscopies. Chemometrics and Intelligent Laboratory Systems, 1989, 7(1-2): 31-38
    [103] Jiang J H, Ozaki Y, Kleimann M, et al. Resolution of two-way data from on-line Fourier-transform Raman spectroscopic monitoring of the anionic dispersion polymerization of styrene and 1,3-butadiene by parallel vector analysis (PVA) and window factor analysis (WFA). Chemometrics and Intelligent Laboratory Systems, 2004, 70(1): 83-92
    [104] Windig W, Guilment J. Interactive self-modeling mixture analysis. Analytical Chemistry, 1991, 63(14): 1425-1432
    [105] Jiang J H, Liang Y Z, Ozaki Y. On simplex-based method for self-modeling curve resolution of two-way data. Chemometrics and Intelligent Laboratory Systems, 2003, 65(1): 51-65
    [106] Wang J H, Liang Y Z, Yu R Q, et al. Local chemical rank estimation of two-way data in the presence of heteroscedastic noise: A morphological approach. Chemometrics and Intelligent Laboratory Systems, 1996, 32(2): 265-272
    [107] Juan A, Bogaert B, Sanchez F C, et al. Application of the needle algorithm for exploratory analysis and resolution of HPLC-DAD data. Chemometrics and Intelligent Laboratory Systems, 1996, 33(2): 133-145.
    [108] Juan A, Vander H Y, Taule R, et al. Assessment of new constraints applied to the alternating least squares method. Analytica Chimica Acta, 1997, 346(3): 307-318
    [109] Malinowski E R. Automatic window factor analysis: A more efficient method for determining concentration profiles from evolutionary spectra. Journal of Chemometrics, 1996, 10(4): 273-279
    [110] Elbergali A, Nygren J, Kubista M. An automated procedure to predict the number of components in spectroscopic data. Analytica Chimica Acta, 1999, 379(1-2): 143-158
    [111] Xie Y L, Hopke P K, Paatero P J. Positive matrix factorization applied to a curve resolution problem. Journal of Chemometrics, 1998, 12(6): 357-364
    [112] Shao X G, Cai W S. Resolution of multicomponent chromatograms by window factor analysis with wavelet transform preprocessing. Journal of Chemometrics, 1998, 12(2): 85-93
    [113] Vandeginste B G M, Derks W, Kateman G. Multicomponent self-modelling curve resolution in high-performance liquid chromatography by iterative target transformation analysis. Analytica Chimica Acta, 1985, 173: 253-264
    [114] Paatero P. Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems, 1997, 37(1): 23-35
    [115] Ritter C, Gilliard J A, Cumps J, et al. Corrections for heteroscedasticity in window evolving factor analysis. Analytica Chimica Acta, 1996, 318(2): 125-136
    [116] Statheropoulos M, Smaragdis E, Tzamtzis N, et al. Principal component analysis for resolving coeluting substances in gas chromatography-mass spectrometry doping control analysis. Analytica Chimica Acta, 1996, 331(1-2): 53-61.
    [117] Lilley K A, Wheat T E. Drug identification in biological matrices using capillary electrophoresis and chemometric software. Journal of Chromatography B, 1996, 683(1): 67-76
    [118] Sanchez F C, Vandeginste B G M, Hancewicz T M, et al. Resolution of Complex Liquid Chromatography-Fourier Transform Infrared Spectroscopy Data. Analytical Chemistry, 1997, 69(8): 1477-1484
    [119] Joaquim C G, Esteves da S, Adélio A S C M, et al. Simultaneous use of evolving factor analysis of fluorescence spectral data and analysis of pH titration data for comparison of the acid-base properties of fulvic acids. Analytica Chimica Acta, 1996, 318(3): 365-372
    [120] Grabaric B S, Grabaric Z, Tauler R, et al. Application of multivariate curve resolution to the voltammetric data Factor analysis ambiguities in the study of weak consecutive complexation of metal ion with ligand. Analytica Chimica Acta, 1997, 341(2-3): 105-120
    [121] Andrew J J, Hancewicz T M. Rapid analysis of raman image data using two-way multivariate curve resolution. Applied Spectroscopy, 1998, 52(6): 797-804
    [122] Thurston T J, Brereton R G, Foord D J, et al. Monitoring of a second-order reaction by electronic absorption spectroscopy using combined chemometric and kinetic models. Journal of Chemometrics, 2003, 17(6): 313-322.
    [123] Winding W, Hornak J P, Antalek B. Multivariate Image Analysis of Magnetic Resonance Images with the Direct Exponential Curve Resolution Algorithm (DECRA): Part 1. Algorithm and Model Study. Journal of Magnetic Resonance, 1998, 132(2): 298-306
    [124] Mendieta J, Diaz-Cruz M S, Tauler R, et al. Application of multivariate curve resolution to voltammetric data. II. Study of metal-binding properties of the peptides. Analytical Biochemistry, 1996, 240(1): 134-14
    [125] Antalek B, Hornak J P, Windig W. Multivariate Image Analysis of Magnetic Resonance Images with the Direct Exponential Curve Resolution Algorithm (DECRA): Part 2. Application to Human Brain Images. Journal of Magnetic Resonance, 1998, 132(2): 307-315
    [126] Koons J M, Ellis P D. Applicability of factor analysis in solid state NMR. Analytical Chemistry, 1995, 67(23): 4309-4315
    [127] Furusjooe E, Danielsson L G, Koenberg E, et al. Evaluation techniques for two-way data from in situ fourier transform mid-infrared reaction monitoring in aqueous solution. Analytical Chemistry, 1998, 70(9): 1726-1734
    [128] Keesey R L, Ryan M D. Use of evolutionary factor analysis in the spectroelectrochemistry of escherichia coli sulfite reductase hemoprotein and a Mo/Fe/S cluster. Analytical Chemistry, 1999, 71(9): 1744-1752.
