水溶性镧系位移试剂对反式-4-羟基脯氨酸的手性识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反式-4-羟基脯氨酸的L型异构体具有广泛的用途和独特的风味,可作生化试剂、香原料、增味剂、营养强化剂等,主要用于果汁、清凉饮料、营养饮料等;而其对映体D型异构体没有这些功效。诸如此类的例子非常多。一对手性对映体,特别是很多手性药物,常常因旋光性质的不同而引起生物活性、药效上的差异。因此,识别药物的手性构型,测定手性药物的手性对映体纯度的工作至关重要。
     核磁共振(NMR)技术是化合物结构解析的一种常用手段,在药学领域科研和生产活动中发挥着越来越重要的作用。核磁谱图可为化合物的结构解析提供丰富有用的信息,为分子的结构鉴定提供重要的依据。随着谱仪硬件的升级和软件程序的开发应用,核磁共振技术越来越多地应用于药物的定量分析。近几年来,核磁共振技术在药物手性对映体的研究中也扮演着重要的角色。本工作在实验室已有条件的基础上,研究手性位移试剂对反式-4羟基脯氨酸对映体的手性识别。
     论文第一部分详细解析了反式-4-羟基脯氨酸的核磁谱图特征。为了在谱图上有效识别D型和L型的共振信号,采用加入手性位移试剂的方法,人为地造成对映体分子磁环境差异。本论文的研究对象反式-4-羟基脯氨酸具有很好的水溶性,因此加入的手性位移试剂也应当能溶解于水。然而目前文献报道的水溶性位移试剂种类有限,已商品化的试剂更少。经调研,本论文选取Sm-pdta作为位移试剂,它具备了两个方面的特点。一是水溶性好,适合氨基酸类水溶性对映体的核磁分析。二是由Sm~(3+)顺磁金属离子造成的核磁谱线增宽较其他镧系金属离子小,适合在高场核磁共振谱仪上进行对映体分析。
     Sm~(3+)金属离子通过与底物反式-4-羟基脯氨酸分子中的含有孤对电子的氧原子、氮原子发生配位作用,造成底物分子的原子核磁环境受Sm~(3+)金属离子的干扰而发生化学位移偏移(Δδ)。底物分子中手性位点上各取代基团距中心离子的距离、空间取向存在差异,受螯合的金属离子偶极磁场诱导产生的化学位移偏移也不同。诱导化学位移越大,对映体手性识别效果越好。
     为了使诱导化学位移最大,我们分别分析了溶液酸碱度,位移试剂与底物摩尔比两个因素对手性识别效果的影响。实验结果表明,溶液pH影响Sm~(3+)金属离子的螯合能力,pH过低,底物分子内羧基离子化不完全,与Sm~(3+)金属离子螯合作用弱,诱导化学位移差值偏小;pH过高,Sm~(3+)金属离子与强配位离子OH~-发生不必要的络合,同样影响了Sm~(3+)金属离子与底物分子的配位作用。因此,以对映体化学位移差值ΔΔδ为评价标准,最终选择最佳手性识别pH范围为9.6~10.2。研究位移试剂与底物摩尔比,可以发现,摩尔比并不是越大越好。摩尔比太大,对映体化学位移差值(ΔΔδ)大,但谱峰位移,造成相邻谱峰重叠。摩尔比太小,则对映体信号区分不明显。因此,综合评价化学位移差值和谱峰重叠两个因素,我们最终确定了位移试剂与底物的摩尔比为0.67。在pH9.6~10.2,摩尔比为0.67的条件下,L/D=7:3时,氢谱中对映体4位质子的ΔΔδ为44.3Hz,2位质子的ΔΔδ为83.9Hz,3a位质子的ΔΔδ为46.4Hz。碳谱中,3位碳原子的ΔΔδ为14.6Hz,4位碳原子的ΔΔδ为38.3Hz,5位碳原子的ΔΔδ为130.3Hz。
     论文的第三部分考察了核磁共振在对映体过量值测定中的应用。首先,实验采用反转恢复法考察了溶液体系中氢原子核、碳原子核的弛豫特征。原子核的弛豫特征关系到定量结果的准确性,弛豫越充分,定量误差越小。原子核的弛豫性质反映在实验参数的设定上,对于氢谱,设定采样周期为4.7s;对于碳谱,设定采样周期为1.3s。然后,实验分别利用~1H NMR和~(13)C NMR方法测定对映体过量值。在~1H NMR方法中,采用L型和D型对映体的3a位质子信号以及D型异构体的2位质子信号为定量特征峰,计算了7个不同L、D配比的样品的对映体过量值,与理论ee值作线性分析,得到线性相关系数为0.9999,这说明了定量结果稳定可靠。在~(13)C NMR方法中,积分计算了7个不同L、D配比的样品中L型和D型的3位、4位、5位碳谱谱峰面积,然后根据积分面积计算对映体过量值,实验结果表明,5位碳的定量效果最佳,7个数据点线性关系良好,相关系数为0.9994;3位碳和4位碳在L:D比值为99.5:0.5时,受碳原子检测灵敏度的限制,低浓度D构型谱峰信噪比差,定量结果偏差较大。因此,将99.5:0.5这一组的定量数据除外,对余下的6个数据作线性分析,3位碳、4位碳的相关系数分别为0.9999和0.9993,定量数据可靠。
     利用碳谱相对定量法测定手性对映体纯度,是目前核磁共振对映体分析中比较少用的方法,也是本论文的重点工作之一。碳谱定量最显著的优点是信号分布范围宽,每一条碳谱谱线代表一个位置碳原子,很少出现碳信号重叠,可选的定量峰较多。正如本实验中所证明的一样,3位,4位,5位碳信号均可以作为定量峰。随着探头检测灵敏度不断提高,~(13)C NMR法将成为一种潜在的相对定量分析方法。
     对于氢谱定量,由于氢核检测灵敏度高,是目前大多数文献采用的方法。在D型异构体浓度较低(0.5%)时,在氢谱中仍然能够观测到质子的共振信号,且定量结果可靠。然而氢谱定量的一个缺点是氢谱谱峰重叠不可避免,这导致特征峰选择困难,需要仔细分析各个谱峰,保证定量峰的D型、L型信号完全分离。然而碳谱定量受到检测灵敏度的限制。
     综上,本论文所建立的手性位移试剂对水溶性手性对映体的识别条件和方法稳定可靠,采用~1H NMR法和~(13)C NMR法测定对映体纯度结果准确可靠,可为其他同类型的手性药物分析提供方法学参考。
