半滑舌鳎维生素C及牙鲆、大菱鲆胆碱营养生理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以我国重要的鲆碟养殖种类半滑舌鳎(Cynoglossus semilaevis),牙鲆(Paralichthys olivaceus)和大菱鲆(Scophthalmus maximus)为研究对象。在室内流水式养殖系统中进行为期10周的摄食生长实验。探讨饲料中添加维生素C和胆碱分别对半滑舌鳎、牙鲆和大菱鲆生长和生理状态的影响,同时根据不同指标评价了半滑舌鳎对维生素C及牙鲆和大菱鲆对胆碱的需求量。主要研究结果如下:
     1.实验采用实用饲料,在半滑舌鳎基础饲料中添加0、10、50、150、450、1500mg/kg的维生素C(维生素C多聚磷酸酯形式),制成6种实验饲料,分别对初始体重为(4.21±0.02)g(实验Ⅰ)、(116.93±0.91)g(实验Ⅱ)2个规格各6组半滑舌鳎进行10周的摄食生长实验。每组设3个重复,每个重复分别60尾(实验Ⅰ)、18尾(实验Ⅱ)。实验期间,保持系统黑暗,实验Ⅰ,每天饱食投喂3次(06:00、14:00和22:00),水温变化范围:20~10℃,盐度变化范围:24~26‰,溶氧含量:≥6mg/L,pH:7.9~8.0;实验Ⅱ,每天饱食投喂2次(07:30和18:30),水温变化范围:24.1~18.8℃,盐度变化范围:24~26‰,溶氧含量:≥6mg/L,pH:7.9~8.0。结果表明,实验Ⅰ中,半滑舌鳎的存活率、增重率、特定增长率和饲料转化率随着饲料中维生素C添加量增加,有上升趋势,但差异不显著(P>0.05)。肝脏、肾脏、肌肉中抗坏血酸含量均随饲料中维生素C添加量增加而显著上升(P<0.05)。实验Ⅱ中,半滑舌鳎的存活率、饲料转化率随饲料中维生素C添加量增加有上升趋势,但差异不显著(P>0.05);增重率和特定生长率不受饲料中维生素C显著影响(P>0.05)。当饲料中维生素C添加量超过50mg/kg时,随添加量增加肝脏、肾脏、肌肉中抗坏血酸含量均显著上升并高于对照组(P<0.05)。以上结果表明在本实验条件下,半滑舌鳎幼鱼基础饲料中无需添加额外的维生素C即可满足幼鱼正常生长发育的需要。
     2.实验采用半精制饲料,在牙鲆基础饲料中添加0、100、300、900、1800、3600 mg/kg的氯化胆碱,制成6种实验饲料,分别含有胆碱260.2、350.4、531.5、1020.9、1914.3和3457.6mg/kg。对初始体重为(3.73±0.04)g的6组牙鲆进行10周的摄食生长实验,每组设3个重复,每个重复20尾鱼。实验期间每天饱食投喂2次(07:30和18:30),水温变化范围:16-20℃,盐度为27‰,pH在7.5~7.8之间,24小时曝气,溶氧含量大于7mg/L,光周期为12h光照:12h黑暗。结果表明:未添加胆碱饲料组牙鲆出现生长下降,饲料转化率低,肠道灰白等缺乏症。饲料中添加胆碱显著提高了牙鲆幼鱼的增重率和饲料转化率(P<0.05),存活率也有上升趋势,但差异不显著(P>0.05)。随着饲料中胆碱水平的升高,牙鲆的WG和FER显著升高(P<0.05),WG在饲料胆碱含量大于等于1914.3mg/kg时,达到稳定状态。牙鲆的肝指数和内脏指数随着饲料胆碱含量的升高而显著降低(P<0.05)。随着饲料胆碱含量升高,牙鲆的体水分含量显著下降(P<0.05),体粗脂肪显著上升(P<0.05)。牙鲆的肝脏和肌肉脂肪不受饲料胆碱显著影响(P>0.05),随着胆碱含量的升高呈上升趋势。随着饲料胆碱水平的升高,牙鲆血浆中总胆固醇和甘油三酯显著上升(P<0.05)。以WG为评价指标,通过折线模型得出牙鲆对胆碱的最适需求量为1707.3mg/kg。
     3.实验采用半精制饲料,在大菱鲆基础饲料中添加0、100、300、900、1800、3600 mg/kg的氯化胆碱,制成6种实验饲料,分别含有胆碱260.2、350.4、531.5、1020.9、1914.3和3457.6mg/kg。对初始体重为(6.25±0.04)g的6组大菱鲆进行10周的摄食生长实验,每组设3个重复,每个重复30尾鱼。实验期间每天饱食投喂2次(07:30和18:30),水温变化范围:16-19℃,盐度为27‰,pH在7.5~7.8之间,24小时曝气,溶氧含量大于7mg/L,光周期为12h光照:12h黑暗。结果表明:未添加胆碱饲料组大菱鲆出现死亡率高、生长下降,饲料转化率低,肠道灰白等缺乏症。饲料中添加胆碱显著提高了大菱鲆幼鱼的增重率和存活率(P<0.05),饲料转化率也有上升趋势,但差异不显著(P>0.05)。随着饲料中胆碱水平的升高,大菱鲆的WG和SR显著升高(P<0.05),WG在饲料胆碱含量大于等于1914.3mg/kg时,达到稳定状态。大菱鲆的肝指数不受饲料胆碱显著影响(P>0.05),内脏指数随着饲料胆碱含量的升高显著下降(P<0.05)。随着饲料胆碱含量升高,大菱鲆的体水分、灰分含量显著下降(P<0.05),体粗蛋白、体粗脂肪显著上升(P<0.05),当饲料胆碱超过1914.3mg/kg时,体粗脂肪达到稳态。大菱鲆的肝脏脂肪受饲料胆碱显著影响(P<0.05),总体呈先上升后下降趋势。肌肉脂肪随着饲料胆碱含量的升高呈上升趋势,但影响不显著(P>0.05)。随着饲料胆碱水平的升高,大菱鲆血浆中总胆固醇和甘油三酯显著上升(P<0.05),当饲料胆碱大于等于1020.9mg/kg时,血浆甘油三酯达到稳态。分别以WG、体粗脂肪和血浆甘油三酯为评价指标,通过折线模型得出大菱鲆对胆碱的最适需求量分别为2089.8、1800和951.6mg/kg,考虑实际生产意义,推荐饲料中胆碱含量为2089.8mg/kg。
Ten-week feeding trials were conducted to investigate the nutritional physiology of vitamin C for tonguefish (Cynoglossus semilaevis) and choline for flounder (Paralichthys olivaceus) and turbot (Scophthalmus maximus). The feeding trials were conducted in indoor floating water culture system. The dietary requirements of vitamin C for tonguefish and choline for flounder and turbot were estimated using different indicators. Results of these studies are presented as follows:
     1. Six practical diets were designed with 0, 10, 50, 150, 450 and 1500 mg ascorbic acid equivalent kg-1 supplemented respectively to the basic diet, as L-ascorbyl-2-polyphosphate (LAPP). Two 10-week feeding experiments were carried out by using different size of fish (average body weight: (4.21±0.02) g in ExperimentⅠand (116.93±0.91) g in ExperimentⅡ). Each diet was fed to triplicate groups of fish to apparent satiation (experimentⅠ: three times a day, 6:00, 14:00 and 22:00; experimentⅡ: twice a day, 07:30 and 18:30), stocked with 60 (ExperimentⅠ) and 18 fish (ExperimentⅡ) respectively. During the experimentⅠ, water temperature ranges from 20 to 10℃, salinity from 24 to 26‰, pH from 7.8 to 8.0 and dissolved oxygen content was approximately 6mg/L. During the experimentⅡ, water temperature ranges from 24.1 to 18.8℃, salinity from 24 to 26‰, pH from 7.8 to 8.0 and dissolved oxygen content was approximately 6mg/L. The results showed that: ExperimentⅠ: Survival rate, specific growth rate and feed efficiency ratio showed an increasing tendency with increasing dietary vitamin C, but without significant (P>0.05) difference. Liver, kidney and muscle ascorbic acid concentration significantly increased with increasing dietary vitamin C (P<0.05). ExperimentⅡ: Survival rate and feed efficiency ratio increased with increasing dietary vitamin C, but not significantly (P>0.05). Specific growth rate wasn’t influenced significantly by dietary vitamin C. When supplemented more than 50mg/kg, liver, kidney, and muscle ascorbic acid concentrations significantly increased with increasing dietary vitamin C, all significantly higher than 0mg/kg diet group (P<0.05). We may conclude that, though dietary vitamin C benefits to survival to some extent, it is not nessesary to supply extra vitamin C in the basic diet of tonguefish (Cynoglossus semilaevis) under the experimental conditions.