    [129] Esteves da Silva J C G, Machado A A S C, Angeles R M, et al. Quantitative study of Be (II) complexation by soil fulvic acids by molecular fluorescence spectroscopy. Environmental Science & Technology, 1996, 30(11): 3155-3160
    [130] Bijlsma S, Boelens H F M, Hoefsloot H C J, et al. Constrained least squares methods for estimating reaction rate constants from spectroscopic data. Journal of Chemometrics, 2002, 16(1): 28-40
    [131] Ren S X, Gao L. The speciation of Copper (II) / Ethylenediamine / Oxalate system by evolving factor analysis. Journal of Automatic Chemistry, 1995, 17(5): 17-177
    [132] Diaz-Cruz M S, Tauler R, Casassas E, et al. Application of multivariate curve resolution to voltammetric data. Part 1. Study of Zn (II) complexation with some polyelectrolytes. Journal of Electroanalytical Chemistry, 1995, 393(1-2): 7-16
    [133] Esteban M, Harlyk C, Rodriguez A R. Cadmium binding properties of the C-terminal hexapeptide from mouse metallothionein: study by linear sweep voltammetry and multivariate curve resolution analysis. Journal of Electroanalytical Chemistry, 1999, 468(2): 202-212
    [134] Grung B, Kvalheim O M Detection and quantification of embedded minor analytes in three-way multicomponent profiles by evolving projections and internal rank annihilation. Chemometrics and Intelligent Laboratory Systems, 1995, 29(2): 213-221
    [135] Winding W, Antalek B, Sorriero L J, et al. Applications and new developments of the direct exponential curve resolution algorithm (DECRA). Examples of spectra and magnetic resonance images. Journal of Chemometrics, 1999, 13(2): 95-110
    [136] Diaz-Cruz M S, Mendieta J, Tauler R, et al. Multivariate curve resolution of cyclic voltammetric data: application to the study of the cadmium- binding properties of glutathione. Analytical Chemistry, 1999, 71(20): 4629-4636
    [137] Vandeginste B G M, Massart D L, Buydens L C M, et al. Handbook of Chemometrics and Qualimetrics: Part B, Amsterdam: Elsevier, 2003, 349-379
    [138] H?skuldsson A. PLS regression methods. Journal of Chemometrics, 1988, 2(4): 211-228
    [139] Malinowski E R. Factor Analysis in Chemistry, 3rd Edition, New York: Wiley, 2002, 73-130
    [140] Bro R. Multivariate calibration, What is in chemometrics for the analyticalchemist? Analytica Chimica Acta, 2003, 500(1-2): 185-194
    [141] Dief A S. Advanced matrix theory for scientists and engineers. Tunbridge Wells and London: Abacus Press, 1982:93
    [142] Stewart G W. Introduction to matrix computations. New York: Academic Press, 1973: 40
    [143] Wold S, Martens H, Wold H. The multivariate calibration method in chemistry solved by the PLS method. Ruhe A, K?gstr?m B (eds). In: Proceedings on the Conference on Matrix Pencils, Lecture Notes in Mathematics. Heidelberg: Springer-Verlag, 1983, 286-293
    [144] Hoskuldsson A. PLS regression methods. Journal of Chemometrics, 1988, 2: 211-228
    [145] Rumelhart D E, Hinton G E, Williams R J. Learning internal representations by error propagation. In Parallel Distributing Processing, Explorations in the Microstructure of Cognition, Vol. 1: Foundations. Rumelhart D E and McClelland J L (eds). Cambridge, MA: MIT Press, 1986, 318-362
    [146] Werbos P. Beyond regression: new tools for prediction and analysis the behavioral sciences. [PHD dissertation], Cambridge, MA: Harvard, 1974
    [147] Cummins D J, Andrews C W. Iteratively reweighted partial least squares: A performance analysis by Monte Carlo simulation. Journal of Chemometrics, 1995, 9: 489-507
    [148] Zhu E Y, Barnes R M. A simple iteration algorithm for PLS regression. Journal of Chemometrics, 1995, 9: 363-372
    [149] R?nnar S, Lindgren F, Geladi P, et al. A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: Theory and algorithm. Journal of Chemometrics, 1994, 8(2): 111-126
    [150] R?nnar S, Geladi P, Lindgren F, et al. A PLS kernel algorithm for data sets with many variables and fewer objects. Part II: Cross validation, missing data and examples. Journal of Chemometrics, 1995, 9: 459-470
    [151] Zhang M H, Xu Q S, Massart D L. Averaged and weighted average partial least squares. Analytical Chimica Acta, 2004, 504(2): 279-289
    [152] Vapnik V N. The nature of statistical learning theory. New York: Springer- Verlag, 1995
    [153] Vapnik V N. Statistical learning theory. New York: John Wiley and Sons, 1998
    [154] Schapire R E. The strength of weak learnability. Machine Learning, 1990, 5: 197-227
    [155] Friedman J H. Stochastic gradient boosting. Computational Statistics and Data Analysis, 2002, 38(4): 367-378
    [156] Drucker H. Improving regressors using boosting techniques. In: Proceedings of 14th Intelligent Conference of Machine Learning. Nashville, TN, 1997, 107-115
    [157] Breiman L. Bagging predictors. Machine Learning, 1996, 24(2): 123-140
    [158] Breiman L. Randomizing outputs in increase prediction accuracy. Machine Learning, 2000, 40(3): 229-242
    [159] Thissen U, Pepers M, Buydens L M C, et al. Comparing support vector machines to PLS for spectral regression applications. Chemometrics and Intelligent Laboratory Systems, 2004, 73(2): 169-179
    [160] Gurney, K. An Introduction to Neural Networks. London: Routledge, 1997
    [161] Lee Y, Lee C K. Classification of multiple cancer types by multicategory support vector machines using gene expression data. Bioinformatics, 2003, 19(9): 1132-1139
    [162] Suykens J A K, Vandewale J. Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9(3): 293-300
    [163] Chauchard F, Cogdill R, Roussel S, et al. Application of LS-SVM to non-linear phenomena in NIR spectroscopy: development of a robust and portable sensor for acidity prediction in grapes, Chemometrics and Intelligent Laboratory Systems, 2004, 71 (1): 141-150
    [164] Borin A, Ferr?o M F, Mello C, et al. Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk. Analytica Chimica Acta, 2006, 579(1): 25-32
    [165] Ferr?o M F, Godoy S C, Gerbase A E, et al. Non-destructive method for determination of hydroxyl value of soybean polyol by LS-SVM using HATR/FT-IR. Analytica Chimica Acta, 2007, 595 (1): 114-119
    [166] Niazi A, Ghasemi J, Zendehdel M. Simultaneous voltammetric determination of morphine and noscapine by adsorptive differential pulse stripping method and least-squares support vector machines, Talanta, 2007, 74 (1): 247-254
    [167] Liu F, Zhang F, Jin Z L, et al. Determination of acetolactate synthase activity and protein content of oilseed rape (Brassica napus L.) leaves using visible/near-infrared spectroscopy. Analytica Chimica Acta, 2008, 629 (1): 56-65.