Trans-4-hydroxy-L-proline has wide range uses and unique flavor,which can beused as biochemical reagents, spices, flavor enhancers and nutritional enhancer,mainly for juice, soft drinks, nutritional drinks etc., whereas, its enantiomer D-isomerdoes not have these effects. Such as these, many chiral enantiomers especially chiraldrugs, usually possess different biological activity and pharmacologic because ofdiscrepant optical rotation characteristics. Therefore, the identification of the chiralconfiguration and the determination of chiral enantiomer purity is essential.
     Nuclear Magnetic Resonance (NMR) technique is the mose common andversatile analytical method in organic chemistry, and increasingly plays an importantrole in the scientific research and production activities of pharmaceutical. NMRspectra are very useful for structural elucidation of compounds and structureidentification of moleculars. With the upgrading of spectrometer hardware and thedevelopment of software programs, NMR has been widely used in quantitativeanalysis of drugs. In recent years, it also plays an important role in study of chiralenantiomers drug.
     There have been developed various methods of determing the enantiomericpurity of chiral compunds using NMR technique. In this paper, a method fordetermination of enantiomeric composition of water-soluble sample was developed.
     The first part has a full structure elucidation of trans-4-hydroxy-proline sample.In order to identify the resonance signals of D-isomer and L-isomer effectively, chiralshift reagent was artificially added to cause magnetic field discrepancy of enantiomermolecules. The object studied in this thesis is R-4-hydroxyproline, which has verygood water soluble, thus the chiral shift reagent should be also hydrosoluble. However,this kind of hydrosoluble reagent is limited and very lack on commercial. Based on awide survey, the Sm-pdta was selected as shift reagent in this thesis, owning to its twocharacteristics. Firstly, it is hydrosoluble and is very suitable for NMR of amino acidsoluble enantiomers. Secondly, the NMR spectral line broadening caused by paramagnetic Sm~(3+)is less than other lanthanide ions, make it suitable for high fieldNMR of enantiomers analysis.
     Sm-pdta, a water-soluble chiral shift reagent,was added to THP solution to helpisomer signal recognising. Sm~(3+)ion act as a hard Lewis acid, can coordinate withoxygen and nitrogen atoms in the donor substrates, which acts as a hard Lewis base,and forms donor-acceptor complex.The magnetic field of the paramagnetic lanthanideion causes large changes in the chemical shift in the resonances of a bound donormolecule. The shifts are primarily the result of dipolar interactions of the magneticfield of lanthanide ion through space. The larger the induced shift, the better the chiralrecognition effect.