     2. Six semi-purified diets were designed with 0, 100, 300, 900, 1800 and 3600 mg/kg choline chloride supplemented respectively to the basic diet to get six experimental diets with 260.2, 350.4, 531.5, 1020.9, 1914.3 and 3457.6mg/kg choline. A 10-week feeding experiment was carried out with flounder weighing (3.73±0.04) g. Each diet was fed to triplicate groups of fish to apparent satiation twice a day, 07:30 and 18:30), stocked with 20 fish each group. During the experiment, water temperature ranges from 16 to20℃, pH from 7.5 to 7.8, dissolved oxygen content was approximately 6mg/L and salinity was about 27‰. The results showed that: flounder fed the basal diet exhibited deficiency such as retarded growth, lower feed efficiency ratio and pale intestinal tract. Weight gain (WG) and feed efficiency ratio (FER) increased significantly (P<0.05) with increasing dietary choline, and survival rate (SR) showed increasing tendency without significant difference (P>0.05). WG levels off when dietary choline is more than 1914.3mg/kg. Hepatosomatic index (HSI) and visceral somatic index (VSI) of flounder decreased significantly with increasing dietary choline. (P<0.05). Moisture of flounder significantly decreased (P<0.05), whereas crude lipid increased (P<0.05). No significant differences were detected in liver lipid and muscle lipid, just showing increasing tendency, but cholesterol and triglyceride in plasma significantly increased as dietary choline increased. On the basis of WG (using broken-line modle), the optimum dietary choline requirement of juvenile flounder was estimated to be 1707.3mg/kg.
     3. Six semi-purified diets were designed with 0, 100, 300, 900, 1800 and 3600 mg/kg choline chloride supplemented respectively to the basic diet to get six experimental diets with 260.2, 350.4, 531.5, 1020.9, 1914.3 and 3457.6mg/kg choline. A 10-week feeding experiment was carried out with turbot weighing (6.25±0.04) g. Each diet was fed to triplicate groups of fish to apparent satiation twice a day, 07:30 and 18:30), stocked with 30fish each group. During the experiment, water temperature ranges from 16 to19℃, pH from 7.5 to 7.8, dissolved oxygen content was approximately 7mg/L and salinity was about 27‰. The results showed that: turbot fed the basal diet exhibited deficiency such as high death, retarded growth, lower feed efficiency ratio and pale intestinal tract. Weight gain (WG) and survival rate (SR) increased significantly (P<0.05) with increasing dietary choline, and feed efficiency ratio (FER) showed increasing tendency without significant difference (P>0.05). WG levels off when dietary choline was more than 1914.3mg/kg. Hepatosomatic index (HSI) wasn’t significantly affected, but visceral somatic index (VSI) of flounder decreased significantly with increasing dietary choline (P<0.05). Moisture and ash of flounder significantly decreased (P<0.05), whereas crude protein and crude lipid increased (P<0.05), crude lipid leveled off when dietary choline was more than 1914.3mg/kg. No significant difference was detected in muscle lipid, but liver lipid was (P<0.05), showing increasing then decreasing tendency. Cholesterol and triglyceride in plasma significantly increased as dietary choline increased. When dietary choline was above 1020.9mg/kg, triglyceride leveled off. On the basis of WG, crude lipid and triglyceride (using broken-line modle), the optimum dietary choline requirements of juvenile flounder were estimated to be 2089.8, 1800 and 951.6mg/kg. Practically considering, 2089.8mg/kg is recommend in turbot diet.