    [168] N?s A. The design of calibration in near infrared reflectance analysis by clustering. Journal of Chemometrics, 1987, 1: 121-134
    [169] Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks. Perth, Australia, 1995: 1942-1948
    [170] Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan, 1995, 39-43
    [171] Kennedy J, Eberhart R A. Discrete binary version of the particle swarm algorithm. In: IEEE Int’1 Conference on Computational Cybernetics and Simulation, 1997, 4104-4108
    [172] Shi Y, Eberhart R. A modified particle swarm optimizer. In: IEEE World Congress on Computational Intelligence, 1998, 69-73
    [173] Carlisle A, Dozier G. Adapting particle swarm optimization to dynamic environments. In: Proceedings of Int’1 Conference on Artificial Intelligence. 2000, 429-434
    [174] Clerc M, Kennedy J. The particle swarm-explosion, stability and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73
    [175] Brandstatter B, Baumgartner U. Particle swarm optimization-mass-spring system analogon. IEEE Transactions on Magnetics, 2002, 38(2): 997-1000
    [176] Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization. In: Proceedings of Congress on Evolutionary Computation. 2001, 79-85
    [177] Angeline P J. Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences. In: Evolutionary Programming VII, 1998, 601-610
    [178] Clerc M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the Congress of Evolutionary Computation. 1999, 1951-1957
    [179]李爱国,覃征,鲍复民.粒子群优化算法.计算机工程与应用, 2002, 38(21): 1-3
    [180] Ciuprina G, Loan D, Munteanu I. Use of intelligent-particle swarm optimization in electromagnetics. IEEE Transactions on Magnetics, 2002, 38(2): 1037-1040
    [181] Agrafiotis D K, Cedeno W. Feature selection for structure-activity correlation using binary particle swarms. Journal of Medicinal Chemistry, 2002, 45(5): 1098-1107
    [182] Shen Q, Jiang J H, Yu R Q, et al. Modified particle swarm optimizationalgorithm for variable selection in MLR and PLS modeling: QSAR studies of antagonism of angiotensin II antagonists. European Journal of Pharmaceutical Sciences, 2004, 22(2-3): 145-152
    [183] Lin W Q, Jiang J H, Wu H L, et al. Recent advances in chemometric methodologies for QSAR studies. Current Computer-Aided Drug Design, 2006, 2(3): 255-266
    [184] Wang Z, Durst G L, Eberhart R C, et al. Particle swarm optimization and neural network application for QSAR. In: Proceedings of IEEE International Conference on Parallel and Distributed Processing Symposium. 2004, 194-201
    [185] Zemroch P J. Cluster Analysis as an experimental design generator, with application to gasoline belending experiments. Technometrics, 1986, 28: 39-49
    [186] Kennard R W, Stone L A. Computer aided design of experiments. Technometrics, 1969, 11: 137-148
    [187] Honigs D, Hieftje G M, Mark H, Hirschfeld T B. Unique sample selection via near-infrared spectral subtraction. Analitical Chemistry, 1985, 57: 2299-2303
    [188] Snee R D. Validation of regression models: methods and examples. Technometrics, 1977, 19(4): 415-428
    [189] Martens H, N?s T. Multivariate calibration. Chichester: John Wiley & Sons, 1989: 1-9
    [190] N?s T, Isaksson T, Fearn T, et al. A user-friendly guide to multivariate calibration and clsaaification. Chichester: NIR Publications, 2002: 192-193
    [191] Harshman R A. Foundations of the PARAFAC procedure: Models and conditions for an‘explanatory’multi-modal factor analysis. UCLA Working Papers in Phonetics, 1970, 16(1): 1-84
    [192] Carroll J D, Chang J J. Analysis of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition. Psychometrika, 1970, 35(3): 283-319
    [193] Tucker L R. The extension of factor analysis to three-dimensional matrices, in Contributions to Mathematical Psychology. New York: Holt, Rinehart & Winston, 1964: 110-182
    [194] Tucker L R. Some mathematical notes on three-mode factor analysis. Psychometrika, 1966, 31(3): 279-311
    [195] Ho C N, Christian G D, Davidson. Application of the method of rank annihilation to quantitative analyses of multicomponent fluorescence data form the video fluorometer. Analytical Chemistry, 1978, 50(8): 3345-3351
    [196] Ho C N, Christian G D, Davidson. Application of the method of rank annihilation to fluorescent multicomponent mixtures of polynuclear aromatic hydrocarbons. Analytical Chemistry, 1980, 52(7): 1071-1079
    [197] Ho C N, Christian G D, Davidson. Simultaneous multicomponent rank annihilation and applications to multicomponent fluorescent data acquired by the video fluorometer Analytical Chemistry, 1981, 53(1): 92-98
    [198] Sanchez E, Kowalski B R. Generalized rank annihilation factor analysis. Analytical Chemistry, 1986, 58(2): 496-499
    [199] Wilson B E, Sanchez E, Kowalski B R. An improved algorithm for the generalized rank annihilation method. Journal of Chemometrics, 1989, 3(3): 493-498
    [200] Li S S, Hamilton C, Gemperline P J. Generalized rank annihilation method using similarity transformations. Analytical Chemistry, 1992, 64(6): 599-607
    [201] Kiers H A L, Smilde A K. Some theoretical results on second-order calibration methods for data with and without rank overlap. Journal of Chemometrics, 1995, 9(3): 179-195
    [202] Faber N M. The price paid for the second-order advantage when using the generalized rank annihilation method (GRAM). Journal of Chemometrics, 2001,15(9): 743-748
    [203] Sanchez E, Kowalski B R. Tensorial resolution: A direct trilinear decomposition. Journal of Chemometrics, 1990, 4(1): 29-45
    [204] Li S, Gemperline P J. Eliminating complex eigenvectors and eigenvalues in multiway analyses using the direct trilinear decomposition method. Journal of Chemometrics, 1993, 7(2): 77-88
    [205] ?hman J, Geladi P, Wold S. Residual bilinearizetion. Part 1: Theory and algorithms. Journal of Chemometrics, 1990, 4(1): 79-90
    [206] ?hman J, Geladi P, Wold S. Residual bilinearizetion. Part 2: Application to HPLC-diode array data and comparison with rank annihilation factor analysis. Journal of Chemometrics, 1990, 4(2): 135-146
    [207] Olivieri A C. On a versatile second-order multivariate calibration method based on partial least-squares and residual bilinearization: Second-order advantage and precision properties. Journal of Chemometrics, 2005, 19(4): 253-265
    [208] Juan A, Rutan S C, Tauler R, et al. Comparison between the direct trilinear decomposition and the multivariate curve resolution-alternating least squares methods for the resolution of three-way data sets. Chemometrics and IntelligentLaboratory Systems, 1998, 40(1): 19-32
    [209] Saurina J, Hemandez-Cassou S, Tauler R. Multivariate curve resolution and trilinear decomposition methods in the analysis of stopped-flow kinetic data for binary amino acid mixtures. Analytical Chemistry, 1997, 69(13): 2329-2336
    [210] Paatero P. Construction and analysis of degenerate PARAFAC models. Journal of Chemometrics, 2000, 14(3): 285-299
    [211] Tomasi G, Bro R. PARAFAC and missing values. Chemometrics and Intelligent Laboratory Systems, 2005, 75(2): 163-180
    [212] Bro R. PARAFAC: Tutorial and applications. Chemometrics and Intelligent Laboratory Systems, 1997, 38(2): 149-171
    [213] Rayens W S, Mitchell B C. Two-factor degeneracies and a stabilization of PARAFAC. Chemometrics and Intelligent Laboratory Systems, 1997, 38(2): 173-181
    [214] Wu H L, Shibukawa M, Oguma K. An alternating trilinear decomposition method with application to calibration of HPLC-DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbous. Journal of Chemometrics, 1998, 12(1): 1-26