     The magnitude of the perturbation and the direction of the changes in chemicalshifts depend on the lanthanide ion. Therfore, we considered solution pH and molarratio of Sm-pdta and substrate as the main factors affecting the complexation oflanthanide ion and substrate. And finally a condition of pH9.6~10.2, molar ratio0.67was determined for the best isomer signal recognition and the largest inducedchemical shift. At this condition, in L:D7:3water solution, the induced chemical shiftof H-2, H-3a, H-4is83.9Hz,46.4Hz and44.3Hz respectively in~1H NMR spectra,the induced chemical shift of carbon C-3,C-4,C-5is14.6Hz,38.3Hz, and130.3Hzrespectively in~(13)C NMR spectra.
     The third part of the thesis studies the use of NMR in the determination ofenantiomeric excess. Firstly, the relaxation characteristics of hydrogen atoms nuclearand carbon atoms nuclear in the solution was studied by inverse-recovery method.The relaxation characteristics of atoms nuclear related with the accuracy of thequantitative results, the relaxation is more sufficient, the quantitative error is muchsmaller. The relaxation characteristics was affected by experiment parameters, thesampling period of~1H NMR and~(13)C NMR is4.7s and1.3s, respectively. After then,both method are used to determine the enantiomeric excess. In the method of~1HNMR, the characteristic peaks of H-3a of L-and D-isomer as well as the H-2of D-isomer were used for quantitative analysis. Seven different ratios of L-and D-samples were analyzed, and the enantiomeric excess was compared with theory, witha correlation coefficient of0.9999, indicating that the result is reliable. In the methodof~(13)C NMR, the integration areas of the C-3,C-4,C-5peaks of seven different ratiosof L-and D-samples were calculated, and the enantiomeric excess was then determined. The result shows that the C-5peak is the best one and the correlationcoefficient of seven samples is0.9994. When the L:D ration is99.5:0.5, because ofthe low concentration of D-isomer, the peaks of C-3and C-4were disturbed by lowsignal to noise ratio, the quantitative analysis has a large deviation. For other sixsamples, the peaks of C-3and C-4has a correlation coefficient of0.9993and0.9999,indicating a reliable result.
     Quantitative analysis by~(13)C NMR is the one of the most outstanding part of thiswork. For~(13)C NMR, the characteristic is the spectrum distribution is very wide, thusevery line represents a carbon with special position. There is hardly any overlap ofspectral lines and much more available peaks for quantitative analysis. Like in thethesis, the carbon peaks of C-3,C-4,C-5are both can be used for quantitativeanalysis.With the detection sensitivity improvement of probe,~(13)C NMR will becomea potential method in relative quantitative determination.
     As to~1H NMR, when the concentration of D-isomer is very low (less than0.5%),the resonance signal of proton still can be observed and quantitatively analyzedbecause of the high sensitive of proton in~1H NMR. However, the shortcoming of~1HNMR is that the selective of characteristic peak is complexity. One should carefullystudy each peak, ensuring that each D-and L-signal has been isolated, as well as nooverlap disturb at the peak for quantitative analysis. When calculating the integrationarea of the peak, the phase needs careful adjustment to determine the starting pointand check point. If the noise per signal of the spectrum is very high, the line widthfactor should not be used. Alternatively, a liner prediction can be used to solve theproblem of high baseline or the signal below the baseline.
     In conclusion, the method of using chiral shift reagent for water-soluble chiralenantiomers provided in this thesis is stable and reliable. Using proper operatingconditions and~1H NMR as well as~(13)C NMR, the purity of enantiomers can bedetermined accurately. This method can also be used for the analysis of other chiraldrugs.
引文
[1]. E.M. Purcell, H.C. Torrey, Resonance Absorption by Nuclear MagneticMoments in a Solid, Physical Review,1946,69,1-2:37-38.
    [2]. F.Bloch, W.W.Hansen, Nuclear Induction, Physical Review,1946,69,3-4:127-127.
    [3]. N.Bloembergen, E.M.Purcell, Relaxation Effects in Nuclear MagneticResonance Absorption, Physical Review,1948,73,7:679-712.
    [4]. W.D. Knight, Nuclear Magnetic Resonance Shift in Metals, Physical Review,1949,76,8:1259-1260.
    [5]. W.G.Proctor,F.C.Yu, The Dependence of a Nuclear Magnetic ResonanceFrequency upon Chemical Compound, Physical Review,1950,77,5:717-717.
    [6]. W.C. Dickinson, Dependence of the F19Nuclear Resonance Position onChemical Compound, Physical Review,1950,77,5:736-737.
    [7]. J.W. Emsley,J. Feeney, Forty years of Progress in Nuclear Magnetic ResonanceSpectroscopy, Progress in Nuclear Magnetic Resonance Spectroscopy,2007,50,4:179-198.