引文
Adhma, K.G., Hashem, H.O., Abu-shabana, M.B. Vitamin C deficiency in catfish (Clarias gariepinus). Aquaculture nutrition, 2000, 6(2): 129-139.
    Adron, J.W., Knox, D., Cowey, C.B. Studies on the nutrition of marine flatfish. The pyridoxine requirement of turbot (Scophthalmus maximus). British Journal of Nutrition, 1978, 40: 261-268.
    Aguirre, P., Gatlin, D.M. Dietary vitamin C requirement of red drum (Sciaenops ocellatus). Aquacult. Nutr., 1999, 5:247-249.
    Ai, Q. H., Mai, K. S., Tan, B. P., et al. Effects of dietary vitamin C on survival, growth, and immunity of large yellow croaker (Pseudosciaena crocea). Aquaculture, 2006, 261: 327-336.
    Ai, Q. H., Mai, K. S., Zhang, C. X., et al. Effects of dietary vitamin C on growth and immune response of Japanese seabass (Lateolabrax japonicas). Aquaculture, 2004, 242: 489-500.
    Al-Amoudi, M.M., El-Nakkadi, A.M.N., El-Nouman, B.M. Evaluation of optimum dietary requirement of vitamin C for the growth of Oreochromis spilurus fingerlings in water from the Red Sea. Aquaculture, 1992, 105: 165-173.
    Alexis, M.N., Nengas, I., Fountoulaki, E., et a1. Tissue ascorbic acid levels in European sea bass (Dicentrarchus labrax) fingerlings fed diets containing different forms of ascorbic acid. Aquaculture, 1999, 179: 447-456.
    Amerio, M., Ruggi, C., Rovelli, R.M., et al. Ascorbic acid availability from ascorbyl-2- polyphosphate and ascorbyl-2-sulfate in sea bass (Dicentrarchus labrax). Aquac, l998, 159:233-237.
    Ames, B.N., Shigenaga, M., Hagen, T.M. Oxidants, antioxidants and the degenerative diseases of aging. Proc. Acad. Sci. (USA), 1993, 90: 7915-7922.
    Anderson, P. A., Baker, D. H., Sherry, P. A. & Corbin, J. E. Cholinemethionine interrelationship in feline nutrition. J. Anim. Sci, 1979, 49: 522-527.
    Arai, S., Nose, T., Hashimoto, Y. Qualitative requirements of young eels (Anguilla japonica), for water-soluble vitamins and their symptoms. Bull. Freshwater Res. Lab. Tokyo, 1972, 22: 69-83.
    Association of Official Analytical Chemists (AOAC), Official Methods of Analysis of Official Analytical Chemists International, 16th edn. Association of Official Analytical Chemists,Arlington, VA, USA. 1995.
    Baker, D. H., Halpin, K. M., Czarnecki, G. L. & Parsons, C. M. The choline-methionine interrelationship for growth of the chick. Poult. Sci, 1982, 62: 133-137.
    Bell, G.R., Higgs, D.A., Traxler, G.S. The effect of dietary ascorbate, zinc and manganese on the development of experimentally induced bacterial kidney disease in sockeye salmon (Onchorhynchus nerka). Aquaculture, 1984, 36: 293-311.
    Bender, D.A. Nutritional Biochemistry of the Vitamins. Cambridge University Press. New York, USA, 1992.
    Bendich, A., Machlin, L.J., Scandurra, O., et al. The antioxidant role of vitamin C. Adv. Free- Radical Biol. Med. 1986, 2: 4109-4444.
    Bennett, M.A. Utilization of homocystine for growth in presence of vitamin B12 and folic acid. J. Biol. Chem, 1950, 187: 751-756.
    Bennett M.A., Joralemon J., Halpern P.E. The effect of vitamin B12 on rat growth and fat infiltration of the liver. J. Biol. Chem, 1951, 193: 285-291.
    Bong-Joo Lee, Kyeong-Jun Lee, Se-Jin Lim & Sang-Min Lee. Dietary myo-inositol requirement for Olive flounder (Paralichthys olivaceus). Aquaculture Research, 2009, 40: 83-90.
    Chan, M.M. Choline. In: Handbook of Vitamins (Machlin, L.I., ed.), 2nd ed. Marcel Dekker, New York, NY. 1991: 537-556.
    Chatterjee G.C. Effects of ascorbic acid deficiency in animals. In: The Vitamins, vol. 1 (ed. By W.H. Sebrell Jr &R.S. Harris). Academic Press, New York , NY. 1967: 407-456.
    Chen, R.G. Lochmann, R.T., Goodwin, A., Praveen, K., Dabrowski, K., Lee, K.J. Effects of dietary vitamin C and E on alternative complement activity, hematology, tissue composition, vitamin concentrations and response to heat stress in juvenile golden shiner (Notemigonus crysoleucas). Aquaculture, 2004, 242: 553-569.