    [215] Chen Z P, Wu H L, Yu R Q. On the self-weighted alternating trilinear decomposition algorithm - the property of being insensitive to excess factors used in calculation. Journal of Chemometrics, 2001, 15(5): 439-453
    [216] Xia A L, Wu H L, Fang D M, et al. Alternating penalty trilinear decomposition for second-order calibration with an application to interference-free analysis of excitation-emission matrix fluorescence data. Journal of Chemometrics, 2005, 19(2): 65-7
    [217] Jiang J H, Wu H L, Chen Z P, et al. Coupled vectors resolution method for chemometric calibration with three-way data. Analytical Chemistry, 1999, 71(19): 4254-4262
    [218] Jiang J H, Wu H L, Li Y, et al. Alternating coupled vectors resolution (ACOVER) method for trilinear analysis of three-way data. Journal of Chemometrics, 1999, 13(6): 557-578
    [219] Jiang J H, Wu H L, Li Y, et al. Three-way data resolution by alternating slice-wise diagonalization (ASD) method. Journal of Chemometrics, 2000, 14(1): 15-36
    [220] Li Y, Jiang J H, Wu H L, et al. Alternation coupled matrics resolution method for three-way array analysis. Chemometrics and Intelligent Laboratory Systems,2000, 52(1): 33-43
    [221] Chen Z P, Li Yang, Yu R Q. Pseudo alternating least squares algorithm for trilinear decomposition. Journal of Chemometrics, 2001, 15(3): 149-167
    [222] Chen Z P, Wu H L, Li Y, et al. A novel constrained PARAFAC algorithm for second-order linear calibration. Analytica Chimica Acta, 2000, 423(1): 187-196
    [223] Cao Y Z, Chen Z P, Mo C Y, et al. A PARAFAC algorithm using penalty diugonalization error (PDE) for three-way data array resolution. The Analyst, 2000, 125(12): 2303-2310
    [224] Xia A L, Wu H L, Zhu S H, et al. Determination of psoralen in human plasma by using excitation-emission matrix fluorescence coupled to second-order calibration. Analytical Sciences, 2008, 24(9): 1171-1178
    [225] Wise B M, Gallagher N B, Butler S W, et al. A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process. Journal of Chemometrics, 1999, 13(3-4): 379-396
    [226] Smilde A K. Three-way analyses: Problems and prospects. Chemometrics and Intelligent Laboratory Systems, 1992, 15(2-3): 143-157
    [227] Grung B, Kavlheim M. Rank mapping of three-way multicomponent profiles. Chemometrics and Intelligent Laboratory Systems, 1995, 29(2): 223-232
    [228] Hergert L A, Escandar G M. Spectrofluorimetric study of theβ-cyclodextrin- ibuprofen complex and determination of ibuprofen in pharmaceutical preparations and serum. Talanta, 2003, 60(2-3): 235-246
    [229] Beltran J L, Guiteras J, Ferrer R. Three-way multivariate calibration procedures applied to high-performance liquid chromatography coupled with fast-scanning fluorescence spectrometry detection. Determination of polycyclic aromatic hydrocarbons in water samples. Analytical Chemistry, 1998, 70(9): 1949-1955
    [230] Windig W, Antalek B. Resolving nuclear magnetic resonance data of complex mixtures by three-way methods: Examples of chemical solutions and the human brain. Chemometrics and Intelligent Laboratory Systems, 1999, 46(2): 207-219
    [231] Beltran J L, Guiteras J, Ferrer R. Parallel factor analysis of partially resolved chromatographic data: Determination of polycyclic aromatic hydrocarbons in water samples. Journal of Chromatography A, 1998, 802(2): 263-275
    [232] Johnson K, Juan A D, Rutan S C. Three-way data analysis of pollutant degradation profiles monitored using liquid chromatography-diode array detection. Journal of Chemometrics, 1999, 13(3-4): 331-341
    [233] Bezemer E, Rutan S. Evaluation of synthetic liquid chromatography—diode array detection—mass spectrometry data for the determination of enzyme kinetics. Analytica Chimica Acta, 2003, 490(1-2): 17-29
    [234] Bijlsma S, Louwerse D J, Smilde A K. Estimating rate constants and pure UV-vis spectra of a two-step reaction using trilinear models. Journal of Chemometrics, 1999, 13(3-4): 311-329
    [235] Hergert L A, Escandar G M. Spectrofluorimetric study of theβ-cyclodextrin- ibuprofen complex and determination of ibuprofen in pharmaceutical preparations and serum. Talanta, 2003, 60(2-3): 235-246
    [236] Nomikos P, MacGregor J F. Monitoring of batch processes using multi-way principal component analysis. AIChE Journal, 1994, 40(8): 1361-1375
    [237] Kenneth S, Dahl A, Michael J, et al. Translating third-order data analysis methods to chemical batch Processes. Chemometrics and Intelligent Laboratory Systems, 1999, 46(2): 161-180
    [238] Smilde A K, Tates A A, Boelens H F M, et al. Systematic investigation of process and product variations in a spindraw-winding process. Chemical Engineering Science, 2001, 56(17): 4993-5002
    [239] Bijlsma S, Smilde A K. Estimating reaction rate constants from a two-step reaction: A comparison between two-way and three-way methods. Journal of Chemometrics, 2000, 14(5-6): 541-560
    [240] Tan Y X, Jiang J H, Wu H L, et al. Resolution of kinetic system of simultaneous degradations of chlorophyll a and b by PARAFAC. Analytica Chimica Acta, 2000, 412(1-2): 195-202
    [241] Sanchez-Ponce R, Rutan S C. Steady state kinetic model constraint for multivariate curve resolution-alternating Least Squares analysis. Chemometrics and Intelligent Laboratory Systems, 2005, 77(1): 50-58
    [242] Bro R, Heimdal H. Enzymatic browning of vegetables. Calibration and analysis of variance by multiway methods. Chemometrics and Intelligent Laboratory Systems, 1996, 34(1): 85-102
    [243] Zhang Y, Wu H L, Xia A L, et al. Interference-free determination of sudan dyes in chilli foods using second-order calibration algorithms coupled with HPLC-DAD. Talanta, 2007, 72(3): 926-931
    [244] Zhang Y, Wu H L, Ding Y J, et al. Simultaneous determination of cortisol and prednisolone in body fluids by using HPLC–DAD coupled with second-order calibration based on alternating trilinear decomposition. Journal ofChromatography B, 2006, 840(1-2): 116-123
    [245] JiJi R D, Andersson G G, Booksh K S. Application of PARAFAC for calibration with excitation–emission matrix fluorescence spectra of three classes of environmental pollutants. Journal of Chemometrics, 2000, 14(3): 171-185
    [246] Wentzell P D, Nair S S, Guy R D. Three-way analysis of fluorescence spectra of polycyclic aromatic hydrocarbons with quenching by nitromethane. Analytical Chemistry, 2001, 73(7):1408-1415
    [247] Nilsson J, De Jong S, Smilde A. Multiway calibration in 3D QSAR. Journal of Chemometrics, 1997, 11(6): 511-524
    [248] Sonesson C, Barf T, Nilsson J, et al. Synthesis and evaluation of pharmacokinetic properties of monopropyl analogs of 5-, 7-, and 8-[[(triflouromethyl)sulfonyl]oxy]-2-aminotetralins: central dopamine and serotonine receptor activity. Journal of Medicinal Chemistry, 1995, 38(8): 1319-1329
    [249] Martin B, Robert T, Kannan K. Quantitative structure–property relationships for physiologically based pharmacokinetic modeling of volatile organic chemicals in rats. Toxicology and Applied Pharmacology, 2003, 189(3): 221-232
    [250] Xia A L, Wu H L, Fang D M, et al. Determination of daunomycin in human plasma and urine using an interference-free analysis of excitation-emission matrix fluorescence data with second-order calibration. Analytical Sciences, 2006, 22(9): 1189-1195
    [251] Zhang Y, Wu H L, Xia A L, et al. Fluorescence determination of metoprolol in human plasma by trilinear decomposition-based calibration techniques. Analytical and Bioanalytical Chemistry, 2006, 386(6): 1741-1748