    [8]. W.G. Proctor,F.C. Yu, On the Nuclear Magnetic Moments of Several StableIsotopes, Physical Review,1951,81,1:20-30.
    [9]. H.S. Gutowsky,D.W. McCall, Nuclear Magnetic Resonance Fine Structure inLiquids, Physical Review,1951,82,5:748-749.
    [10]. E.L. Hahn,D.E. Maxwell, Chemical Shift and Field Independent FrequencyModulation of the Spin Echo Envelope, Physical Review,1951,84,6:1246-1247.
    [11]. R.R. Ernst,W.A. Anderson, Application of Fourier Transform Spectroscopy toMagnetic Resonance, Review of Scientific Instruments,1966,37,1:93-102.
    [12]. W.P. Aue, E. Bartholdi, Two-dimensional spectroscopy. Application to nuclearmagnetic resonance, The Journal of Chemical Physics,1976,64,5:2229-2246.
    [13]. G.Wagner,K.Wüthrich, Sequential resonance assignments in protein1H nuclearmagnetic resonance spectra: Basic pancreatic trypsin inhibitor, Journal ofMolecular Biology,1982,155,3:347-366.
    [14]. K.F. Morris,C.S. Johnson, Diffusion-ordered two-dimensional nuclear magneticresonance spectroscopy, Journal of the American Chemical Society,1992,114,8:3139-3141.
    [15]. C.S. Johnson Jr, Diffusion ordered nuclear magnetic resonance spectroscopy:principles and applications, Progress in Nuclear Magnetic ResonanceSpectroscopy,1999,34,3-4:203-256.
    [16]. M. Nilsson, I.F. Duarte, High-Resolution NMR and Diffusion-OrderedSpectroscopy of Port Wine, Journal of Agricultural and Food Chemistry,2004,52,12:3736-3743.
    [17]. M. Nilsson,G.A. Morris, Pure shift proton DOSY: diffusion-ordered1H spectrawithout multiplet structure, Chemical Communications,2007,9:933.
    [18]. V. Exarchou, M. Krucker, LC–NMR coupling technology: recent advancementsand applications in natural products analysis, Magnetic Resonance in Chemistry,2005,43,9:681-687.
    [19]. O.Corcoran,M. Spraul, LC–NMR–MS in drug discovery, Drug DiscoveryToday,2003,8,14:624-631.
    [20]. H.Winning, F.H. Larsen, Quantitative analysis of NMR spectra withchemometrics, Journal of Magnetic Resonance,2008,190,1:26-32.
    [21]. G.F. Pauli, B.U. Jaki, Quantitative1H NMR: Development and Potential of aMethod for Natural Products Analysis§, Journal of Natural Products,2004,68,1:133-149.
    [22].于小波,沈文斌,定量核磁共振技术及其在药学领域中的应用进展,药学进展,2010,34,1:17-23.
    [23].朱颖超,刘斌,核磁共振及其联用技术在天然产物定性定量分析中的应用,现代药物与临床,2009,4:193-197.
    [24].张才煜,吴建敏,核磁共振法定量测定氢溴酸东莨菪碱的绝对含量,药物分析杂志,2012,2:327-329.
    [25].陈玉兰,陶凌晖,核磁共振氢谱内标法测定盐酸小檗碱的含量,第三军医大学学报,2009,22:2217-2219.
    [26].陈春丽,田兰,核磁共振内标法测定维生素C片中维生素C的含量,中国药房,2010,32:3063-3065.
    [27].杨亮,茹阁英,核磁共振电信号内标法在人体尿液定量分析中的应用,分析化学,2010,6:789-794.
    [28]. L.I. Nord, P. Vaag, Quantification of Organic and Amino Acids in Beer by1HNMR Spectroscopy, Analytical Chemistry,2004,76,16:4790-4798.
    [29].彭小彬,梁世强,手性苏氨酸卟啉锌配合物的圆二色谱,物理化学学报,2001,17,3:4.
    [30].王树军,阮文娟,新型手性酪氨酸卟啉锌对咪唑类客体的分子识别研究,高等学校化学学报,2004,25,5:908-912.
    [31].黄汉昌,姜招峰,紫外圆二色光谱预测蛋白质结构的研究方法,化学通报(印刷版),2007,70,7:501-506.
    [32].吕扬,吴云山, X射线衍射分析技术在新药及制药研究中的应用进展,现代仪器,2004,10,3:6-9,19.
    [33].孙小杰,邵兵,液相色谱测定水样中的氧氟沙星手性对映体,北京化工大学学报(自然科学版),2008,35,1:20-23.
    [34].汪永忠,伏立康唑对映体的手性高效液相色谱分离,中国药师,2006,9,3:231-232.