    Chien, L.T., Hwang, D.F., Jeng, S.S. Effect of thermal stress on dietary requirements of vitamin C in thornfish (Terapon jarbua0. Fish Sci, 1999, 65: 731-735.
    Chien, L.T., Hwang, D.F. Effects of thermal stress and vitamin C in lipid peroxidation and fatty acid composition in the liver of thornfish (Terapon jarbua). Comp. Biochem. Physiol, 2001,128 B: 91-97.
    Cho, S.H., Lee, S.M., Lee, S.M., et al. Effect of dietary protein and lipid levels on growth andbody composition of juvenile turbot (Scophthalmus maximus L) reared under optimum salinity and temperature conditions. Aquaculture Nutrition, 2005, 11(4): 235-240
    Cowey, C.B., Adron, J.W., Knox, D. et al.Studies on the nutrition of marine flatfish. The thiamin requirement of turbot (Scophthalmus maximus).British Journal of Nutrition (UK), 1975, 34 (3): 383-390.
    Craig, S., Kasper, M.R., White, P.B. Brown. Betaine can replace choline in diets for juvenile Nile Tilapia (Oreochromis niloticus). Aquaculture, 2002, 205: 119-126.
    Craig, S.R., Gatlin, D.M. Dietary choline requirement of juvenile red drum (Sciaenops ocellatus.) J. Nutr., 1996, 126: 1696-1700.
    Dabrowski, K. Gulonolactone oxidase is missing in teleost fish. Biol Chem Hoppe-seyler, 1990, 371: 207-214.
    Dabrowski, K., Kock, G., Frigg, M., Wieser, W. Requirement and utilization of ascorbic acid and ascorbate sulfate in juvenile rainbow trout. Aquaculture, 1990, 91: 317-337.
    Durve, V.S., Lovell, R.T. Vitamin C and disease resistance in channel catfish (Ictalurus punctatus). Can. J. Fish. Aquat. Sci.,1982, 39: 948-951.
    Fernandez-Pato, C.A., Martinez-Tapia, C., Sola, E. Fatty acids, alpha-tocoferol and L-carnitine: Their relationships in turbot (Scophthalmus maximus L.) growth: Firstresults. Copenhagen (Denmark): Ices, 1991: 1-11.
    Folch, J., Lees, M., Sloane-Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem,1957, 226: 497-509.
    Fracalossi, D.M., Allen, M.E., Yuyama, L.K., Oftedal, O.T. Ascorbic acid biosynthesis in Amazonian fishes. Aquaculture, 2001, 192: 321-332. Gouillou-Coustans, M.F., Bergot, P., Kaushik, S.J. Dietary ascorbic acid needs of common carp (Cyprinus carpio) larvae. Aquaculture, 1998,161: 453-461.
    Griffin, M.E., Wilson, K.A., White, M.R., Brown, P.B. Dietary choline requirement of juvenile hybrid striped bass. J. Nutr, 1994, 124: 1685-1689.
    Halver, J. E. The vitamins. In, Halver J.E. (Eds), Fish Nutrition, 3nd edition. Academic Press, New York, 2002: 66-98.
    Halver, J.E. Nutrition of salmon fishes. III. Water-soluble vitamin requirements of chinook salmon. J. Nutr, 1957, 62: 225-243.
    Halver, J.E., Ashley, L.M., Smith, R.E. Ascorbic acid requirements of coho salmon and rainbow trout. Trans. Am. Fish. Soc, 1969, 98: 762-772.
    Hardie, L.J., Fletcher, T.C., Secombes, C.J. The effect of dietary vitamin on the immune response of the Atlantic (salmon Samlo salar L). Aquaculture, 1991, 95: 201-214.
    Hardie, L.J., Marsden, M.J., Fletcher, T.C., et al. In vitro addition of vitamin C affects rainbow trout lymphocyte responses. Fish&Shellfish Immunoloy, 1993, 3: 207-219.
    Hardy, R. W., Barrows, F.T. Diet formulation and manufacture. In: Halver, J. E., Hardy, R. W. (Eds.), Fish Nutrition, 3rd edn. Academic Press, San Diego, CA, 2002:505-600.
    Henrique, M.M.F., Gomes, E.F., Gouillou-Coustans, M.F., et al. Influence of supplementation of practical diets with vitamin C on growth and response to hypoxic stress of seabream (Sparus aurata). Aquaculture, 1998, 161: 415-426.
    Hernandez, L.H.H, Texhima, S.I., Ishikawa, M., et al. Dietary vitamin A requirements of juvenile Japanese flounder (Paralichthys olivaceus). Aquaculture Nutrition, 2005, 11: 3-9.
    Hilton, J.W., Cho, C.Y., Brow, R.G., et al. The synthesis half-time and distribution of ascorbic acid in rainbow trout. Comp Biochem Physiol, 1979, 65 A: 447-453.
    Hung, S.S.O. Choline requirement of hatchery-produced juvenile white sturgeon (Acipenser transmontanas). Aquaculture, 1989, 78: 183-194.
    Hwang, D.F., Tse-Kun, Lin. Effect of temperature on diet vitamin C requirement and lipid in common carp. Comparative Biochemistry and Physiology Part B, 2002, 131: l-7.
    Jinee Eo, Kyeong-Jun Lee. Effect of dietary ascorbic acid on growth and non-specific immune responses of tiger puffer (Takifugu rubripes). Fish & Shellfish Immunology, 2008, 25: 611 -616.
    Jobling, M. Growth. In fish energetic: new perspective (TyIter P&Calow P eds). London: Croom Helm,1985: 213-230.
    John, T.M., George, J.C., Hilton, J.W. et al. Influence of dietary ascorbic acid on plasma lipid levels in the rainbow trout. International Journal for Vitamin and Nutrition Research, 1979, 49: 400-405.