    [252] Huang J, Wium H, Qvist K B, et al. Multi-way methods in image analysis-relationships and applications. Chemometrics and Intelligent Laboratory Systems, 2003, 66(2): 141-158
    [253] Jaumot J, Marchan V, Gargallo R, et al. Multivariate curve resolution applied to the analysis and resolution of two-dimensional [1H,15N] NMR reaction spectra. Analytical Chemistry, 2004, 76(23): 7094-7101
    [254] Geladi P, Forsstrom J. Monitoring of a batch organic synthesis by neat-infrared spectroscopy: modeling and interpretation of three-way data. Journal of Chemometrics, 2002, 16(7): 329-338
    [255] Lestandet T, Oden P C, Geladi P. 2 and 3-way analysis of NIR scans from seed crossings, In: Near Infrared Spectroscopy, Proceeding of the 10th InternationalConference, Chichester: NIR Publications, 2002, 385-388
    [256] Bro R, Workman J J, Kowalski P R. Review of chemometrics applied to spectroscopy: 1985–1995, Part III. Multi-way analysis. Applied Spectroscopy reviews, 1997, 32(3): 237-261
    [257] Baunsgaard D, Andersson C A, Arndal A, et al. Multi-way chemometrics for mathematical separation of fluorescent colorants and colour precursors from spectroˉuorimetry of beet sugar and beet sugar thick juice as validated by HPLC analysis. Food Chemistry, 2000, 70(1): 113-121
    [258] Rodrigueza N, Ortiza M C, Sarabiab L A. Fluorescence quantification of tetracycline in the presence of quenching matrix effect by means of a four-way model, Talanta, 2009,77 (3) 1129–1136
    [259] Olivieri A C, Arancibia J A, Pena A M, et al. Second-order advantage achieved with four-way fluorescence excitation-emission-kinetic data processed by parallel factor analysis and trilinear least-squares. Determination of methotrexate and leucovorin in human urine. Analytical Chemistry, 2004, 76(19): 5657-5666
    [260] Nikolajsen R P H, Booksh K S, Hansen A M, et al. Quantifying catecholamines using muti-way kinetic modeling. Analytica Chimica Acta, 2003, 475(1-2): 137-150
    [261] Goicoechea H C, Yu S J, Olivieri A C, et al. Four-way data coupled to parallel factor model applied to environmental analysis: Determination of 2,3,7,8-tetrachloro-dibenzo-para-dioxin in highly contaminated waters by solid-liquid extraction laser-excited time-resolved shpol’skii spectroscopy. Analytical Chemistry, 2005, 77(8): 2608-2616
    [262] Xia A L, Wu H L, Li S F, et al. Alternating penalty quadrilinear decomposition algorithm for an analysis of four-way data arrays, Journal of Chemometrics, 2007,21 (3): 133-144
    [263] Zhu S H, Wu H L , Xia A L, et al. Determination of Carbaryl in effluent water with Four-Way Fluorescence Excitation-Emission-Kinetic Data Processed by Parallel Factor Analysis. Talanta, 2009, 77(5): 1640-1646
    [264] Wu H L, Nie J F, Yu Y J, et al. Multi-way chemometric methodologies and applications: A central summary of our research work, Analytica Chimica Acta, 2009, 650 (1):131-142
    [265] Taylor J R, Streetman D S, Castle S S. Medication bezoars: a literature review and report of a case, The Annals of Pharmacotherapy,1998, 32(9): 940-946
    [266]中华本草下册.上海科学技术出版社, 1998, 2526
    [267]国家药典委员会.中华人民共和国药典, 2000年版, 1部.北京:化学工业出版社, 2000. 616
    [268]陆婉珍.现代近红外光谱分析技术(第二版).北京:中国石化出版社, 2007
    [269]严衍禄,赵龙莲,韩东海等.近红外光谱分析基础与应用.北京:中国轻工出版社, 2005
    [270] Jiang J H, Berry R J, Siesler H W, et al. Wavelength Interval Selection in Multicomponent Spectral Analysis by Moving Window Partial Least-Squares Regression with Applications to Mid-Infrared and Near-Infrared Spectroscopic Data. Analytical Chemistry, 2002, 74(14): 3555-3565
    [271] Kasemsumran S, Du Y P, Maruo K, et al. Selective removal of interference signals for near-infrared spectra of biomedical samples by using region orthogonal signal correction. Analytica Chimica Acta, 2004, 526(2):193-202
    [272] Kang N, Kasemsumran S, Woo Y A, et al. Optimization of informative spectral regions for the quantification of cholesterol, glucose and urea in control serum solutions using searching combination moving window partial least squares regression method with near infrared spectroscopy. Chemometrics and Intelligent Laboratory Systems, 2006, 82(1-2): 90-96
    [273] Kasemsumran S, Du Y P, Murayama K, et al. Near-infrared spectroscopic determination of human serum albumin, r-globulin, and glucose in a control serum solution with searching combination moving window partial least square. Analytica Chimica Acta, 2004, 512(2): 223-230
    [274] Kasemsumran S, Du Y P, Maruo K, et al. Improvement of partial least squares models for in vitro and in vivo glucose quantifications by using near-infrared spectroscopy and searching combination moving window partial least squares. Chemometrics and Intelligent Laboratory Systems, 2006, 82(1-2): 97-103
    [275] Du Y P, Liang Y Z, Jiang J H, et al. Spectral regions selection to improve prediction ability of PLS models by changeable size moving window partial least squares and searching combination moving window partial least squares. Analytica Chimica Acta, 2004, 501(2): 183-191
    [276] Lee Y, Chung H, Arnold A. Improving the robustness of a partial least squares (PLS) model based on pure component selectivity analysis and range optimization: Case study for the analysis of an etching solution containing hydrogen peroxide. Analytica Chimica Acta, 2006, 572(1): 93-101
    [277] Slobodan S A I, Katsumoto Y, Sato H. Applications of Moving Window Two-Dimensional Correlation Spectroscopy to Analysis of Phase Transitions and Spectra Classification, Analytical Chemistry, 2003, 75(16): 4010-4018
    [278] Yang J, Lee F S, Shou S J. Simplex Optimization of PCA-Based Infrared Expert Systems. Analytical Chemistry, 1999, 71(10): 960-967
    [279] Lucasius C B, Beckers M L, Kateman G. Genetic algorithms in wavelength selection: a comparative study. Analytica Chimica Acta, 1994, 286(2): 135-153
    [280] Liang Y, Xie Y, Yu R. Accuracy criteria and optimal wavelength selection for multicomponent spectrophotometric determinations. Analytica Chimica Acta, 1989, 222(1): 347-357
    [281] Sasaki K, Kawata S, Minami S. Optimal Wavelength Selection for Quantitative Analysis. Applied Spectroscopy, 1986, 40(2):185-190
    [282] Lucasius C B, Kateman G. Genetic algorithms for large-scale optimization in chemometrics: An application. Trends in Analytical Chemistry, 1991, 10(8): 254-261
    [283] Lucasius C B, Beckers M L, Kateman G, Genetic algorithms in wavelength selection: a comparative study. Analytica Chimica Acta, 1994, 286(2): 135-153
    [284] Horchner U and Kalivas J H, Further investigation on a comparative study of simulated annealing and genetic algorithm for wavelength selection. Analytica Chimica Acta, 1995, 311(1): 1-13
    [285] Araujo M C U, Saldanha T C B, Galvao R K H. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometrics and Intelligent Laboratory Systems, 2001, 57(2):65-73
    [286] Alsberg B K, Kell D B, Goodacre R, Variable Selection in Discriminant Partial Least-Squares Analysis,Analytical Chemistry, 1998, 70(19): 4126-4133
    [287] Lutz U, Lutz R W, Lutz W K, Metabolic Profiling of Glucuronides in Human Urine by LC-MS/MS and Partial Least-Squares Discriminant Analysis for Classification and Prediction of Gender, Analytical Chemistry, 2006, 78(13): 4564-4571
    [288] Geladi P, McDougall D, Martens H. Linearization and Scatter-Correction for Near-Infrared Reflectance Spectra of Meat. Applied Spectroscopy, 1985, 39(3): 491-500
    [289] Keemley E K. Discriminant analysis of high-dimensional data: a comparison of principal components analysis and partial least squares data reduction methods, Chemometrics and Intelligent Laboratory Systems, 1996, 33(1): 47-61.