    [35].严琳,严拯宇,高效液相色谱法测定体内手性药物,邯郸医学高等专科学校学报,2001,14,4:303-304.
    [36].陈胜文,林坤德,高效液相色谱-圆二色检测法分析甲霜灵的对映体纯度,分析化学,2006,34,4:525-528.
    [37].吴涛,薛屏, α-苯乙醇手性对映体气相色谱分析方法研究,宁夏大学学报(自然科学版),2006,27,2:182-185.
    [38].孟品佳,安非他明类毒品的手性对映体气相色谱-质谱分析,分析化学,2001,29,2:182-185.
    [39].王秀红,贾崇荣,多维气相色谱用于手性对映体的分离,分析化学,1993,5:495-499.
    [40].陶国忠,郭耘,乳酸乙酯对映体和丙酮酸乙酯混合物的气相色谱分析,分析化学,2007,35,3:447-450.
    [41].冯硕立,徐明仙,超临界色谱拆分6种唑类手性农药,浙江工业大学学报,2011,39,4:424-428.
    [42].林秀丽,李关宾,以L-白氨酸为手性选择剂用毛细管电泳法拆分12种手性药物,色谱,2001,19,2:109-111.
    [43].成美容,王园朝,山莨菪碱和阿托品毛细管电泳手性拆分研究,杭州师范大学学报(自然科学版),2009,8,4:286-289.
    [44].何晓东,沈佐君,毛细管区带电泳法拆分氨甲蝶呤手性对映体,检验医学与临床,2005,2,1:1-2,6.
    [45].刘英华,赵星洁,毛细管电泳法手性拆分苯磺酸氨氯地平及其光学纯度分析,河北工业科技,2007,24,4:195-197,211.
    [46].王维庭,贾庆文,毛细管电泳法拆分肾上腺素手性对映体,中国当代医药,2010,17,17:125-127.
    [47].王园朝,金英芝,10种手性药物对映体毛细管电泳拆分方法及机理探讨,分析科学学报,2009,25,1:21-25.
    [48].于擎,曹洁,质谱动力学方法在手性识别及对映体过量值方面的原理及应用,质谱学报,2009,30,3:179-190.
    [49].王文革,申秀民,手性溶解剂在NMR法测定对映体比率和绝对构型的研究进展,有机化学,2010,30,8:1126-1141.
    [50]. W.H. Pirkle,D.J. Hoover, NMR Chiral Solvating Agents, in Topics inStereochemistry.2007, John Wiley&Sons, Inc. p.263-331.
    [51]. W.H. Pirkle, The Nonequivalence of Physical Properties of Enantiomers inOptically Active Solvents. Differences in Nuclear Magnetic Resonance Spectra.I, Journal of the American Chemical Society,1966,88,8:1837-1837.
    [52].江向东,苏克曼,核磁共振光谱法测定(S)-(-)-α-苯乙氨的对映体纯度,光谱学与光谱分析,2001,21,3:407-405.
    [53]. Z. Luo, B. Li, Novel chiral solvating agents derived from natural amino acid:enantiodiscrimination for chiral α-arylalkylamines, Tetrahedron Letters,2007,48,10:1753-1756.
    [54]. M.Ardej-Jakubisiak,R.Kaw cki,NMR method for determination of enantiomericpurity of sulfinimines, Tetrahedron: Asymmetry,2008,19,23:2645-2647.
    [55]. B. Altava, M.I. Burguete, Chiral bis(amino amides) as chiral solvating agentsfor enantiomeric excess determination of α-hydroxy and arylpropionic acids,Tetrahedron: Asymmetry,2010,21,8:982-989.
    [56]. J.Comelles,C.Estivill,(R,R)-Bis(trifluoromethyl)-9,10-anthracenedimethanol: achiral solvating agent for enantiomeric resolution of-dicarbonyl compounds,Tetrahedron,2004,60,50:11541-11546.
    [57]. L.S. Moon, M. Pal, Chiral Solvating Agents for Cyanohydrins and CarboxylicAcids, The Journal of Organic Chemistry,2010,75,16:5487-5498.
    [58].刘丰良,徐军, L-亮氨酸衍生物手性氨基醇的合成与应用,广州化学,2011,36,1:1-4,10.
    [59]. C.Pe a, J.González-Sabín, Cycloalkane-1,2-diamine derivatives as chiralsolvating agents. Study of the structural variables controlling the NMRenantiodiscrimination of chiral carboxylic acids, Tetrahedron,2008,64,33:7709-7717.
    [60]. X.Yang,G.Wang,Novel NMR chiral solvating agents derived from(1R,2R)-diaminocyclohexane: synthesis and enantiodiscrimination for chiralcarboxylic acids, Tetrahedron: Asymmetry,2006,17,6:916-921.