    Kangsen Mai, Lindong Xiao, Qinghui Ai, et al. Dietary choline requirement for juvenile cobia (Rachycentron canadum). Aquaculture, 2009, 289: 124-128.
    Ketola, H.G. Choline metabolism and nutritional requirement of lake trout (Salvelinusnamaycush). J. Anim. Sci, 1976, 43:474-477.
    Kim, Young-In, Miller, J.W, Costa, Kerry-Ann, et al. Severe folate deficiency causes secondary depletion of choline and phosphocholine in rat liver. J. Nutr, 1994, 124: 2197-2203.
    Kitamura, S., Ohara, S., Suwa, T., et al. Studies on vitamin requirements of rainbow trout (Salmo gairdneri.)1. on the ascorbic acid. Bull. Jpn. Soc. Sci. Fish, 1965, 31: 818-826.
    Kitamura, S., Suwa, T., Ohara, S., et al. Studies on vitamin requirements of rainbow troutⅡ. The deficiency symptoms fourteen kinds of vitamin. Bull. Jpn. Soc. Sci. Fish, 1967, 33: 1120- 1125.
    Knox, E., Goswami, M.N.D. Ascorbic acid in man and animals .Adv. Clin. Chem, 1961, 4: 121- 205.
    Kroening, G. H. & Pond, W. G. Methionine, choline and threonine interrelationships for growth and lipotropic action in the baby pig and rat. J. Anim. Sci. 1967, 26: 352-357.
    L.D. Xiao, K.S. Mai, Q.H. Ai., et al. Dietary ascorbic acid requirement of cobia, (Rachycentro canadum Linneaus). Aquaculture Nutrition, 2010, 16: 582-589.
    Lall, S.P., Olivier, G., Weerakoon, D.E.M., et al. The effect of vitamin C deficiency and excess on immune response in Atlantic salmon (Salmo salar L.). In Proceedings of the Fish Nutrition Meeting, Toba, Japan, M. Takeda and T. Watanabe, eds. Tokyo: Japan Translation Center. 1990: 427-441.
    Lavens, P., Lebegue, E., Jaunet, H., et al. Effect of dietary essential fatty acids and vitamins on egg quality in turbot (Scophthalmus maximus) broodstock. VIII. International Symposium on Nutrition and Feeding of Fish; Recent Advances in Finfish&Crustacean Nutrition. Las Palmas de Gran Canaria, Spain June1-4, 1998: 110-199.
    Lee J K, Cho S H, Park S U, et al. Dietary protein requirement for young turbot (Scophthalmus maximus L.). Aquaculture Nutrition, 2003, 9(4): 283-286 Lee K.J., Kim K.W. & Bai S.C. Effects of different dietary levels of L-ascorbic acid on growth and tissue vitamin C concentration in juvenile Korean rockfish, Sebastes schlegeli (Hilgendorf). Aquaculture Research, 1998, 29: 237-244.
    Li, Y., Lovell, R.T. Elevated levels of dietary ascorbic acid increase immune responses in channel catfish. Journal of Nutrition, 1985, 115(1); 123-131.
    Lim, C., Lovell, R.T. Pathology of the vitamin C deficiency syndrome in channel catfish(Ictalurus punctatus). J. Nutr, 1978, 108: 1137-1146.
    Lin, M. F., Shiau, S.Y. Dietary L-ascorbic acid affects growth, nonspecific immune responses and disease resistance in juvenile grouper, Epinephelus malabaricus. Aquaculture, 2005, 244: 215-221.
    Lombardi, B. Effects of choline deficiency on rat hepatocytes. Fed. Proc. 1971, 30: 139-142. Lovell, R.T., Lim, C. Vitamin C in pond diets for channel catfish. Trans. Am. Fish. Soc, 1978, 107: 321-325.
    Luis Hector Hernandez Hernandez,Shin-ichi Teshima,Shunsuke Koshio,et al. Effects of vitamin A on growth, serum anti-bacterial activity and transaminase activities in the juvenile Japanese flounder (Paralichthys olivaceus). Aquaculture, 2007, 262: 444-450.
    M.L. Roberts, S.J. Davies, A.L. Pulsford. The influence of ascorbic acid (vitamin C) on non-specific immunity in the turbot (Scophthalmus maximus L.). Fish & Shellfish Immunology, 1995, 5: 27-38.
    Mahajan, C.L., Agrawal, N.K. Vitamin C deficiency in Channa punctatus Bloch. J. Fish Biol, 1979, 15: 613-622.
    Martinez-Tapia, C., Fernandez-Pato, C. Use of fat, carnitine and vitamin E in the ongrowing of turbot (Scophthalmus maximus L.). European Aquaculture Society, 1993, 19: 412.
    Matusiewicz, M., Dabrowski, K., Volker, L., et al. Regulation of saturation and depletion of ascorbic acid in rainbow trout. J Nutr Biochem, 1994, 5: 204-212.
    Mazik, P.M. ,Brandt, T.M., Tomasso, J.R. Effects of dietary vitamin C on growth, caudal fin development and tolerance of aquaculture-related stressors in channel catfish.Prog. Fish-Cult, 1987, 49: 13-16.
    McDowell, L.R. Vitamins in animal nutrition. 1989: 236-255. McLaren, B.A., Keller, E., O'Donnell, D.J., et al. The nutrition of rainbow trout. I. Studies of vitamin requirements. Arch. Biochem. Biophys, 1947, 15: 169-178.
    Md-Shan Alam, Shin-Ichi Teshima, Manabu Ishikawa, et al. Methionie requirement of Juvenile Japanese flounder (Paralichthys olivaceus). Journal of the world aquaculture society, 2000, 31(4): 618-626.