    [290] Kim H, Kim D, Bang S Y. Extensions of LDA by PCA mixture model and class-wise features. Pattern Recognition, 2003, 36 (5):1095-1105
    [291] Yang J, Yang J Y. Why can LDA be performed in PCA transformed space. Pattern Recognition, 2003, 36(2):563-566
    [292] Bakken G A, Jurs P C. Classification of Multidrug-Resistance Reversal Agents Using Structure-Based Descriptors and Linear Discriminant Analysis. Journal of Medicinal Chemistry, 2000,43(23): 4534-4541.
    [293] Murcia S M, Perez G F, Garcia M F J, et al. Artificial Neural Networks and Linear Discriminant Analysis: A Valuable Combination in the Selection of New Antibacterial Compounds, Journal of Chemical Information and Modeling, 2004, 44 (3):1031-1041
    [294] Zou J X , Modern Diagnosis Treatment, 2004, 15(3): 174-175
    [295]国家药典委员会.中华人民共和国药典, 2000年版, 1部.北京:化学工业出版社, 2000. 415
    [296] Fu H Y, Huan S Y, Xu L, et al. Moving window partial least-squares discriminant analysis for identification of different kinds of bezoar samples by near infrared spectroscopy and comparison of different pattern recognition methods. Journal of Near Infrared Spectroscopy, 2007,15 (5): 291-297
    [297] Geladi P, Kowalski B R, Partial least-squares regression: a tutorial. Analytica Chimica Acta, 1986, 185: 1-17
    [298] Grotti M, Leardi R, Frache R. Empirical modelling of interferences in electrothermal atomization atomic absorption spectrometry. Analytica Chimica Acta, 1998, 376(3): 293-304
    [299] Sjostrom M, Wold S, Lindberg W, et al. A multivariate calibration problem in analytical chemistry solved by partial least-squares models in latent variables. Analytica Chimica Acta, 1983, 150:61–70.
    [300] Friedrichs F, Igel C. Evolutionary tuning of multiple SVM parameters. Neurocomputing 2005, 64(1): 107–117
    [301] Frohlich H, Chapelle O, Scholkopf B. Feature selection for support vector machines by means of genetic algorithms. in: Proceedings of the 15th IEEE International Conference on Tools with AI (ICTAI 2003), IEEE Computer Society Institute of Electrical and Electronics Engineers Inc., USA, 2003, pp. 142–148
    [302] Wentzell P D, Andrews D T, Walsh J M, et al. Estimation of hydrocarbon types in light gas oils and diesel fuels by ultraviolet absorption spectroscopy andmultivariate calibration. Canadian Journal of Chemistry, 1999, 77(3): 391-400
    [303] Gy P. Sampling for analytical purposes. New York: John Wiley & Sons, 1998: 1-10
    [304] Petersen L, Minkkinen P, Esbensen K H. Representative sampling for reliable data analysis: theory of sampling. Chemometrics and Intelligent Laboratory Systems, 2005, 77(1-2): 261-277
    [305] Worsfold P J, Gimbert L J, Mankasingh U, et al. Sampling, sample treatment and quality assurance issues for the determination of phosphorus species in natural waters and soils. Tanlanta, 2005, 66(2): 273-293
    [306] Xu L, Jiang J H, Lin W Q, et al. Optimized sample-weighted partial least squares. Talanta, 2007, 7(2): 561-566
    [307] Zhou Y P , Jiang J H, Lin W Q, et al. Boosting support vector regression in QSAR studies of bioactivities of chemical compounds,European Journal of Pharmaceutical Sciences, 2006, 28: 344-353
    [308] Cui W T,Yan X F, Adaptive weighted least square support vector machine regression integrated with outlier detection and its application in QSAR.Chemometrics and Intelligent Laboratory Systems, 2009, 98(2):130-135
    [309] Xu Q S, Liang Y Z. Monte Carlo cross validation, Chemometrics and Intelligent Laboratory Systems, 2001, 56(1): 1–11
    [310] Nakagawa H, Saito H, Ikegami Y, et al. Molecular modeling of new camptothecin analogues to circumvent ABCG2-mediated drug resistance in cancer. Cancer Letters , 2006, 234 (1): 81-89
    [311] Rothenberg M L. Irinotecan (CPT-11): Recent Developments and Future Directions–Colorectal Cancer and Beyond. The Oncologist, 2001,6(1): 66-80
    [312] Bruijn P, Verweij J, Loos W J , et al. Determination of irinotecan (CPT-11) and its active metabolite SN-38 in human plasma by reversed-phase high performance liquid chromatography with fluorescence detection. Journal of Chromatography B, 1997,698 (1-2) :277-285
    [313] Jong F A, Mathijssen R H J, Bruijn P, et al. Determination of irinotecan (CPT-11) and SN-38 in human whole blood and red blood cells by liquid chromatography with fluorescence detection. Journal of Chromatography B, 2003,795 (2): 383-388
    [314] Kurita A , Kaneda N. High-performance liquid chromatographic method for the simultaneous determination of the camptothecin derivative irinotecan hydrochloride, CPT-11, and its metabolites SN-38 and SN-38 glucuronide in ratplasma with a fully automated on-line solid-phase extraction system, PROSPEKT. Journal of Chromatography B, 1999,724 (2): 335-344
    [315] Kazumi S, Megumi Y, Shinya H,et al. Simple non-ion-paired high-performance liquid chromatographic method for simultaneous quantitation of carboxylate and lactone forms of 14 new camptothecin derivatives.Journal of Chromatography B, 2003, 795(1): 25-34
    [316] Ragot S, Marquet P, Lachatre F, et al. Sensitive determination of irinotecan (CPT-11) and its active metabolite SN-38 in human serum using liquid chromatography–electrospray mass spectrometry. Journal of Chromatography B,1999,736(1-2): 175-184
    [317] Escoriaza J, Aldaz A, Castellanos C, et al. Simple and rapid determination of irinotecan and its metabolite SN-38 in plasma by high-performance liquid-chromatography: application to clinical pharmacokinetic studies. Journal of Chromatography B, 2000,740(2):159-168
    [318] Sparreboom A, Bruijn P, Jonge M J A, et al. Liquid chromatographic determination of irinotecan and three major metabolites in human plasma, urine and feces. Journal of Chromatography B, 1998,712 (1-2): 225-235
    [319] Warner I M, Patonay G, Thomas M P, Multidimensional luminescence measurements. Analytical Chemistry, 1985, 57: 463A-483A
    [320] Ndou T T, Warner I M, Applications of multidimensional absorption and luminescence spectroscopies in analytical chemistry. Chemical Reviews, 1991, 91: 493-510.