    [61]. G.M. Hanna,C.A. Lau-Cam, Determination of the optical purity and absoluteconfiguration of threo-methylphenidate by proton nuclear magnetic resonancespectroscopy with chiral solvating agent, Journal of Pharmaceutical andBiomedical Analysis,1993,11,8:665-670.
    [62]. G.Uccello-Barretta, D. Pini, Direct NMR assay of the enantiomeric purity ofchiral β-hydroxy esters by using quinine as chiral solvating agent, Tetrahedron:Asymmetry,1995,6,8:1965-1972.
    [63]. J. Drabowicz, B. Dadziński, Chiral t-butylphenylphosphinothioic acid: A newNMR solvating agent for determination of enantiomeric excesses of sulfoxides,Tetrahedron: Asymmetry,1992,3,10:1231-1234.
    [64]. G.Uccello-Barretta,F.Balzano,ChemInformAbstract:Permethylatedcyclodextrins as Chiral Solvating Agents for the Determination of theEnantiomeric Composition of Apolar Substrates by NMR, ChemInform,1998,29,41:no-no.
    [65]. G. Uccello-Barretta, A. Cuzzola, A New Stereochemical Model from NMR forBenzoylated Cyclodextrins, Promising New Chiral Solvating Agents for theChiral Analysis of3,5-Dinitrophenyl Derivatives, The Journal of OrganicChemistry,1997,62,4:827-835.
    [66]. G.Uccello-Barretta,S.Samaritani,2,4,6-Tri[(S)-′-methylbenzylamino]-1,3,5-triazine: a new NMR chiral solvating agent for3,5-dinitrophenyl derivatives; anattempt at a chiral discrimination rationale, Tetrahedron: Asymmetry,2000,11,19:3901-3912.
    [67]. T.J. Wenzel, C.E. Bourne,(18-Crown-6)-2,3,11,12-tetracarboxylic acid as achiral NMR solvating agent for determining the enantiomeric purity andabsolute configuration of β-amino acids, Tetrahedron: Asymmetry,2009,20,17:2052-2060.
    [68]. C.D. Chisholm, F. F l p, Enantiomeric discrimination of cyclic β-amino acidsusing (18-crown-6)-2,3,11,12-tetracarboxylic acid as a chiral NMR solvatingagent, Tetrahedron: Asymmetry,2010,21,18:2289-2294.
    [69]. R. Chinchilla, F. Foubelo,(R)-O-Aryllactic acids: Convenient chiral solvatingagents for direct1H NMR determination of the enantiomeric composition ofamines and amino alcohols, Tetrahedron: Asymmetry,1995,6,8:1877-1880.
    [70]. M.Pérez-Trujillo,A.Virgili,Efficient and rapid determination of the enantiomericexcess of drugs with chiral solvating agents: carvedilol, fluoxetine and aprecursor of diarylether lactams, Tetrahedron: Asymmetry,2006,17,20:2842-2846.
    [71]. G.M.Hanna,F.E. Evans, Optimization of enantiomeric separation forquantitative determination of the chiral drug propranolol by1H-NMRspectroscopy utilizing a chiral solvating agent, Journal of Pharmaceutical andBiomedical Analysis,2000,24,2:189-196.
    [72].苏克曼,江向东,1H-NMR测定手性化合物的对映体过量,光谱实验室,1999,16,6:604-610.
    [73]. J.H.Liu,J.T.Tsay, Use of chiral lanthanide shift reagents for the nuclearmagnetic resonance spectrometric determination of amphetamine enantiomers,The Analyst,1982,107,1274:544.
    [74]. L. Fauconnot, C. Nugier-Chauvin, Enantiomeric excess determination of somechiral sulfoxides by NMR: use of (S)-Ibuprofen and (S)-Naproxen as shiftreagents, Tetrahedron Letters,1997,38,45:7875-7878.
    [75]. G.M. Hanna, Determination of enantiomeric composition of ibuprofen in bulkdrug by proton nuclear magnetic resonance spectroscopy with a chirallanthanide chelate, Journal of Pharmaceutical and Biomedical Analysis,1997,15,12:1805-1811.
    [76]. J.W. Jaroszewski,A. Olsson, Determination of enantiomeric purity of nicotine inpharmaceutical preparations by13C-NMR in the presence of a chiral lanthanideshift reagent, Journal of Pharmaceutical and Biomedical Analysis,1994,12,3:295-299.
    [77]. M. Kagawa, Y. Machida, Enantiomeric purity determination ofacetyl-l-carnitine by NMR with chiral lanthanide shift reagents, Journal ofPharmaceutical and Biomedical Analysis,2005,38,5:918-923.