    Merchie, G., Lavens, P., Sorgeloos, P. Optimization of dietary vitamin C in fish and crustacean larvae: a review. Aquac, 1997, 155: 165-181.
    Merchie, G., Lavens, P., Storch, V. et al. Influence of dietary vitamin C dosage on turbot (Scophthalmus maximus) and European sea bass (Dicentrarchus labrax) nursery stages. Comp Biochem Physiol A, 1996, 114 (2): 123-133.
    Mitra, G., Mukhopadhyay, P.K., Ayyappan, S. Modulation of digestive enzyme activities during ontogeny of Labeorohita larvae fed ascorbic acid enriched zooplankton. Comparative Biochemistry and Physiology, Part A, 2008, 149: 341-350.
    Mitra, G., Mukhopadhyay, P.K. Dietary essentiality of ascorbic acid in rohu larvae: Quantification with ascorbic acid enriched zooplankton. Aquacult. Inter, 2003, 11: 81-93.
    Miyasaki, T., Sato, M., Yoshinaka, R., Sakaguchi, M. Effect of vitamin C on lipid and carnitine metabolism in rainbow trout. Fish. Sci, 1995, 61: 501-506.
    Montero, D., Marrero, M., Izquierdo, M.S., et al. Effect of vitamin E and C dietary supplementation on some immune parameters of gilthead seabream (Sparus aurata) juveniles subjected to crowding stress. Aquaculture, 1999, 171: 269-278.
    Nakamura, K., Iida, H., Nakano, H. Riboflavin in the skin of albinic flattish Liopsetta obscurea. Butt. Jpn. Soc. Sei. Fish Nissuishi, 1986, 52(12): 202-207.
    Navarre, O., Halver, J.E. Disease resistance and humoral antibody production in rainbow trout fed high levels of vitamin C. Aquaculture, 1989, 79:207-221.
    Noritatsu, Miki., Tomohiro, T., Hideo, H. Reduction of albinism in hatchery-reared flounder “hirame”(Paralichthys olivaceus) by feeding on rotifer enriched with Vitamine A. Suisanzoshok, 1990, 38(2): 147-155.
    Noritatsu, M., Tomohiro, T., and Hideo, H. Adequate Vitamine level for reduction of albinism in hatchery-reared hirame Paralichthys olivaceu fed on rotifer enriched with fat soluble vitamins. Suisanzoshoku, 1989, 27(2): 109-l14.
    NRC (National Research Council). Nutrient Requirements of Fish. National Academy Press, Washington, DC. 1993.
    Ogino, C., Uki, N., Watanabe, T., et al. B vitamin requirements of carp. IV. Requirement for choline. Bull. Jpn. Soc. Sci. Fish, 1970, 36: 1140-1146.
    Ortuno, J., Esteban, Meseguer, J. Effects of high dietary intake of vitamin C on non-specific immune response of gilthead seabream (Sparus aurata L.).Fish& Shellfish Immunol, 1999, 9: 429-443.
    Peres, H., Oliva-Teles A. The effect of dietary protein replacement by crystalline amino acid on growth and nitrogen utilization of turbot (Scophthalmus maximus) juveniles. Aquaculture, 2005, 250: 755-764
    Peres, H., Oliva-Teles Aires. Lysine requirement and efficiency of lysine utilization in turbot (Scophthalmus maximus) juveniles. Aquaculture, 2008, 275: 283-290
    Poston, H. A. Choline requirement of swim-up rainbow trout fry. Prog. Fish-Cult, 1991c, 53: 220-223.
    Poston, H.A. Response of Atlantic salmon fry to feedgrade lecithin and choline. Progve Fish-Cult, 1991, 53: 224-228.
    Poston, H.A. Effect of dietary L- ascorbic acid on immature brook trout. In Fisheries Research Bulletin No 31. Albany, N.Y.: State of New York Conservation Department.1967: 45-51
    Regost, C., Arzel, J., Cardinal, M., et al. Dietary lipid level, hepatic lipogenesis and flesh quality in turbot (Psetta maxima). Aquaculture, 2001, 193: 291-309.
    Roberts, M.L., Davies, S.J., Pulsford, A.L. The influence of ascorbic acid (vitamin C) on non-specific immunity in the turbot (Scophthalmus maximus L.). Fish& Shellfish Immunol, 1995, 5: 27-38.
    Robbins, K.R., Norton, H.W., Baker, D.H., 1979. Estimation of nutrient requirements from growth data. J. Nutr. 109, 1710- 1714.
    Robinson, E.H. Reevaluation of the ascorbic acid (vitamin C) requirement of channel catfish (Ictalurus punctatus). FASEB J, 1990, 4: 3745 (abstr.).
    Roem, A.J., Stickney, C.C., Kohler, C.C. Vitamin requirements of blue tilapia in a recirculating water system. Prog. Fish-Cult, 1990, 52: 15-18.
    Rumsey, G. L. Choline-betaine requirements of rainbow trout (Oncorhynchus mykiss). Aquaculture, 1991, 95: 107-116. Sakaguchi, H., Takeda, F., Tange, K. Studies on vitamin requirements by yellowtail I. Vitamin B6 and vitamin C deficiency symptoms. Bull. Jpn. Soc. Sci. Fish, 1969, 35: 1201-1206.
    Sato, M., Yoshinaka, R., Yamanmoto, Y., et al. Nonessentiality of ascorbic acid in the diet of carp. Bull Jap Soc Sci Fish, 1978, 44(10): 1151-1156.
    Sato, M., Yoshinaka, R., Yamanmoto, Y., et al. Nonessentiality of ascorbic acid in the diet of carp. Bull Jap Soc Sci Fish, 1978, 44: 775-779.