    [321] Kruskal J B, Harshman R A, Lundy M E. Rank, decomposition and uniqeness for 3-way and N-way arrays, In: Coppi R, Bolasco S (eds) Multiway Data Analysis, Amsterdam: Elsevier, 1989, 7-18
    [322] Smilde A K, Bro R, Geladi P. Multi-way Analysis: Applications in the Chemical Sciences, New York: Wiley, 2004, 23-34
    [323] Lorber A. Error propagation and figures of merit for quantification by solving matrix equations. Analytical Chemistry, 1986, 58(6): 1167-1172
    [324] Messick N J, Kalivas J H, Lang P M. Selectivity and related measures for Nth-order data. Analytical Chemistry, 1996, 68(9): 1572-1579
    [325] Wang Y, Borgen O S, Kowalski B R, et al. Advances in second-order calibration. Journal of Chemometrics, 1993, 7(2): 117-130
    [326] Faber K, Lorber A, Kowalski B R. Analytical figures of merit for tensorial calibration. Journal of Chemometrics, 1997, 11(5): 419-461
    [327] Ho C N, Christian G D, Davidson E R. Application of the method of rank annihilation to fluorescent multicomponent mixtures of polynuclear aromatic hydrocarbons. Analytical Chemistry, 1980, 52(7): 1071-1079
    [328] Faber N M. The price paid for the second-order advantage when using the generalized rank annihilation method (GRAM). Journal of Chemometrics, 2001, 15(9): 743-748
    [329] Olivieri A C. Computing sensitivity and selectivity in parallel factor analysis and related multiway techniques: the need for further developments in net analyte signal theory. Analytical Chemistry, 2005, 77(15): 4936-4946
    [330] Olivieri A C, Juan A A, Pe?a A M, et al. Second-order advantage achieved with four-way fluorescence excitation-emission-kinetic data processed by parallel factor analysis and trilinear least-squares. determination of methotrexate and leucovorin in human urine. Analytical Chemistry, 2004, 76(19): 5657-5666
    [331] de la Pe?a A M, Mansilla A E, Go′mez D G, et al. Interference-Free Analysis Using Three-Way Fluorescence Data and the Parallel Factor Model. Determination of Fluoroquinolone Antibiotics in Human Serum . Analytical Chemistry, 2003, 75(11): 2640-2646
    [332] Olivieri A C, Faber N M. Standard error of prediction in parallel factor analysis of three-way data. Chemometrics and Intelligent Laboratory Systems, 2004, 70(1): 75-82
    [333] Lorber A, Faber K, Kowalski B R. Net analyte signal calculation in multivariate calibration. Analytical Chemistry, 1997, 69(8): 1620-1626
    [334] Bro R, Kiers H A L. A new efficient method for determining the number of components in PARAFAC modes. Journal of Chemometrics, 2003, 17(5): 274-286
    [335] Wasim M, Brereton R G , Determination of the number of significant components in liquid chromatography nuclear magnetic resonance spectroscopy, Chemometrics and Intelligent Laboratory Systems, 2004, 72:133-151
    [336] Chen Z P, Liu Z, Cao Y Z, et al. Efficient way to estimate the optimum number of factors for trilinear decomposition. Analytica Chimica Acta, 2001, 444(2): 295-307
    [337] Harshman R A, Lundy M E. The PARFAC model for three-way factor analysis and multi-dimensional scaling, In: Law H G, Snyder C W, Hattie J A, McDonald R P (Eds.), Research Methods for Multi-mode Data Analysis, New York: Praeger, 1984, 216-284
    [338] Louwerse D J, Smilde A K, Kiers H A L. Cross-validation of multiway component models. Journal of Chemometrics, 1999, 13(5): 491-510
    [339] Durell S R, Lee C H, Ross R T, et al. Factor analysis of the near-ultraviolet absorption spectrum of plastocyanin using bilinear, trilinear, and quadrilinear models. Archives of Biochemistry and Biophysics, 1990, 278(1):148-160
    [340] Xie H P, Jiang J H, Shen G L, et al. Estimation of the chemical rank for the three–way data: a principal norm vector orthogonal projection approach. Computers & Chemistry, 2002, 26(2): 183-189
    [341] Xie H P, Jiang J H, Long N, et al. Estimation of chemical rank of a three-way array using a two-mode subspace comparison approach. Chemometrics and Intelligent Laboratory Systems, 2003, 66(1): 101-115
    [342] Chen Z P, Liang Y Z, Jiang J H, et al. Determination of the mumber of components in mixtures using a new approach incorporating chemical information. Journal of Chemometrics, 1999, 13(1): 15-30
    [343] Hu L Q, Wu H L, Jiang J H, et al. Estimating the chemical rank of three-way data arrays by a simple linear transform incorporating Monte Carlo simulation. Talanta, 2007, 71(1): 373-380
    [344] Xia A L, Wu H L, Zhu S H, et al. A novel efficient way to estimate the chemical rank of high-way data arrays. Analytica Chimica Acta, 2007,598(1):1-11
    [345] Arancibia J A, Escandar G M. Two different strategies for the fluorimetric determination of piroxicam in serum. Talanta, 2003, 60(6): 1113-1121
    [346] Gonz′alez A G, Herrador M A, Asuero A G. Intra-laboratory testing of method accuracy from recovery assays. Talanta, 1999, 48 (2): 729-736
    [347]陈国珍,黄贤智,许金钩等.荧光分析法(第二版),北京:科学出版社, 1990
    [348] Blanco C C, Carretero A G, Fernández M,et al. Micellar-enhanced synchronous-derivative fluorescence determination of derivatized folic acid in pharmaceutical preparations.Journal of Pharmaceutical and Biomedical Analysis, 1995, 13(8):1019-1025
    [349] Mu?oz P A, Mora D, Bohoyo G D, et al. Simultaneous determination of flufenamic and meclofenamic acids in human urine samples by second-order multivariate parallel factor analysis (PARAFAC) calibration of micellar-enhanced excitation–emission fluorescence data. Analytica Chimica Acta, 2006, 569(1-2): 250-259
    [350] Wang C C, Adriana N M, Liliana F, On-line micellar-enhancedspectrofluorimetric determination of rhodamine dye in cosmetics. Talanta, 2008, 75(1): 135-140
    [351] Manzoori J L, Amjadi M. Spectrofluorimetric and micelle-enhanced spectrofluorimetric methods for the determination of gemfibrozil in pharmaceutical preparations. Journal of Pharmaceutical and Biomedical Analysis, 2003, 31(3):507-513