    [78]. G.M. Hanna,C.A. Lau-Cam, Determination of the optical purity of timololmaleate by proton nuclear magnetic resonance spectroscopy with a chiral Pr(III)shift reagent, Journal of Pharmaceutical and Biomedical Analysis,1995,13,11:1313-1319.
    [79]. G.M.Whitesides,D.W.Lewis, tris[3-(tert-butylhydroxymethylene)-d-camphorato]europium(III).A reagent for determining enantiomeric purity,Journal of the American Chemical Society,1970,92,23:6979-6980.
    [80]. A.Inamoto,K.Ogasawara,Samarium(Ⅲ)-propylene-diaminetetraacetate complex:a water-soluble chiral shift reagent for use in high-fied NMR, Org Lett,2000,2:3543-3535.
    [81]. F.A.Long, G.Dahlgren,Relative hydrogen bonding of deuterium. I. Ionizationconstants of maleic and fumaric acids and of their nonethyl esters in H2O andD2O,J Am Chem Soc,1960,82:1303-1308.
    [82]. J. Reuben,Chiral interactions in aqueous solution mediated by lanthanoid ions.NMR spectral resolution of enantiomeric nulei, Chem Soc Chem Commun,1979,68-69.
    [83]. T J Wenzel,NMR Shift Reagents,Boca Raton: CRC Press,1978.
    [1]. T.J.Wenzel, J.D.Wilcox, Chiral Reagents for the Determination of EnantiomericExcess and Absolute Configuration Using NMR Spectroscopy, Chirality,2003,15:256-270.
    [2]. A.K.Gupta, R.J.Kazlauskas, Calibration plots to aid determination of highenantiomeric purity using chiral lanthanide shift reagents, Tetrahedron:Asymmetry,1992,3,2:243-246.
    [3]. T. J. Wenzel, Enantiomeric Purity Studied Using NMR,1999:484-493.
    [4]. H.L.Goering,J.N.Eikenberry, Tris[3-(trifluoromethylhydroxymethylene)-d-camphorato] europium(III). Chiral shift reagent for direct determination ofenantiomeric compositions, Journal Of The American Chemical Society,1971,93,22:5913.
    [5]. T. J. Wenzel, C. D. Chisholm, Using NMR spectroscopic methods to determineenantiomeric purity and assign absolute stereochemistry, Progress In NuclearMagnetic Resonance Spectroscopy,2010,59,1:1-63.
    [6].王庆锋,杭太俊,核磁共振法测定萘普生对映体相对含量,中国药科大学学报,1999,30,1:31-33.
    [7]. A.Inamoto, K.Ogasawara, Samarium-(III)-propylenediaminetetraacetatecomplex: a water-soluble chiral shift reagent for use in high-field NMR, OrganicLetters,2000,2:3543-3545.
    [8]. K.Ogasawara, K.Omata, Optically active Ce(III)-propylenediaminetetraacetatecomplex: a chiral NMR shift reagent for aqueous solution causing less signalbroadening, Kidorui,1999,34:152-153.
    [9]. L.M.Sweeting, D.C.Crans, Determination of enantiomeric purity of polarsubstrates with chiral lanthanide NMR shift reagents in polar solvents, Journal ofOrganic Chemistry,1987,52,11:2273-2276.
    [10]. M. DeArment, M. Eastabrooks, NMR Studies of Drugs. Applications of a ChiralLanthanide Shift Reagent to Methoxamine in Chloroform-d or Acetonitrile-d3,Spectroscopy Letters: An International Journal for Rapid Communication,1994,27,4:533-555.
    [11]. T. J. Wenzel, M. S. Bogyo, Lanthanide-cyclodextrin complexes as probes forelucidating optical purity by NMR spectroscopy, Journal of the AmericanChemical Society,1996,116,11:4858-4865.
    [12]. P. E. Peterson, M. Stepanian, Methodology for the analysis of products fromasymmetric syntheses using chiral NMR shift reagents. Relative complexationconstants of enantiomers, Journal of Organic Chemistry,1988,63,9:1907-1911.
    [13]. C.L.Guo, J.Persons, Helical chirality in hexamethylene triperoxide diamine,Magnetic Resonance in Chemistry,2006,44,9:832-837.
    [14]. T.J.Wenzel, A.C.Ruggles, Binuclear lanthanide(III)-silver(I) NMR shiftreagents: Investigations of new achiral and chiral analogs, Magnetic Resonance inChemistry,1985,23,9:778-783.
    [15]. T.J.Wenzel. Discrimination of Chiral Compounds Using NMR Spectroscopy.Hoboken: Wiley Interscience,2007.