    Sato, M., Yoshinaka, R., Ikeda, S. Dietary ascorbic acid requirement of rainbow trout for growth and collagen formation. Bull. Jpn. Soc. Sci. Fish, 1978, 44: 1029-1035.
    Sealey, W.M., Gatlin III, D.M. Dietary vitamin C requirement of hybrid striped bass (Morone chrysops×M.saxatilis). J. World Aquac. Soc. 1999, 30: 297-301.
    Shiau, S.Y., Hsu, T.S. Quantification of vitamin C requirement for juvenile hybrid tilapia (Oreochromis niloticus×Oreochromis aureus), with L-ascorbyl-2-monophosphate-Na and
    L-ascorbyl-2- monophosphate-Mg. Aquaculture, 1999, 175: 317-326.
    Shiau, S.Y., Lo, P.S. Dietary choline requirements of juvenile hybrid tilapia (Oreochromis niloticus×O.aureus). J. Nutr., 2000, 130: 100-103.
    Soliman, A.K. Jauncey, K., Roberts, R.J. Water-soluble vitamin requirements of tilapia: ascorbic acid requirement of Nile Tilapia. Aquaculture and Fisheries Management, 1994, 25: 269-278.
    Stephan, G., Guillaume, J., Lamour, F. Lipid peroxidation in turbot (Scophthalmus maximus) tissue: effect of dietary vitamin E and dietary n-6 or n-3 polyunsaturated fatty acids. Aquaculture, 1995, 130 (2/3): 251-268.
    Stickney, R.R., Mc Geachin D,R.B., Lewis, H., et al. Response of Tilapia aurea to dietary vitamin C. J. World Maricult. Soc, 1984, 15: 179-185.
    Tewary A. & Patra B.C. Use of vitamin C as an immunostimulant. Effect on growth, nutritional quality, and immune response of Labeo rohita (Ham.). Fish Physiology Biochemistry, 2007, 34: 251-259.
    Thomas, P. Influence of some environmental variables on the ascorbic acid status of mullet, Mugil cephalus L., tissues. I. Effect of salinity, capture-stress, and temperature. J. Fish Biol, 1984, 25: 711-720. Thompson, I., White, A., Fletcher, T.C., Houlihan, D.F., Secombes, C.J., The effect of stress on the immune response of Atlantic salmon (Salmo salar L.) fed diets containing different amounts of vitamin C. Aquaculture,1993, 114:1-18.
    Tongjun, Ren., Shunsuke, Koshio., Shin-Ichi, Teshima., et al. Optimum Dietary Level of L-ascorbic Acid for Japanese Eel (Anguifh japonica). Journal of the world aquaculture society, 2005, 36(4): 437-443.
    Tucker, B.W., Halver, J.E. Utilization of ascorbate-2-sulfate in fish. Fish Physiol. Biochem, 1986,2: 151-160.
    Twibell, R.G., Brown, P.B. Dietary choline requirement of juvenile yellow perch (Perca flavescens). J. Nutr, 2000, 130: 95-99.
    Venugopal, P.B.Choline.In: Methods of Vitamin Assay (Augustin, J., Klein, B. P., Becker ,D., Venugopal, P., eds.). John Wiley and Sons, New York, NY. 1985: 555-573
    Verlhac, V., Gabaudan, J. Influence of vitamin C on the immune system of salmons. Aquac. Fish. Manage, 1994, 25: 21-36.
    Verlhac, V., Obach, A., Gabaudan, J., Schüep, W.&Hole, R. Immunomodulation by dietary vitamin C and glucan in rainbow (Oncorhynchus mykiss). Fish and Shellfish Immunology, 1998, 8: 409- 424.
    Waagb?, R., Glette, J., Raa-Nilsen, E., Sandnes, K. Dietary vitamin C, immunity and disease resistance in Atlantic Salmo salar. Fish Physiol. Biochem, 1993, 2: 61-73.
    Walter, G.M., Lovell, R.T. Na-L-ascorbyl-2-monophosphate as a source of vitamin C for channel catfish. Aquaculture, 1992, 105: 95-100.
    Wang, X.J., Kim, K.W., Bai, S.C. Comparison L- ascorbyl-2-monophos- phate-C a with L-ascorbyl-2-monophosphate-Na/Ca on growth and tissue ascorbic acid concentrations in Korean rockfish (Sebastes schlegeli). Aquaculture, 2003a, 225: 387-395.
    Wang, X.J., Kim, K.W., Bai,S.C., et al. Effects of the different levels of dietary vitamin C on rowth and tissue ascorbic acid changes in parrot fish (Oplegnathus fasciatus). Aquaculture, 2003b, 215: 21-36.
    Wilson, R.P., Poe, W.E. Choline nutrition of fingerling channel catfish. Aquaculture, 1988, 68:65-71.
    Wilson, R.P., Poe, W.E. Impaired collagen formation in the scorbutic channel catfish. J. Nutr, 1973, 103: 1359-1364. Xiaojie Wang, Kangwoong Kim, Sungchul C Bai. Effects of different dietary levels of L-ascorbyl-2-polyphosphate on growth and tissue vitamin C concentrations in juvenile olive flounder (Paralichthys olivaceus). Aquaculture Research, 2002, 33: 261-267.
    Yang Liu, Lei Chi, Lin Feng, et al. Effects of graded levels of dietary vitamin C on the growth, digestive capacity and intestinal micro flora of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture Research, 2011, 42: 534-548.
    Yano, T., Nakao, M.,Furuichi, M., Yone,Y. Effect of dietary choline, pantothenic acid and vitamin C on the serum complement activity of red seabream. Bull. Jpn. Soc. Sci. Fish, 1988, 54: 141 -144.