    [352] Mahedero M C G, Mora D N, Bohoyo G D, et al. Determination of sulphathiazole and sulphanilamide by photochemically induced fluorescence and first-derivative fluorescence. Journal of Pharmaceutical and Biomedical Analysis, 2005, 38(2):349-354
    [353] Flores J L, Molina D A, Fernández C M L, Development of a photochemically induced fluorescence-based optosensor for the determination of imidacloprid in peppers and environmental waters. Talanta, 2007, 72(3): 991-997
    [354] Satish K S, Malin S, Carina E, et al. Chemiluminescence is a rapid and sensitive method to assess phosphatidylcholine oxidation. International Journal of Pharmaceutics, 1996, 142(2): 199-213
    [355] Morais I P A, Tóth I V, António O S S. An overview on flow methods for the chemiluminescence determination of phosphorus.Talanta, 2005, 66( 2):341-347
    [356] Lamparczyk H, Chmielewska A, Konieczna L.et al. RP-HPLC method with electrochemical detection for the determination of metoclopramide in serum and its use in pharmacokinetic studies, Biomedical Chromatography,2001, 5(8):513-517
    [357] Velpandian T, Jaiswal J, Bhardwaj R K, Gupta S K, Development and validation of a new high-performance liquid chromatographic estimation method of meloxicam in biological samples, Journal of Chromatography B, 2000,738 (2) 431–436
    [358] Radwan M A, Determination of Metoclopramide in Serum by HPLC Assay and Its Application to Pharmacokinetic Study in Rat, Analytical Letters, 1998, 31(14): 2397– 2410
    [359] Charles J J, Bertucat M, Simultaneous high performance liquid chromatographic analysis of non-steroidal anti-inflammatory oxicams in pharmaceutical preparations. Journal of Liquid Chromatography & Related Technologies, 1999, 22(13 ): 2009– 2021
    [360] Vignaduzzoa S E., Castellanoa P M and Kaufman T S, Method development and validation for the simultaneous determination of meloxicam and pridinolmesylate using RP-HPLC and its application in drug formulations , Journal of Pharmaceutical and Biomedical Analysis, 46( 2) 2008: 219-225
    [361] Wiesner J L, Jage A D, Sutherland F C W, et al. Sensitive and rapid liquid chromatography–tandem mass spectrometry method for the determination of meloxicam in human plasma, Journal of Chromatography B, 785(1)2 2003:115-121
    [362] Hormazba V, Fosse T, Ranheim B, A Sensitive Assay for the Determination of Meloxicam in Swine Plasma by Liquid Chromatography-Mass Spectrometry , Journal of Liquid Chromatography & Related Technologies, 29(9 ) 2006 :1291 - 1296
    [363]马红燕,胶束增敏荧光光度法测定甲氧氯普胺的研究,延安大学学报,1999,18(1): 48-51
    [364]叶桦珍,邱彬,陈珍斌,等.同步扫描荧光法测定美洛昔康片的含量.分析测试技术与仪器,2007,13(1):50-55
    [365] Hierlemann A. Higher-Order Chemical Sensing. Chemical Reviews, 2008, 108 (2): 563-613
    [366] Kim Y C, Jordan J A, Nahorniak M L, Booksh K S. Photocatalytic Degradation-Excitation-Emission Matrix Fluorescence for Increasing the Selectivity of Polycyclic Aromatic Hydrocarbon Analyses. Analytical Chemistry, 2005, 77(23): 7679-7686
    [367] Olivieri A C, Computing Sensitivity and Selectivity in Parallel Factor Analysis and Related Multiway Techniques: The Need for Further Developments in Net Analyte Signal Theory. Analytical Chemistry, 2005, 77(15): 4936-1946
    [368] Malinowski E R, Howery D G. Factor Analysis in Chemistry. New York: Wiley-Interscience,1980:1-100
    [369] Lopez F, Alamo C, Rubio G,et a1.Half a century since the clinical introduction of chlorpromazine and the birth of modem psychopharmacology. Progress in Neuro-Psychopharmacology & Biological Psychiatry , 28(1):205-208
    [370]尹明兰,史海雯. HPLC法同时测定血清中常用精神病治疗药,中华临床医药,2003:4(24):117-118
    [371] Huang W Q, ChenQ X, Yang W. Determination of chlorpromazine in human pla sma by HPLC. Strait Pharmaceutical Journal ,2008,20 (5):98-101
    [372] Zhang G, Terry A V J, Bartleet M G. Sensitive liquid chromatography/tandem mass spectrometry method for the determination of the lipophilic antipsychotic drug chlorpromazine in rat plasma and brain tissue. Journal of ChromatographyB, 2007, 854 (1-2) :68-76
    [373] Kircherr H, Kuhn V W N. Quantitative determination of forty-eight antidepressants and antipsychotics in human serum by HPLC tandem mass spectrometry:a multi-level ,single-sample approach. Journal of Chromatography B, 2006 ,843(1) :100-131
    [374]龙宁,吴海龙.二阶标准加入法误差传递的Monte Carlo模拟.化学分析计量,2004,13(5):18-21
    [375] Saxberg B E H, Kowalski B R. Generalized standard addition method. Analytical Chemistry, 1979, 51(7): 1031-1038
    [376] Booksh K, Henshaw J M, Burgess L W, et al. A second-order standard addition method with application to calibration of a kinetics-spectroscopic sensor for quantitation of trichloroethylene. Journal of Chemometrics, 1995, 9(4): 263-282
    [377] Wu H L, Yu R Q, Shibukawa M, et al. Second-Order Standard Addition Method Based on Alternating Trilinear Decomposition. Analytical Science, 2000, 16(2): 217-220
    [378] Comas E, Gimeno R A, Ferre J, et al. Using second-order calibration to identify and quantify aromatic sulfonates in water by high-performance liquid chromatography in the presence of coeluting interferences. Journal of Chromatography A, 2003, 988(2): 277-284
    [379] Gimeno R A, Comas E, Marce R M, et al. Second-order bilinear calibration for determining polycyclic aromatic compounds in marine sediments by solvent extraction and liquid chromatography with diode-array detection. Analytica Chimica Acta, 2003, 498(1-2): 47-53
    [380] Sinha A E, Fraga C G, Prazen B J, et al. Trilinear chemometric analysis of two-dimensional comprehensive gas chromatography-time-of-flight mass spectrometry data. Journal of Chromatography A, 2004, 1027(1-2): 269-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700