    [16]. T.J.Wenzel, J.Zaia, Organic-soluble lanthanide nuclear magnetic resonance shiftreagents for sulfonium and isothiouronium salts, Analytical Chemistry,1987,59,4:562-567.
    [17]. T.K. Green, J.R.Whetstine, Enantiomeric purity of alkylmethylphenylsulfoniumions with chiral NMR shift reagents: racemization by pyramidal inversion asobserved by1H NMR spectroscopy, Tetrahedron: Asymmetry,8,19:3175-3181.
    [18]. K.Omata,M.Fujioka,UseofSm(III)-{1,2-propanediamine-N,N,N',N'-tetra(alpha,alpha-dideuterioacetate)}complex for NMR determination of absolute configurationof each alpha-amino acid in peptide hydrolysate mixtures, ChemicalCommunications,2008,40:4903-4905.
    [1] Raban M, Mislow K. The determination of enantiomeric composition ofmethamphetamine by1H-NMR spectroscopy[J]. Tetrahedron Lett,1965,4249-4253.
    [2] Wenzel T J. Discrimination of Chiral Compounds Using NMR Spectroscopy[M].Hoboken: Wiley Interscience,2007.
    [3] Wenzel T J. NMR Shift Reagents[M]. Boca Raton: CRC Press,1978.
    [4] Inamoto A, Ogasawara K, Omata K, Kabuto K, Sasaki Y. Samarium(Ⅲ)-propylene-diaminetetraacetate complex: a water-soluble chiral shift reagent foruse in high-fied NMR[J]. Org Lett,2000,2:3543-3535.
    [5] Long F A&Dahlgren G. Relative hydrogen bonding of deuterium. I. Ionizationconstants of maleic and fumaric acids and of their nonethyl esters in H2O andD2O[J]. J Am Chem Soc,1960,82:1303-8.
    [6] Jiang Xiangdong(江向东), Su Keman(苏克曼), Cai Shuihong(蔡水洪),Detemination of enantiomeric purity of (S)-(-)-α-phenylethylamine by NMR(核磁共振光谱法测定(S)-(-)-α-苯乙氨的对映体纯度)[J]. Spectroscopy andSpectral Analysis (光谱学与光谱分析),2001,21(3):404-405.
    [7] Reuben J. Chiral interactions in aqueous solution mediated by lanthanoid ions.NMR spectral resolution of enantiomeric nulei[J]. Chem Soc Chem Commun,1979,68-69.
    [8] Pfenninger V A, Hochrainer A. NMR-spektroskopische methoden alsr.einheitskiterien isomerer weinsauren an weinsaureester[J]. Helv Chim Acta,1981,64:1558-1562.
    [9] Bounoure J, Souppe J. Direct1H NMR determination of the enantiomeric excessof carnitine[J]. Analyst,1988,113:1143-1144.
    [10]Anet F A L, Park J. Proton chemical shift assignments in citrate and citrate inchiral media[J]. J Am Chem Soc,1992,1:1441-1416.
    [11]Chen Guo-sheng(陈国生). Chiral Lanthanide Shift Reagent Nuclear MagneticResonance Method for Determination of Enantiomeric Purity ofCyclopenta(cyclohexa)-pyridin-ol(手性镧系位移试剂核磁共振法测定环戊(己)烯并吡啶醇类物质对映体纯度的研究)[D].Hangzhou(杭州): College ofChemical Engineering and Materials Science, Zhejiang University ofTechnology(浙江工业大学化学工程与材料学院),2009.
    [12]Kabuto K, Sasaki Y. The europium(Ⅲ)-(R)-propylenediaminetetra-acetate ion: apromising chiral shift reagent for1H NMR spectroscopy in aqueous solution[J]. JChem Soc Chem Commun,1984,316-318.
    [13]Kabuto K, Sasaki Y. Highly consistent correlation between absoluteconfiguration ofα-amino acids and their shift induced by the NMR chiral shiftreagent propylenediaminetetraaceta-toeuropium(Ⅲ) in aqueous solution[J]. JChem Soc Chem Commun,1987,670-671.
    [14]Kabuta K, Sasaki Y. Consistent correlation between absolute configuration of-hydroxy carboxylic acids and lanthanoid induced shift by an NMR chiralreagent in aqueous solution[J]. Chem Lett,1989,385-388.
    [15] Ogasawara K, Omata K, Kabuto K, Jin H, Sasaki Y. Optically activeCe(Ⅲ)-propylenediaminetetracetate complex: a chiral shift reagent for aqueoussolution causing less signal broadening[J]. Kidorui1999,34:152-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700