    Yone, Y., Fujii, M. Studies on nutrition of red sea bream. 10. Qualitative requirements for water-soluble vitamins. Rep. Fish. Res. Lab. Kyushu Univ. (Jpn), 1974, 2:25-32.
    Yutaka, Haga., Toshio, Takeuchi., Yasuyuki, Murayama., et al. Vitamin D3 compounds induces hypermelanosis on the blind side and vertebral deformity in juvenile Japanese flounder (Paralichthys olivaceus). Fisheries Science, 2004, 70: 59-67.
    Z. XIE, C. NIU. Dietary ascorbic acid requirement of juvenile ayu (Plecoglossus altivelis). Aquaculture Nutrition, 2006, 12: 151-156.
    Zhang, Z., Wilson, R.P. Reevaluation of the choline requirement of fingerling channel catfish (Ictalurus punctatus) and determination of the availability of choline in common feed ingredients. Aquaculture, 1999, 180: 89-98.
    曹俊明,林鼎,薛华,等.四种抗脂肪肝物质降低草鱼肝胰脏脂质积累的替代关系.水生生物学报, 1999, 23(2): 102-111.
    常青,梁萌青.大菱鲆的饲料与投喂.饲料工业, 2001, 22(10): 13-14.
    陈京华.米曲霉素AS 3.951发酵豆粕对大菱鲆摄食生长的影响.中国农学通报, 2009, 25(02): 277-282.
    丁爱侠.半滑舌鳎人工育苗技术.齐鲁渔业, 2004, 21(12): 37-38.
    高淳仁,王印庚,杨志,等.饲料中添加不同脂肪源、VC和VE对大菱鲆生长和非特异性免疫力的影响.海洋水产研究, 2008, 29 (2): 65-72.
    郝林华,孙丕喜,石红旗,等.牛蒡寡糖对大菱鲆生长和免疫机能的影响.海洋科学进展, 2007, 25(2): 208-214.
    黄瑞,北岛力,柯才焕.关于牙鲆Paralichthys olivaceus (Temminck et Schlege1)白化诱因的探讨.现代渔业信息, 1997, 12(9): 21-23.
    雷霁霖.鲆鲽类养殖新形势和发展动向.科学养鱼, 2005, 1: 34-35.
    雷霁霖.我国大菱鲆养殖产业发展新动向.科学养鱼, 2003,7: 3-4.
    雷霁霖.海水鱼类养殖理论与技术.北京:中国农业出版社, 2005: 647-665.
    冷向军,李小勤.水产动物的胆碱营养.饲料研究, 2005, 2: 44-46.
    李爱杰,张道波,任泽林.牙鲆幼鱼对水难溶性维生素B3需求量的研究.饲料工业, 2001,22(12): 26-27.
    李爱杰.水产动物营养与饲料学.北京:中国农业出版社, 1996.
    李慧,王宏,任泽林.胆碱的研究进展.饲料工业, 2007, 28(20): 7-10.
    刘伟,文化,周俊,等.氯化胆碱对中华鲟幼鱼生长和生理指标的影响.水利渔业, 2007, 27 (3): 91-93.
    柳学周,庄志猛,马爱军,等.半滑舌鳎繁殖生物学及繁育技术研究.海洋水产研究, 2005, 26 (5): 7-14.
    马爱军,陈四清,雷霁霖,等.维生素与矿物质对大菱鲆幼鱼色素恢复作用的研究.海洋水产研究, 2004, 25(5): 25-29.
    马爱军,柳学周,徐永江.半滑舌鳎早期发育阶段的摄食特性及生长研究.海洋与湖沼, 005, 36(2): 130-137.
    秦启伟,吴灶和,周永灿,等.饵料维生素C对青石斑鱼的非特异性免疫调节作用.热带海洋, 2000, 19(1): 58-63.
    邵庆均,张莉红,刘建新,等.饲料中VC水平对中华鳖幼鳖生长及其组织中含量的影响.水生生物学报, 2004, 28(3): 269-274.
    沈同.生物化学.北京:高等教育出版社, 1995: 365-367.
    宋学宏,蔡春芳,潘新法,等.用生长和非特异性免疫力评定异育银鲫维生素C需要量.水产学报, 2002, 26(4): 351-356.
    王安利,母学全,凌利英.中国对虾配合饲料中维生素C添加量的研究.海洋与湖沼, 1996, 27(4): 368-372.
    王道尊,赵亮,谭玉钧.草鱼鱼种对胆碱需要量的研究.水产学报, 1995, 19 (2): 132-138.
    王正丽.免疫增强剂对牙鲆免疫力和抗病力的影响.中国海洋大学研究生学位论文, 2004.
    魏万权,李爱杰,李德尚.牙鲆幼鱼饲料中锰、钴适宜添加量的初步研究.浙江海洋学院学
    报(自然科学版), 2001, 20(增刊): 83-87.
    魏玉婷.大菱鲆(Scophthalmus maximus)幼鱼对饲料中蛋氨酸、精氨酸、维生素A及维生素E需求量的研究.中国海洋大学研究生学位论文, 2010.
    谢明,侯水生,黄苇.胆碱降低动物脂肪沉积的营养作用机理.中国饲料, 2005, 17: 19-23.
    张辉,王亚斌,王维娜.牙鲆营养研究进展.河北大学学报(自然科学版), 1998,18(增刊): 88- 90.
    张玲.牙鲆免疫促进机理初探.中国海洋大学研究生学位论文, 2003.
    张鑫磊.半滑舌鳎胚胎发育及幼鱼营养需求的研究.中国海洋大学研究生学位论文, 2006.
    周歧存,刘永坚,麦康森等.维生素C对点带石斑鱼生长及组织中维生素C积累量的影响.海洋与湖沼, 2005, 36(2): 152-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700